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Rafał K. Wóycicki7, Mark A. Carlson8,9, William H. VelanderID
2, Eliana P. Araújo5,6,
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Abstract

The pig skin architecture and physiology are similar to those of humans. Thus, the pig model

is very valuable for studying skin biology and testing therapeutics. The single-cell RNA

sequencing (scRNA-seq) technology allows quantitatively analyzing cell types, composi-

tions, states, signaling, and receptor-ligand interactome at single-cell resolution and at high

throughput. scRNA-seq has been used to study mouse and human skins. However, study-

ing pig skin with scRNA-seq is still rare. A critical step for successful scRNA-seq is to obtain

high-quality single cells from the pig skin tissue. Here we report a robust method for isolating

and cryopreserving pig skin single cells for scRNA-seq. We showed that pig skin could be

efficiently dissociated into single cells with high cell viability using the Miltenyi Human Whole

Skin Dissociation kit and the Miltenyi gentleMACS Dissociator. Furthermore, the obtained

single cells could be cryopreserved using 90% FBS + 10% DMSO without causing additional

cell death, cell aggregation, or changes in gene expression profiles. Using the developed

protocol, we were able to identify all the major skin cell types. The protocol and results from

this study are valuable for the skin research scientific community.

Introduction

Millions of people are affected by skin injuries and diseases [1–3]. Animal models are widely

used to understand skin physiopathology and to test potential therapeutics [4,5]. Among vari-

ous experimental animals, the skin architecture and physiology of pigs are closest to humans
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[6–8]. FDA thus recommends including pigs for pre-clinical biology study and therapeutic

testing [9,10]. Conventionally, the skin is investigated using low-content technologies such as

qPCR, flow cytometry, and histology. The most recently developed single-cell RNA sequencing

(scRNA-seq) technology allows simultaneously and quantitively analyzing the transcriptome

of thousands of individual cells. It leads to new insights into the cell types, compositions, states,

signaling, receptor-ligand interactome, and their dynamics during development, disease, and

treatment [11–13]. Additionally, when combined with the high-content immunostaining and

fluorescent imaging [14], or the cutting-edge Spatial Transcriptomics technology [11–13], the

spatial and temporal organization of these cells and their interactions can also be obtained.

scRNA-seq has been used to study rodent [15–22] and human [13,21,23–30] skins. However,

using scRNA-seq to study pig skin is still rare.

In a typical scRNA-seq workflow, tissues are first dissociated into single cells (i.e., the

upstream single cell preparation). These freshly isolated cells are then used to prepare RNA

libraries using droplet-based technology (i.e., the downstream library preparation) [31]. The

libraries are then sequenced using the deep sequencing technology [32]. Preparing high-qual-

ity single cells is critical for the success of the downstream process. Partial or incomplete tissue

dissociation, cell aggregation, and cell death should be avoided during the preparation.

Recently studies showed that adding a cell preservation step between the upstream single

cell preparation and downstream RNA library construction makes the scRNA-seq workflow

much more flexible, manageable, and accessible to researchers [24,33–36]. First, some research

facilities/institutions do not have the infrastructure and expertise to prepare scRNA-seq librar-

ies for the freshly isolated cells. Instead, they ship cells to service facilities for RNA library con-

struction and sequencing. Cells should be preserved during shipping. Second, most studies

collect samples at multiple time points and different locations. Preparing RNA libraries at the

same facilities can increase consistency and reduce experimental variations. To achieve this,

cells need preservation. A suitable cell preservation method should not significantly change

the cell viability, composition, and gene expression [24,33–36]. To our best knowledge, there

have been no reports on how to prepare and preserve single cells from pig skin tissues for

scRNA-Seq, which this study aims to address.

Materials and methods

Harvesting pig skin

Fresh skin tissues from healthy farm male pigs with about 30 kg of body weight were provided

by the University of Nebraska-Lincoln Swine Facility. The Institutional Animal Care and Use

Committee of the University of Nebraska-Lincoln granted a waiver of ethics approval for

using skins harvested from dead animals. The dorsal area of the skin was washed with PBS,

and the fur was removed with a disposable scalpel. The skin was disinfected with 70% ethanol,

harvested using sterile scissors, and stored in the MACS Tissue Storage Solution (Miltenyi Bio-

tech Inc) with 1% Antibiotic-Antimycotic (ThermoFisher Scientific). The samples were kept

on ice and transported to the lab for single cell isolation.

Isolating single cells

The skin was washed with sterile iced cold PBS three times, and the subcutaneous fat was

scraped off using a scalpel. A full skin sample, including the epidermis and dermis, was taken

with a 4-mm diameter punch. The sample was then dissociated using the Human Whole Skin

Dissociation Kit (Miltenyi Biotech Inc). Briefly, 435 μL of Buffer L and 12.5 μL of Enzyme P

were put into a gentleMACS C tube and gently mixed before adding 50 μL of Enzyme D and

2.5 μL of Enzyme A. One skin sample was placed into the tube and incubated at 37˚C for three
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hours. The tube was inverted for mixing every ten minutes. The enzymatic reaction was

stopped by adding 0.5 mL ice-cold cell culture medium (DMEM + 10%FBS). The sample was

then mechanically dissociated with a gentleMACS Dissociator (Miltenyi Biotech Inc) using the

“h_skin_01” program. The suspension was passed through a 70 μm strainer to remove tissue

debris, if any. Cells were collected by centrifugation at 300 g for 5 minutes. The supernatant

was aspirated, and the cell pellet was resuspended in 5 mL DMEM + 10% FBS. Cells were

counted using a Countess II FL Automated Cell Counter (ThermoFisher Scientific) on a 0.2%

trypan blue staining. The viability was further assessed using the LIVE/DEAD™ Viability/Cyto-

toxicity Kit for mammalian cells (Invitrogen).

Cryopreserving cells

The freshly isolated cell suspension was centrifuged at 300 g for 5 minutes. The cell pellet was

resuspended with FBS containing 10% DMSO at 1x106 cells/mL. Next, 1 mL cells suspension

was put in a cryopreservation vial and placed in a Mr. Frosty Freezing Container (Thermo-

Fisher Scientific). The container was placed in a -80˚C freezer overnight before being stored in

liquid N2 for the long term.

Thawing cells

The frozen vial was removed from the liquid N2 storage and placed in a 37˚C water bath. After

thawing, the cell suspension was centrifuged at 300 g for 5 minutes and resuspended in

DMEM + 10% FBS. The cell viability was assessed with the LIVE/DEAD™ Viability/Cytotoxic-

ity Kit and flow cytometer.

Removing dead cells and cell aggregates using Fluorescence-Activated Cell

Sorting (FACS)

4 μL of 2 mM ethidium homodimer-1 was added to each milliliter cell suspension and incu-

bated for 20 minutes at room temperature to stain the dead cells before sorting (FACSAriaII).

Side-scatter and forward-scatter profiles were used to eliminate cell doublets. Living cells were

gated as ethidium homodimer-1 negative. The sorted cells were re-analyzed for purity using a

flow cytometer. Data were analyzed with BD FACS Diva software.

Removing dead cells using Magnetic-Activated Cell Sorting (MACS)

An alternative approach was used to remove dead cells with the Dead Cell Remove Kit (Milte-

nyi Biotech Inc) following the product instruction. Briefly, the cell suspension was centrifuged

at 300 g for 5 minutes. Cells were resuspended in 100 μL of Dead Cell Removal MicroBeads

and incubated for 15 minutes at room temperature. Dead cells were removed using a MACS

Separator (Miltenyi Biotech Inc) following the product instruction.

Library construction

Cells were suspended in DMEM+10% FBS. The cells’ density and viability were estimated

using a Countess II FL Automated Cell Counter. About 8,000 cells were used as the input to

generate an RNA-seq library following the 10X Genomics Chromium Next GEM Single Cell 30

kit V3 protocol. Libraries were sequenced at Novogene using NovaSeq 6000 sequencer.

Data processing

scRNA-seq data was processed with Cell Ranger pipeline version 4.0.0. (10x Genomics). A ref-

erence transcriptome was created by utilizing the pig reference genome (Sscrofa11.1) and its
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annotation downloaded from Ensemble (https://www.ensembl.org/Sus_scrofa/Info/Index).

The reads were mapped using STAR aligner (v. 2.5.1b) against the reference transcriptome to

detect and count UMIs and expressed genes.

Data analysis

The quality of sequencing data was assessed using quality control parameters, including the

gene counts per cell, UMI counts per cell, and mitochondrial gene expression [37,38]. These

quality control parameters were calculated as part of the scRNA-seq data analysis procedure

using the Seurat R package version 3.2.1 [37]. Since cell doublets or multiplets exhibit an aber-

rantly high gene and molecule counts, we set a maximum threshold at 4,500 genes per cell and

30,000 molecules per cell (S1 Fig). Also, we allowed cells up to 10% mitochondrial gene expres-

sion (S1 Fig).

The sample data sets were merged into one R Data object per experiment for joint cluster

analysis. Then, the UMI count data per cell were normalized and log-transformed using the

default settings of the “Normalize Data” function in Seurat [37]. Principal component analysis

(PCA) was performed using the highly variable genes for each sample. Significant principal

components were selected for subsequent cluster analysis. Single cell clustering was visualized

with uniform manifold approximation and projection (UMAP) plots with default parameters.

Cell types were annotated using marker genes with at least a 2-fold increase in individual cell

clusters compared to the remaining cells. We used CellMatch for automated cell type annota-

tion [39]. Based on the evidence-based score, we annotated the clusters by matching the identi-

fied marker genes with known cell markers in tissue-specific cell taxonomy reference

databases [39]. For single-cell trajectory analysis [40,41], we used an algorithm to learn the

changes in each cell’s gene expression sequence. Once the algorithm has learned the overall

"trajectory" of gene expression changes, we placed each cell at its proper position in the trajec-

tory (line).

Statistically significant differences between cell cluster gene levels were calculated using the

MAST linear model approach, as implemented in the Seurat package. Genes were considered

as being significantly altered if gene expression levels had at least 2-fold changes and adjusted

P-values were less than 0.001 (Bonferroni correction). The overall similarity of fresh and cryo-

preserved samples’ gene expression profiles was assessed by the correlation performed on

“pseudo-bulk” expression profiles [42], which were generated by summing counts together for

all cells within the same sample by using the function of “aggregateAcross” in the Scatter pack-

age [43]. The raw pseudo-bulk count matrices were normalized using edgeR version 3.30.3

[44]. Pearson correlation of the fresh and cryopreserved samples was computed using the nor-

malized counts. The differentially expressed pseudo-bulk genes were identified by edgeR.

Statistical analysis

The data are presented as the mean ± S.D. We used an unpaired t-test to compare two groups

and one-way ANOVA to compare more than two groups. P-value < 0.05 was considered sta-

tistically significant. We used GraphPad Prism 6 for Windows 6.01v to perform statistical

analysis.

Results

Isolating and preserving single pig skin cells

We used the Miltenyi Human Whole Skin Dissociation Kit and the gentleMACS Dissociator

to dissociate the pig skin. Our results showed the combination efficiently dissociated the skin
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into single cells with only a few cell aggregates and no cell or tissue debris. The resultant cells

had healthy and spherical morphology (Fig 1A and 1B). Live/dead cell staining showed that

most cells were live, and confirmed cell aggregates were few (Fig 1C and 1D). Flow cytometry

analysis showed that >60% of cells were viable (Fig 1E). We froze the freshly isolated cells in

90% FBS + 10% DMSO at -80˚C, followed by long-term storage in liquid N2. After thawing,

cryopreserved cells had similar spherical morphology and viability as the fresh cells (Fig 1A–

1E), preliminarily indicating this method is appropriate for preserving cells. Furthermore, the

cryopreservation did not induce cell aggregation.

Cell aggregates interfere with the downstream library preparation. RNAs released from

dead cells negatively affect scRNA-seq results. We sought to remove both aggregated and dead

cells with fluorescence-activated cell sorting (FACS) before the library preparation. Dead cells

were stained with ethidium homodimer-1 dye and removed via the red fluorescence. Cell dou-

blets were removed using the side-scatter and forward-scatter profiles. FACS quantitively

removed both (Fig 1D). Since many researchers have difficulty accessing a FACS instrument,

we also used an alternative and compact device, the Miltenyi magnetic-activated cell sorting

(MACS), to remove the dead cells. MACS quantitively removed dead cells. However, it was

not efficient to remove cell aggregates (Fig 1D). In summary, it is appropriate to combine the

Fig 1. Efficient single cell preparation. Phase (a, b), live/dead staining (c, d), and flow cytometry viability

quantification (e) of fresh isolated, cryopreserved, post-FACS, and post-MACS pig skin cells. n = 3 for (e).

https://doi.org/10.1371/journal.pone.0263869.g001
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Human Whole Skin Dissociation Kit, the gentleMACS Dissociator, cryopreservation, and

FACS to prepare and preserve high-quality single pig skin cells for scRNA-seq.

Cryopreservation in 90% FBS + 10% DMSO preserved gene expression

Our data showed the genes per cell, UMIs per cell, % mitochondrial genes were similar

between the fresh and the cryopreserved sample (Fig 2A–2C). The pseudo-bulk expression

Fig 2. Fresh and cryopreserved cells have similar quality control parameters. The genes per cell (a), UMIs per cell

(b), and % mitochondrial genes (c) in each cell of fresh and cryopreserved samples by cell type. Each dot represents one

cell.

https://doi.org/10.1371/journal.pone.0263869.g002
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profiles of cryopreserved and fresh cells were compared using correlation analysis to assess if

cryopreservation alters the gene expression. The expression profile of the cryopreserved sam-

ple correlated very well with this of fresh cells (R = 0.981) (Fig 3A). Among 20,428 expressed

genes, there were only 57 differentially expressed genes (DEGs) between fresh and cryopre-

served samples with FDR adjusted P-values < 0.01. This indicates the gene expression profiles

between fresh and cryopreserved samples are almost the same. Next, we analyzed the subset of

genes that exhibited high cell-to-cell variation in the samples (Fig 3B). Fresh and cryopreserved

samples shared the highly variable features (e.g., CD209, MMP3, CCL5, C4BPA) with similar

variance and average expression. Lastly, we assembled the fresh and the cryopreserved sample

into an integrated reference and visualized the integration using a non-linear dimensional

reduction UMAP (Fig 3C). Again, the fresh and cryopreserved cells formed similar structures.

These results show that cryopreservation in 90% FBS + 10% DMSO did not alter the gene

expression significantly.

Fig 3. Fresh and cryopreserved cells have similar gene expression profiles. (a) The pseudo-bulk expression profiles

of fresh and cryopreserved cells are compared using correlation scatter plots. The profiles correlate well (R = 0.981). (b)

Analysis of the highly variable genes shows fresh and cryopreserved samples share the highly variable features with

similar variance and average expression. (c) UAMP shows fresh and cryopreserved samples have similar structures.

https://doi.org/10.1371/journal.pone.0263869.g003
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Cryopreservation in 90% FBS + 10% DMSO retained the major skin cell

types

Next, we sought to answer if the single cell preparation protocol could retain the major skin

cell types and if the cryopreservation changed the cell composition. We performed a clustering

analysis of the integrated cryopreserved and fresh cells using a graph-based clustering

approach [37,45]–the Louvain algorithm [46]. This method embeds cells in a graph structure,

clusters cells with similar feature expressions, and partitions the graph into highly interconnec-

ted communities. We identified 18 clusters (S2 Fig) and the top 10 marker genes for each clus-

ter (S3 Fig). We then used a mixed strategy to annotate the clusters. We used CellMatch [46]

to annotate clusters based on the evidence-based score by matching the identified marker

genes with known cell markers in tissue-specific cell taxonomy reference databases. Also, we

used cell marker genes from recent scRNA-seq studies of skin [16,27] to identify the remaining

cell types. This allows us to identify the major skin cell types (Fig 4A). The expression levels for

the markers of each cell type were shown in Fig 5 and S1 Table. The top 10 marker genes for

each cell type were also identified (S4 Fig). We compared the fresh and the cryopreserved sam-

ples regarding the relative organization and connection between cell clusters (Fig 4A). The two

Fig 4. Fresh and cryopreserved samples have similar cell types (a) and cell cycle status (b).

https://doi.org/10.1371/journal.pone.0263869.g004
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samples were very similar. Also, the cryopreservation did not significantly alter the cell compo-

sitions (Table 1).

Cryopreservation retained the cell cycle status and differentiation

trajectory

Further, we used cell cycle regression to analyze the effect of cryopreservation on the cell cycle

status. We identified the cell cycle heterogeneity from cryopreserved and fresh samples by cal-

culating cell cycle phase scores based on canonical markers [39]. Our results showed no differ-

ences between fresh and cryopreserved keratinocytes regarding G2/M-phase genes (Fig 4B).

Using the single-cell trajectory analysis [40,41], we found that epidermal stem cells differenti-

ated into keratinocytes in both fresh and cryopreserved samples (Fig 6A and 6B). The results

indicate the data quality for both the fresh and cryopreserved cells is sufficient for transcrip-

tional trajectory analysis.

Discussion

Preparing high-quality single cells is a critical step for a successful scRNA-seq study. A suitable

dissociation method should dissolve the whole skin tissue, including epidermis and dermis, to

Table 1. Cellular composition in fresh and cryopreserved samples.

Cell type cryopreserved fresh

Epidermal stem cells 17.8% 16.0%

Fibroblast 37.9% 45.5%

SMC 8.2% 7.2%

Differentiated keratinocytes 7.7% 6.7%

Endothelial cells 6.3% 6.5%

Dendritic cells 5.9% 4.6%

T cells 5.5% 4.3%

Langerhans cells 4.1% 3.1%

Lymphatic cells 2.9% 3.3%

Macrophages 2.5% 2.1%

B cells 0.9% 0.4%

https://doi.org/10.1371/journal.pone.0263869.t001

Fig 5. Dot plot of marker genes for pig skin cells.

https://doi.org/10.1371/journal.pone.0263869.g005
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release most if not all cells [23,47,48]. The resultant cells should have high viability and few

aggregates. A dissociation method with high cell yield and cell viability can minimize skin

samples and allow detecting cell types with small numbers. A few protocols have been pub-

lished for preparing single cells from rodent [49–55] and human skins [56–61] via enzymatic

digestion and mechanical dissociation. These methods vary in enzyme types and concentra-

tions, digestion time, and temperature [49–61]. Most of them use manual mechanical dissocia-

tion, such as dissection, mincing, agitation, pipetting, or passing through syringes that are

inefficient and inconsistent. Consequently, the dissociation efficiency and the resultant cell

viability, composition vary between methods, publications, and batches. The variations create

challenges when comparing scRNA-seq results from different labs. Thus, there is a critical

need to develop a standardized single cell preparation method. A standard procedure could be

best achieved using validated, commercially available enzyme kits and automated mechanical

dissociation devices.

Although we could not find a commercial kit designed explicitly for pig skin, the Miltenyi

Human Whole Skin Dissociation Kit and the gentleMACS Dissociator had been used to pre-

pare human skin single cells for scRNA-seq [23,24,27,28,62,63]. Due to the similarity of the

human and pig skins, we hypothesized that they could also be used to prepare single pig skin

cells. With our protocol, the skin tissue was close to completely dissolved. Only small numbers

of cell aggregates were found, and they could be robustly removed with FACS (Fig 1). We were

able to isolate 6.0–7.5×104 viable single cells with a 4-mm full skin biopsy punch. These cells

are sufficient for a complete scRNA-seq flow, including cell counting, cell viability, quality

assessment, RNA library construction, and quality control.

Reliable methods for preserving single cells make the scRNA-Seq workflow much more

flexible and manageable [24,33–36]. A few methods, including cryopreservation in medium

containing DMSO, using commercial cell preservation reagent, or methanol fixing, have been

reported to preserve single cells [24,33,35,36]. DMSO minimizes forming large intracellular

ice crystals, which damage and kill cells. Methanol fixing works through dehydrating cells to

preserve nucleic acids in a collapsed form at high concentrations. Upon rehydration, nucleic

acids can be restored to their original form and harvested for library preparation [62,64].

Fig 6. Single-cell trajectory analysis shows epidermal stem cells differentiate into keratinocytes in both fresh and

cryopreserved samples.

https://doi.org/10.1371/journal.pone.0263869.g006
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Literature research showed the methanol fixing method result in high ambient RNA back-

ground and a lower gene expression correlation to un-preserved cells [33]. The same was true

for when using commercial CellCover reagent [33]. On the other hand, cryopreserving human

and rodent primary cells or cell lines using DMSO plus FBS did not reduce the cell viability

and alter the cell composition and gene expression significantly [24,33–36,65]. Our results

with pig skin cells (Figs 1–6) agreed well with these literature studies.

In summary, we showed that high-quality single pig skin cells could be generated using the

Miltenyi Biotec Whole Skin Dissociation kit and Gentle MACS Dissociator. Single cells could

be cryopreserved in 90% FBS+10% DMSO, and the cryopreservation did not significantly alter

gene expression and cell compositions. Dead cells and cell aggregates could be removed via

FACS before preparing libraries. Using these methods, we obtained high-quality scRNA-Seq

data to identify the major skin cell types. The limitation of this study is that only healthy pig

skins from young pigs were used. Future studies should test if the protocol works for aged or

diseased pig skins.

Supporting information

S1 Fig. Quality control parameters of fresh and cryopreserved (frozen) pig skin cells,

including the number of genes, UMIs, and % of mitochondrial gene in each cell. (a) pre-

cut-off and (b) post-cut-off data are shown. 4500 genes/cell, 30,000 molecules/cell, and 10%

mitochondrial genes are set as the maximum threshold to exclude the doublets, multiples, and

low-quality single cells. Each dot represents one cell.

(TIF)

S2 Fig. Clustering analysis of combined (a) and separated (b) fresh and cryopreserved samples

shows that the two samples have similar clusters.

(TIF)

S3 Fig. Top 10 marker genes for each cluster.

(TIF)

S4 Fig. Top 10 marker genes for each cell type.

(TIF)

S1 Table. Markers used for annotating cell clusters.

(TIF)
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