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Simple Summary: The estrogen and androgen receptors (ER, AR) are key oncogenic drivers and
therapeutic targets in breast and prostate cancer, respectively. These receptors bind to DNA and
regulate gene expression but emerging evidence indicates that they also play important roles in
controlling the process of mRNA translation, which dictates cellular protein production. Here,
we review the mechanisms by which abnormal activities of ER and AR can dysregulate mRNA
translation in breast and prostate cancer cells. Specifically, we explore how the intricate cellular
signalling pathways that keep mRNA translation in check are perturbed by aberrant ER and AR
signalling, which can lead to enhanced cancer cell growth. We also discuss the potential of targeting
mRNA translation as a strategy to treat patients with breast and prostate cancer.

Abstract: Breast and prostate cancer are the second and third leading causes of death amongst all
cancer types, respectively. Pathogenesis of these malignancies is characterised by dysregulation of
sex hormone signalling pathways, mediated by the estrogen receptor-o (ER) in breast cancer and
androgen receptor (AR) in prostate cancer. ER and AR are transcription factors whose aberrant
function drives oncogenic transcriptional programs to promote cancer growth and progression.
While ER/AR are known to stimulate cell growth and survival by modulating gene transcription,
emerging findings indicate that their effects in neoplasia are also mediated by dysregulation of
protein synthesis (i.e., mRNA translation). This suggests that ER/ AR can coordinately perturb both
transcriptional and translational programs, resulting in the establishment of proteomes that promote
malignancy. In this review, we will discuss relatively understudied aspects of ER and AR activity
in regulating protein synthesis as well as the potential of targeting mRNA translation in breast and
prostate cancer.

Keywords: androgen receptor; breast cancer; estrogen receptor; mRNA translation; mTOR; prostate
cancer; protein synthesis

1. Parallels between Aberrant Hormone Receptor Signalling in Breast and Prostate Cancer

Breasts and prostate are accessory sex organs that are exquisitely sensitive to sex
hormones (i.e., estrogens and androgens). Malignancies arising from these organs are
frequently driven by abnormal activity of the receptors of these sex hormones: indeed,
>90% of prostate cancers (PC) are driven by the androgen receptor (AR) and ~70% of
breast cancers (BC) are driven by the estrogen receptor-a (ER) [1]. As such, hormone
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deprivation therapies are the mainstay of treatment for locally progressive and advanced
BC and PC. Although initially effective in most patients, these therapies are never curative
and the resultant treatment-resistant tumours are aggressive and often fatal. Gaining a
more complete understanding of the oncogenic activities of AR and ER is imperative for
the development of more effective targeting strategies.

AR and ER are transcription factors that regulate the expression of genes involved
in cancer development and progression, but also genes that are essential for the normal
functioning of the prostate and breast glands. Both are members of the nuclear receptor su-
perfamily and possess modular structures composed of N-terminal transactivation domains
(NTD), DNA-binding domains (DBD), hinge regions and ligand binding domains (LBD)
(Figure 1). Upon binding to their hormone ligands, AR/ER bind to chromatin at andro-
gen/estrogen response elements and mediate coordinated recruitment of transcriptional
co-regulators, resulting in activation or, more rarely, repression of gene expression [2,3]. In
normal prostate and breast tissues, the transcriptional programs regulated by AR/ER in
epithelial cells are responsible for promoting differentiation and regulating metabolism
and the production of secreted proteins, whereas the AR/ER-regulated transcriptional
programs in tumour cells promote cell growth and survival [4]. This switch in activities is
mediated at least in part by altered expression of AR/ER co-regulator proteins and changes
to the epigenome, resulting in altered AR/ER DNA binding profiles [5,6].
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Figure 1. Structural domains of human ER and AR proteins. Both ER and AR belong to the nuclear receptor superfamily
and share the same functional domains including the N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge
region and a ligand-binding domain (LBD). Activation function (AF) domains (AF-1, AF-2 and AF-5, the latter present only
in AR) are shown.

The similarities between AR/ER signalling in prostate and breast cancer extend to
mechanisms of therapy resistance; indeed, most therapy-resistant cases of BC and PC
exhibit alterations to the AR/ER signalling axes that enhance oncogenic signalling [1,7,8].
One key mechanism is mutation of the AR/ER LBD, which enhances the promiscuity of the
receptor such that it can be activated by additional non-canonical ligands or even by antag-
onist drugs [7,8]. Other resistance mechanisms shared by AR/ER include the generation of
constitutively active splice variants of the receptors, increased expression and/or activity
of a plethora of transcriptional coactivators (e.g., steroid receptor coactivators, forkhead
box protein A, GATA binding proteins, cAMP responsive element binding protein-binding
protein/p300, switch/sucrose non-fermentable complex, E3 ubiquitin-protein ligases and
steroid RNA activator, among others), and dampening of the activities of corepressors
(e.g., nuclear receptor co-repressors, speckle type BTB/POZ protein and many others [9,10].
Collectively, these alterations to AR/ER signalling confer insensitivity to conventional hor-
mone deprivation therapies (reviewed in [7,11]) and highlight the dependency of tumours
on these pathways.
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2. Dysregulation of Translation Is a Common Feature of Cancer
2.1. Translation Initiation

Translation of mRNAs can be broadly divided into four steps: initiation, elongation,
termination and ribosome recycling [12]. The initiation and elongation steps of translation
are thought to be the most highly regulated and hence have been studied most inten-
sively [13]. Dysregulation of translation in cancer, which occurs because of alterations in
the levels or the activity of the components of translational machinery [14], can impact any
of these steps.

The major signalling pathways that confer translational control are summarised in
Figure 2. A prominent feature of many cancers are mutations that lead to activation of PI3K
(phosphatidylinositol-3-kinase) / PKB (protein kinase B) and the Ras (rat sarcoma)/ MAPK
(mitogen-activated protein kinase) pathways, including loss-of-function mutations of PTEN
and gain-of-function mutations of PI3K and genes in the Ras/mitogen-activated protein
kinase MAPK pathway [15-20]. PTEN (phosphatase and tensin homolog) is a phosphatase
which dephosphorylates PtdIns(3,4,5)P3 (PIP3) and thus acts as a tumour suppressor
to counteract PI3K activity. One major consequence of these mutations is increased ac-
tivity of the mechanistic/mammalian target of rapamycin (mTOR) [21,22]. mTOR is a
serine/threonine kinase that is part of two distinct complexes, mTOR complex 1 (mTORC1)
and complex 2 (mTORC?2) [23]. In response to a variety of stimuli including nutrients,
oxygen availability, growth factors and hormones, mTORC1 stimulates protein synthe-
sis by phosphorylating substrates such as the ribosomal protein (RP) S6 kinases (S6Ks;
S6K 1 and 2 in humans) [24] and the eukaryotic translation initiation factor (elF) 4E binding
proteins (4EBPs; 4EBP1, 2 and 3 in humans). Upon mTORC1-mediated phosphorylation,
4EBPs are released from elF4E, allowing it to form a heterotrimeric e[F4F complex—with
the scaffold protein elF4G and the RNA helicase el[F4A—that recruits mRNA to the ribo-
somes [25,26]. In addition, oncogenic activation of the RAS/MAPK pathway is thought to
affect translation by stimulating phosphorylation of eIF4E via MAPK-interacting kinases
(MNKSs), as well as other translation initiation factors (e.g., eIF4B) and ribosomal proteins
(e.g., 1pS6) [27,28] (Figure 2). Targeting the subunits of the e[F4F complex has attracted
substantial interest in BC/PC (e.g., see [29,30]) and will be further discussed below.
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Figure 2. Signalling pathways that control translation. In response to extracellular stimuli, oncogenic signalling pathways,
such as Ras/MAPK/MNK and PI3K/PKB, are activated and subsequently switch on/off downstream signalling events
including mTORC1/S6K/eEF2K, mTORC1/4EBP/elF4E and MNK/eIF4E pathways that drive/prevent translation initia-
tion of elongation. In contrast, stress signals primarily act through three UPR pathways (PERK/elF2«/ATF4; IRE1-XBP1;
ATF6/ ATF6p50) to restore protein homeostasis, which is achieved by blocking translation initiation (PERK/elF2«), inducing
the transcription of EnR folding-related genes (all three arms) and ERAD (through IRE1-XBP1 and ATF6/ATF6p50).
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2.2. Translation Elongation

Notwithstanding that translation initiation is generally considered the rate limiting
step of protein synthesis, more recent evidence shows that aberrant translation elongation
may also play a prominent role in cancer [31]. In mammals, translation elongation rates are
thought to be primarily regulated by an atypical calcium/calmodulin-dependent protein
kinase called the eukaryotic translation elongation factor 2 (eEF2) kinase (eEF2K) [32].
eEF2K reduces elongation rates by phosphorylating and inhibiting eEF2 [33-35], a key
translation factor that translocates nascent peptide chains from the A-site to the P-site of the
ribosome in a GTP-dependent manner [36]. mMTORC1 and MAPK suppress eEF2K, thereby
increasing elongation rates [37,38] (Figure 2). In contrast, energy-sensing AMP-activating
protein kinase (AMPK) phosphorylates and activates eEF2K via mTORC1-dependent and
independent mechanisms to suppress translation and reduce energy consumption [39].

2.3. Integrated Stress Response (ISR)

In addjition to the mTOR-dependent and -independent inhibitory effects of AMPK on
protein synthesis, mMTORC1 can be switched off in response to nutrient/energy deprivation
or other stressors (e.g., hypoxia, acidosis) via the integrated stress response (ISR) pathway.
The function of the ISR pathway is to restore cellular homeostasis or, in situations when its
activation is prolonged, induce cell death. Intrinsic cellular stresses such as the unfolded
protein response (UPR), which lead to endoplasmic reticulum (EnR) stress, can also trigger
the ISR. Three arms of the UPR in mammals regulate distinct but highly orchestrated EnR-
stress responses. The Protein Kinase RNA activated (PKR)-like EnR kinase (PERK)/elF2x
arm of the UPR reduces global protein synthesis to relieve EnR overload while inducing
translation of a small subset of mRNAs, thus leading to transcriptional reprogramming
that enhances EnR folding capacity. In parallel with this, the inositol requiring enzyme
1 (IRE1)/x-box binding protein 1 (XBP1) and the activating transcription factor 6 (ATF6)
(and ATF6p50, a cleaved, active form of ATF6) arms of the UPR also contribute to the
improvement of EnR folding capacity in 2 ways: (i) by altering transcription, and (ii)
by triggering EnR-associated degradation (ERAD), which entails retro-translocation of
misfolded proteins from the EnR to the cytosol and their subsequent degradation by the
Ub/proteasome system (Figure 2). Additionally, EnR Ca®* release through the inositol
triphosphaste (IP3) receptor (IP3R) evokes cell fate decision events to either allow the cell
to trigger or escape from apoptotic death (see [40,41] for reviews).

The ISR arm of the UPR is centered on the phosphorylation of the x-subunit (elF2)
of heterotrimer elF2, which is catalysed by PERK [42] or three other kinases (general
control nonderepressible 2 (GCN2), PKR and heme-regulated inhibitor (HRI)), that are
activated by distinct stresses (amino acid deprivation, viral infection and heme deficiency,
respectively) [43-45]. Phosphorylation of elF2¢ inhibits elF2B, which exchanges elF2-GDP
for eIF2-GTP and allows recycling of the ternary complex comprising elF2, GTP and ini-
tiator methionyl-tRNA (tRNA;M¢!). The ensuing limitation in TC levels limits delivery
of tRNA;M¢t and halts global translation while allowing translation of a small subset of
mRNAs characterized by inhibitory upstream open reading frames (uORFs) that encode
transcription factors involved in stress response (e.g., ATF4, C/EBP homology protein
(CHOP)), or are implicated in feedback loops that limit excessive ISR (e.g., GADD34 (growth
arrest and DNA damage-inducible gene 34)) (reviewed in [46-48], also see Figure 2). Fail-
ure to do so ultimately leads to apoptotic cell death, which is exploitable as an anti-
cancer strategy.

3. Genomic Alterations to Translation Factors in Breast and Prostate Cancer

Mutation of genes implicated in translation regulation and perturbation of trans-
lational programs appears to be a common feature of BC/PC, which provides a strong
rationale for targeting translational machinery in these diseases. In particular, mutations
in genes encoding proteins upstream of mTORCI, including core components of the
PI3K/AKT pathway (i.e., PIK3CA, which encodes the p110x subunit of PI3K, PTEN and
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AKT1) and the MAPK pathway (MAP3K1, MAP2K4, BRAF and HRAS) are frequent in BC
and PC and considered to be drivers of tumourigenesis [49-51]. Mutations in the MTOR
gene itself are also present in BC (1.85%) and PC (0.4%) patients [52-54] (Table 1).

Table 1. Frequency of mutations in selected translation-related genes encoding proteins upstream of
mTORC1 in BC/PC according to cBioPortal (TCGA PanCan 2018; cbioportal.org).

BC (Invasive Carcinoma, 1084 Samples) PC (494 Samples)
Gene No. of Mutated % of Mutated No. of Mutated % of Mutated
Samples Samples Samples Samples
AKT1 27 2.49% 2 0.40%
AKT2 4 0.37% 0 0.00%
AKT3 8 0.74% 1 0.20%
BRAF 7 0.65% 7 1.42%
CRAF 7 0.65% 0 0.00%
HRAS 5 0.46% 4 0.81%
KRAS 6 0.55% 2 0.40%
MAP2K4 7 0.65% 1 0.20%
MAP3K1 7 0.65% 1 0.20%
MTOR 20 1.85% 2 0.40%
PIK3CA 333 30.72% 10 2.02%
PIK3CB 10 0.92% 3 0.61%
PIK3CD 11 1.01% 2 0.40%
PTEN 56 5.17% 13 2.63%

Notably, cancer-related alterations in translational machinery and associated factors
do not uniformly affect translation of all cellular mRNAs but rather cause selective re-
programing of the translatome to favour synthesis of factors that promote tumorigenesis,
tumor progression and drug resistance [23,55]. These differences in translational programs
of normal and neoplastic cells could yield a therapeutic window to selectively eradicate
cancer cells by targeting translational machinery, while causing minimal toxicity [23]. This
concept has spurred recent efforts to design and repurpose translational inhibitors and
apply them in oncological indications [14]. Herein, we review recent findings suggest-
ing that dysregulation of the abovementioned mechanisms of translational regulation
may play a pivotal role in BC and PC, with a particular focus on the connections be-
tween perturbations in mRNA translation, aberrant ER and AR signalling and potential
therapeutic applications.

4. Interplay between mRNA Translation and ER Signalling
4.1. ER Selectively Controls Translation Initiation

Early evidence of mRNA translation being regulated by estrogen was provided in
the late 1950s and the early 1960s [56—60]. More specifically, estrogen stimulated the
incorporation of glycine-2-C'4, used as a gross measure of protein synthesis, into rat
and chicken cells. However, the effect of estrogen on protein synthesis in BC cells was
not rigorously explored until the beginning of the 21st century. For example, an early
study found that estrogen facilitated the association of mRNAs with translationally active
polyribosomes [61], implying that not all effects of estrogen on BC cell functions were
through de novo mRNA synthesis. More recent work is beginning to shed mechanistic
insight into how ER regulates mRNA translation. A role for ER in translation appears to
relate to its ability to localize to the plasma membrane within lipid rafts (i.e., caveolae)-
enriched regions [62], which can be regulated by direct palmitoylation (at C447/C451 in
human/mouse respectively) of the ER [63]. There, ER is thought to transactivate tyrosine
kinase receptors including epidermal growth factor receptor (EGFR) and insulin-like
growth factor 1 (IGF1) receptor (IGF1R) via Src [64-66], or to associate with hematopoietic
PBX-interacting protein thus facilitating recruitment of Src to the p85 regulatory subunit
of PI3K [67]. In this manner, ER is thought to activate PI3K/PKB and MAPK pathways
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and thus impact translation. Such extra-nuclear functions of nuclear receptors have been
proposed to allow more rapid responses than their transcriptional effects [68]. In the context
of cap-independent translation, a shorter ER isoform termed ERx46 is translated via an
IRES (internal ribosomal entry site)-dependent mechanism in response to EnR stress [69].
However, it is still unclear whether ER has a role in regulating the translation of cancer-
associated IRES-dependent mRNAs (reviewed in REF e.g., [70]) such as hypoxia-inducible
factor 1oe (HIF1x) or the anti-apoptotic protein B-cell lymphoma 2 (BCL2).

Whole-genome/exome sequencing studies revealed that mTORC1 signalling is one
of the most upregulated pathways in metastatic BC cells compared to paired primary
tumours [71-74]. The mTOR complexes play a central role in converging upstream signals
evoked by ER to control translation initiation. 17(3-estradiol (E2, a classic ER agonist)
treatment could robustly evoke the phosphorylation of mTORC1 (S6K1 and 4EBP1) and
mTORC2 (PKB) downstream targets within 5 min in MCF-7 cells [75]. Analysis of transcrip-
tomic data revealed a strong correlation between ER and mTORC1/2 signalling-regulated
genes at the level of gene expression [76]. Indeed, BHPI (3,3-bis(4-hydroxyphenyl)-7-
methyl-1,3-dihydro-2H-indol-2-one), a non-competitive ER biomodulator, was able to
induce S6K phosphorylation (a readout of mMTORCI activity) and an inhibitor of mTORC1
(rapamycin) reversed the stimulatory effect of E2 on protein synthesis [77]. A recent phos-
phoproteomics study identified a range of mTORC1 phosphorylation sites from its classic
substrates (e.g., S6K, elF4B, proline-rich Akt substrate of 40 kDa (PRAS40) and La-related
protein 1 (LARP1), among others) that could be induced by E2 and are sensitive to ra-
pamycin treatment in MCF-7 cells [78]. Importantly, the authors identified DEPDC6, which
encodes for DEPTOR (DEP-domain containing mTOR-interacting protein), as a novel ER-
target gene. DEPTOR is a well-established binding partner of mTORC1/2 which negatively
regulates the activity of both complexes [79], and thus serves as a tumour suppressor
against PC progression [80]. Therefore, the induction of DEPDC6 expression is more likely
to act as a negative feedback regulatory mechanism in response to E2-induced mTORC1
activation (Figure 3), but how E2/ER stimulates mTORC1 remains to be elucidated. One
obvious possibility is that E2/ER achieves this through the activation of signalling path-
ways (e.g., PI3K/MAPK) upstream of mTORC1 [81]; alternatively and/or additionally, ER
could activate mTORC1 via a non-genomic mechanism as mentioned above. Moreover,
ER is a known mTORCT1 substrate (see Section 4.2), and therefore phosphorylated/active
ER could potentially trigger positive feedback loops to further stimulate mTORC1; such
feedback loops are known to be commonly driven by mTORC1 substrates [82,83].

In addition, mTORC1 activation by E2/ER also facilitated the association between the
octameric elF3 and elF4F, which is required for the formation of 48S preinitiation complex
during mammalian translation initiation, as this effect can be reversed by rapamycin [84].
Notably, expression levels of most elF3 subunits are upregulated in cancer, except for eIF3e
and f, which are downregulated in tumour cells and may act as tumour suppressors [85].
elF3f transcription was greatly reduced upon E2 treatment in MCF-7 cells. However, E2
has minimal effect on eIF3f protein expression, and quite unexpectedly, siRNA-mediated
knockdown of ER reduced elF3f protein levels, implying that the translation of elF3f was
actually enhanced by the presence of ER [85]. How ER can contribute to the synthesis of
elF3f is still unclear; it may involve the activation of mTORC]1, since its substrate S6K1 has
been shown to interact with and phosphorylate elF3 [86,87].
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Figure 3. Schematic presentation summarizes reported major ER-driven translational control. ER can
modulate translation initiation via stimulation of mMTORC1 and elF2«. It can also affect UPR via reg-
ulating the release of EnR Ca®*. ER inhibition triggers the AMPK/eEF2K pathway, and subsequently
alleviates translation elongation. ER may also indirectly impact on translation elongation of mRNAs
enriched in codons containing mem®s?>U34-modified tRNAs.

Perturbations in the transcription profile may trigger regulatory mechanisms which
attempt to compensate for or buffer those changes at the level of mRNA translation, a
phenomenon known as translational “offsetting” [88]. Analogous to this, one would ex-
pect that altering ER’s transcriptional activity with ER modulators or EDT will induce
this adaptive response to maintain translational homeostasis in tumour cells. Analysis
of polyribosome-associated mRNAs in BM67 cells (a cell line derived from cPTENf/fl
mice, which was obtained by crossing PB-Cre4 with PTEN®/floX mice) stably expressing
shRNAs against ER (shER) revealed that ER depletion triggered translational offsetting [89].
Of importance, mRNAs that were downregulated but translationally offset in shER BM67
frequently contained short 5'-untranslated regions (UTRs) and lacked miRNA target sites
at their 3’-UTRs [89]. This is of particular interest since ER is known to either up- or down-
regulate the expression of several miRNAs in order to fine-tune the translatome as another
mechanism to promote BC tumour growth [90-92]. In contrast, mRNAs that were induced
by ER depletion while being translationally offset are enriched in a specific set of codons
decoded by tRNAs bearing a modified uridine (5-methoxycarbonyl-methyl-2-thiouridine)
at position 34 (mem®s?Usy) [89], which is formed upon a sequential catalysis by ELP3
(elongator complex protein 3, to generate cm®U), ALKBHS (AlkB homolog 8, to generate
mem°U) and CTU1/2 (cytoplasmic tRNA 2-thiolation protein 1/2, to generate mem°s?U).
These mem®s*Uss-modifying enzymes, particularly ELP3, have recently been linked to
therapy resistance in BRAFVOE driven melanoma [93], BC [94] and colorectal cancer [95].
Importantly, Elp3 mRNA association with polysomes and ELP3 protein expression level
was greatly reduced in shER BM67 cells as well as other tested ER-negative cell lines [89],
implying that ER may also indirectly impact translation elongation of mRNAs enriched in
codons containing mem 5s2U34 tRNAs (Figure 3).



Cancers 2021, 13, 3254

8 of 26

4.2. mTORCT1 Directly Controls ER-Mediated Transcription

Direct modification of ER by mTORC1 represents another important link between
these factors. ER possesses a highly conserved TOR signalling motif (FPATV, Figure 1),
which typically starts with a phenylalanine and is present in most of the mTORC1 sub-
strates [96]. Indeed, mTORC1 can directly phosphorylate ER on Ser104/Ser106, resulting
in the enhancement of ER’s transcriptional activity amongst its target genes [97]. This
potentially provides a positive feedback link by which ER stimulates a central modulator
of protein synthesis to further strengthen its function as a transcription factor (Figure 3).
This finding can be substantiated by the fact that, as evidenced by chromatin immunopre-
cipitation analysis of ER’s binding to the estrogen response element promoter on the pS2
gene, rapamycin was inhibitory to ER’s transcriptional activity in MCF-7 cells [98].

A high level of mTORC1 activity is a predictor of poor progression-free survival (PFS)
outcomes in ER" /PR* BC patients [99]. However, a recent study from Rutkovsky et al.
found that 4EBP1, a well-established negative regulator of mTORC1 activity [100], is highly
phosphorylated and overexpressed in a range of metastatic ER* BC cell lines harbouring the
8p11-p12 amplicon, and contributes to BC cell proliferation [101]. DNA amplification of the
8p11-p12 genomic region, which contains the gene encoding 4EBP1 (EIF4EBP1), is frequent
in endocrine resistant BC. Knocking down 4EBP1 with lentiviral shRNA reduced the
replication of BC cells harbouring the 8p11-p12 amplicon and, unexpectedly, repressed the
level of ER protein expression [101]. Hyperphosphorylated 4EBP1 is resistant to ubiquitin-
mediated degradation and thus highly stable [102]. Interestingly, knocking down eIF4E
can deplete 4E-BP4EBP1 from BC cells [102]; therefore, in addition to amplification of the
EIF4EBP1 gene, the observed increase in it therefore suggests it is plausible that increased
levels of 4EBP1 in ER* /8p11-p12* BC cells may also be a result of elevated elF4E [102]. As
further evidence of the relevance of 4EBP1 in breast cancer, genomic profiling studies have
identified gene fusions such as TACCI-EIF4EBP1 [103] which are thought to enhance its
activity by promoting 4EBP1 autophosphorylation [104,105].

4.3. ER Is an Important Player in the UPR

Translation initiation can be activated by anabolic signals from environmental cues
favouring cell growth, whereas it is essential for the process to be reversed when cells
are facing stressors. In this respect, UPR plays a crucial role in ensuring cell survival by
switching off translation initiation in response to stressors. It has been shown that ER
can also regulate UPR under catabolic conditions. One of the earliest examples of how
ER ligands induce UPR was from Shapiro’s group, who discovered that that the ER in-
hibitor BHPI rapidly reduced protein synthesis rates in three types of ER* BC cells (MCE-7,
T47D and BG-1/MCF-7), concomitant with an induction of PERK/elF2x and AMPK/eEF2
phosphorylation, indicative of EnR stress/UPR and the attenuation of translation elon-
gation respectively (Figure 3). Conversely, treating the MCF-7 cells with E2 increased
global protein synthesis by approximately 3-fold [77]. The authors further showed that the
PERK inhibitor GSK2606414 was able to enhance global protein synthesis to up to 6-fold in
BHPI-co-treated MCF-7/T47D cells, whereas knocking down PERK with siRNA strikingly
decreased protein synthesis in untreated cells to less than 10% within 24 h, implying that
EnR activation was responsible for the reduced protein synthesis in response to BHPI
treatment [77]. However, it is still unknown whether the stimulation of the AMPK /eEF2K
pathway also contributes to BHPI-mediated protein synthesis inhibition. A more recent
study also found that E2 treatment could enhance protein synthesis in MCF-7:5C cells,
which are aromatase inhibitor (Al)-resistant MCF-7 cells generated by long-term estrogen
deprivation. However, in this model, the effect of E2 was much weaker than was reported
in Al-sensitive cell line models [77], implying that estrogen depletion desensitises the cells
from ER agonist-induced protein synthesis.

In spite of increasing evidence that ER can modulate the UPR, the mechanism by which
it achieves this remains unclear. One possibility is through the regulation of intracellular
Ca?* channels such as IP3R and SERCA, which are Ca?*-ATPases that transport cytoplasmic
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Ca?* into the EnR and thus act as secondary messengers for EnR stress/UPR induction
(reviewed in [47]). For instance, BHPI can evoke the activation of phospholipase Cy (PLCy),
which results in elevated IP; production and subsequently increases intracellular Ca?*
levels by depleting Ca?* from the EnR reservoir [77] (Figure 3). Whether ER’s ability to
activate PLCy is due to direct regulation of its gene, similar to other UPR-related genes [92],
is unknown.

5. New Roles for AR Signalling in mRNA Translation
5.1. AR Indirectly Regulates Translation Initiation

Similar to estrogenic control of protein synthesis [56-60], a central role for androgens
in stimulation of protein synthesis in the prostate was also proposed over half a century
ago [106]. Initial observations suggested that androgen-dependent induction of protein
synthesis in prostate is rapid [107-110] and thus unlikely to stem only from the effects of AR
on transcription. However, the mechanisms underlying AR translational reprogramming in
PC are incompletely understood. Highlighting this issue, a recent study found that de novo
protein synthesis was strikingly enhanced in castrated cPTEN'/fl mice, which apparently
contradicts early historical findings [30]. Enhanced protein synthesis in this model was
correlated with a decrease in 4EBP1 levels and concomitant increase in elF4F complex
assembly [30]. Low levels or complete loss of AR also coincided with reduced 4EBP1
expression in AR-low/null human AR program-independent prostate cancer cell line
and metastatic castration-resistant PC (CRPC) LuCaP patient-derived xenografts (PDXs).
Consistently, AR-low PC cells exhibited higher sensitivity to 4EBP1 over-expression as
compared to corresponding models with high levels of AR [30]. As such, these findings
suggest that the absence of AR can also promote protein synthesis, and that the effects
of AR on translation may be mediated via regulation of 4EBP1/elF4F. It has also been
shown that AR inhibition by bicalutamide in metastatic CRPC PDXs promoted elF4E
phosphorylation, and sensitized the PC cells to MNK inhibition [111]. Taken together, these
reports support the notion that the components of e[F4F may represent a druggable target
for AR-low PC.

In addition to affecting 4EBP1 levels, AR may also regulate 4EBP1 activity via mod-
ulating mTORC1 signaling. For instance, androgen treatment induced expression of
L-type amino acid transporters 3 (LAT3) in LNCaP (PC cell line carrying a AR-FLT877A
mutation) cells, whereas bicalutamide reversed these effects [112]. LAT3 is highly ex-
pressed in primary prostate tumours [113-116] and depleting LAT3 effectively diminished
prostate cancer cell proliferation in vitro [112]. AR can also regulate mTORC1 indirectly
via a signalling cascade involving kallikrein related peptidase 4 (KLK4), promyelocytic
leukemia zinc finger (PLZF) and regulated in development and DNA damage responses
1 (REDD1) [117] (Figure 4). Association of the AR-regulated factor KLK4 [118] leads to
destabilization of PLZF and REDD], relieving mTORC1 from REDD1-mediated inhibition.
In other words, one would expect that the ablation of AR inhibits mTORC]1, but this is
seemingly contradictory to the fact that AR-low PC cells have a high protein synthesis
rate [30]. One explanation can be that low levels of 4EBP1 expression in AR-low /null cells
render elF4E insensitive to mTORC1 inhibition [30]; hence the eIlF4F complex becomes
“constitutively active”.
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Figure 4. Signalling pathways implicated in AR-driven translational control. AR has been shown
to modulate translation initiation through signalling cues (MNK and mTORC1, the latter via LAT3
and KLK4) that converge on elF4E, a translation initiation factor that promotes the translation of
mRNAs with certain patterns (e.g., guanine-rich translational element (GRTE)-containing messages).
AR can also act as a regulator of the UPR by directly inducing IRE1, which leads to upregulation of
ERAD-related genes.

The effect of AR signalling on mTORC]1 activity appears to be context-dependent.
In contrast to the findings described above, Zhang et al. recently demonstrated that
knockdown of AR can trigger mTORCI1 stimulation in hepatocellular carcinoma (HCC)
cells MHCC-97L, as a result of downregulation of the classic AR target, FK506 binding
protein 5 (FKBP5), which acts as an AKT/mTORC1 upstream inhibitor [119]. In addition,
although rapamycin treatment is known to enhance AR’s transcriptional activity in PC
cells [120], rapamycin blunted the transcriptional activity of AR in HCC (SNU423 and
MHCC-97L) cells. Therefore, it appears that either the stimulation (PC) or the depletion
(HCC) of AR can activate mTORC1; similarly, mTOR inhibition can either stimulate (PC) or
repress (HCC) transcriptional activity of the AR. This apparent paradox may be reconciled
as a cell type-specific phenomenon but warrants further investigation. One possibility is
that long-term rapamycin treatment can suppress mTORC1 and mTORC2 in some cell lines
(e.g., LNCaP and PC3 [120,121]), but not others [121], and therefore the effect of mTOR
inhibition may depend on its effect on mTORC2. The use of an ATP-competitive mTOR
inhibitor (mTORi) that strongly suppresses the activation of both mTORC1 and 2 ([122],
also see Section 6 below), or mTOR complex-specific genetic ablation, may help to dissect
the precise role of the regulation of AR by mTOR.

Beyond control of translation factors, other mechanisms of interplay between AR and
mTOR have been documented. For example, it was found that AR and mTOR can interact
on chromatin, and co-regulate the transcription of genes implicated in metabolic rewiring
in PC cells [123-125]. Additionally, AR/mTOR can also promote the cleavage and hence
the nuclear translocation and activation of sterol regulatory element-binding transcription
factor 1 to induce the expression of crucial lipogenic genes such as FASN and SCD1 [125].
As such, it is tempting to speculate that by targeting both AR and mTOR one may even
“kill two birds with one stone”—simultaneously modulating oncogenic translational and
transcriptional activities within a PC cell.

In comparison to cap-dependent translation, how AR regulates IRES-dependent/cap-
independent translation is less well understood. A dramatic increase in IRES signals
was observed in the testis of mice treated with testosterone and siRNA-based silenc-
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ing of AR reduced IRES signals in vivo [126], suggesting that AR activation promotes
IRES-dependent translation. However, in another study, AR inhibition with bicalutamide
was also shown to promote IRES-dependent translation in CRPC cells [111]. In short,
more work is required to precisely elucidate the role of AR in IRES-dependent/cap-
independent translation.

5.2. AR and UPR

Multiple lines of evidence link the AR and UPR pathways in PC. Early work found
that AR expression is positively correlated with several UPR-related genes in prostate
tumours [127], which may relate to the fact that transcription of some UPR-related genes
(e.g., NDRG1 and HERPUD]I) is responsive to androgen treatment in PC cells [128].
This work suggested that AR stimulates UPR, which was confirmed by the finding
that the synthetic androgen R1881 induces the IRE1/XBP1 arm of UPR in LNCaP cells
(Figure 4) [129]. Conversely, silencing AR in LNCaP cells reversed the induction of ERN1
transcription and reduced the levels of spliced XBP1 [127,130]. Importantly, XBP1 was
found to be highly expressed in PC patient tumours compared to benign tissues [127]. The
synthetic androgen also induces ERAD in several PC cell lines, and high expression of
ERAD-related genes (gp78, Hrd1 and SVIP) has been observed in PC patient tissues [131].
Additionally, Yang et al. found that DHT-induced AR protein expression in murine embry-
onic stem cells (mESCs) correlated with induction of all three arms of UPR, evidenced by
increased XBP1 mRNA splicing, elevated phosphorylation of PERK, upregulated levels
of mRNA encoding CHOP mRNA and ATF6p50 proteins [132]. Sheng et al., however,
reported only modest increases in mRNA levels of ATF6/ATF6p50 in response to R1881,
implying a weaker activation of the ATF6 arm of UPR in comparison to the IRE1«/XBP1
arm. ATF4 and CHOP levels were also shown to be elevated in this study, although
surprisingly the levels of phosphorylated PERK/elF2«x and total PERK were markedly
decreased [127]. These apparent discrepancies between the studies indicate that the ex-
tent to which AR-mediated regulation of eIF4F complex assembly [30] and PERK/elF2x
phosphorylation/ISR [127] contributes to translational perturbations in prostate cancer
remains to be established. Nevertheless, the overall body of evidence demonstrates that
AR (activation) induces UPR, which can lead to apoptotic death in some non-PC cells
(e.g., mESCs and ovarian cells) [132,133]. The reader is also directed to an excellent recent
review [134] which further covers this topic.

6. Targeting Pathways That Regulate mRNA Translation in BC and PC
6.1. Targeting Pathways That Requlate mRNA Translation
6.1.1. PI3K

Most of the PI3KCA mutants in BC are oncogenic (promote growth, proliferation and
survival of BC cells) and enhance the activity of the PI3K pathway, particularly in response
to ligands such as insulin and IGFs [135,136]. Accordingly, depletion of PI3KCA and
PI3KCB is synergistic with estrogen deprivation in ER* BC cells with PI3KCA mutations
and/or PI3KCB amplification [137]. Dual PI3K/mTORis (BKM120, BYL719, RAD001 and
BEZ235) also exert strong anti-proliferative effects on a range of ER* /human epidermal
growth factor receptor 2 (HER2)* BC cell lines carrying PI3KCA mutations both in vitro
and in vivo [138]. Paradoxically, PI3KCA mutations are favourable prognostic markers of
PFS [139,140] for ER* /HER2* BC patients, and despite high levels of PI3K/AKT signalling,
they appear to be associated with reduced mTORC]1 activity [140]. ER* /HER2" BC patients
harbouring PI3KCA mutations are also more responsive to tamoxifen (a selective ER
modulator) monotherapy [140]. This can be explained in part by elevated levels of genes
that negatively regulate mTORC1 such as PP2A and PML [140], feedback mechanisms
in response to PI3K activation (see [82,83]) and/or mutant-specific signalling patterns.
Moreover, a recent study found that PDXs from the luminal AR* subtype (LAR") of
ER™ /PR~ /HER2™ BC (TNBC), which accounts for up to 9% of all TNBCs [141] and is
characterized by AR activation, are highly enriched in PI3KCA and AKT1 mutations (100%
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in LAR* TNBC vs. 7.5% in other subtypes of TNBCs) [142]. Enzalutamide-resistant LAR*
TNBC PDXs are remarkedly sensitive to PI3K, mTOR or PI3K-mTOR dual inhibitors [142].
PI3K and MAPK pathway inhibitors have been extensively studied as anti-BC/PC agents
and interested readers are referred to several excellent reviews on this topic [143-146].

6.1.2. MNK

MNKSs are promising therapeutic targets within the translational control signalling
network. Targeting MINKs may be a safer option since they are unessential to normal cell
physiology, as evidenced by the fact that MNK1/2 double knockout mice are viable and
fertile [50]. Interestingly, Njar’s group discovered that a group of compounds, the C-4
heteroaryl retinamides, could simultaneously provoke the degradation of AR-FL, AR-V7
(AR splice variant 7, a variant that lacks the ligand-binding domain and hence can signal in
the absence of androgen) and MINK1/2 [147,148]. Retinamides exhibited substantial anti-
proliferative, anti-migratory/invasive (in vitro) and anti-growth (xenograft) properties in a
range of AR-positve and -negative PC cell lines [147,148], suggesting that simultaneously
inhibiting the AR and the MNKs can potentially be a new strategy against AR" PC; this
also implies that the MNK inhibitors (MNKis) may be useful in an AR-negative context.
In support of this notion, it has been demonstrated that AR serves as a suppressor of
elF4E phosphorylation [111], which is catalysed only by MNKs [50], and thus loss of AR
would evoke MNK activation. On the other hand, mTORis may also reactivate MNK2 by
alleviating it from inhibitory post-translational modifications (phosphorylation at Ser74
and Ser437) catalysed by mTORC1 [149,150]. Indeed, in a PC patient tissue microarray
analysis, MNK2%74 was less phosphorylated in tumour specimens with a high Gleason
score [149]. In support of these observations, the MNKi CGP57380 can overcome the
resistance to mTORis in PC cells [111]. A monotherapy regimen with a more specific MNKi,
eFT508 [151], completed a CRPC-related phase II clinical trial (NCT03690141) in April 2021.

Similarly, tamoxifen-resistant ER* BC cells also exhibited elevated mTORC1 activ-
ity, concomitant with high levels of total and phosphorylated elF4E; suppression of
mTORC1/MNK1 activity using everolimus/CGP57380, or reducing elF4E levels via
si/shRNA, resensitized cells to tamoxifen [152]. CGP57380 exerts some off-target effects on
other kinases (CK1, BRSK2 and MKK1) [153], a cautionary note when interpreting results
with this agent.

6.1.3. eI[F4E

Because inhibition of global translation will unavoidably disrupt physiological func-
tions of the cell, one can expect that future therapeutic strategies aiming at mRNA trans-
lation will tend to be more selective towards specific sets of targets. Most of the factors
implicated in translation regulation are essential for normal cell function, which is a major
hurdle for any treatment strategy targeting the translation machinery. However, eIF4E may
serve as a key translation target for anti-cancer treatment. A whole body haplo-insufficient
elFAE*/~ genetically engineered mouse model (GEMM) revealed that a “full dosage” of
elF4E is not required for normal development, yet it aids the translation of specific subsets
of mRNAs, particularly those that regulate the production of reactive oxygen species, to
promote tumour progression [154]. In addition, genetic ablation of the MNKSs, the only
in vivo eIF4E kinases, did not affect murine viability or fertility [27]. Importantly, elF4E
is highly phosphorylated in advanced PC patient biopsies [149,155]. Knocking-in muta-
tion of eIF4ES2% (MNKSs’ phosphorylation site) to alanine (eIF4ES2094/52094) jn mouse
embryonic fibroblasts conferred them resistance to oncogenic transformation [155]. Using
the cPTENT/fl GEMM, it has also been shown that cPTENf/fl x e[F4ES209A/S209A 1 ock-in
mice are resistant to the loss of PTEN-induced PC development [155]. Moreover, Hsieh
et al. [156] reported that INK128, an ATP-competitive mTORI (see Section 6 below) that
blocks the activities of both mTORC1 and 2, exerted strong cytotoxicity in and effectively
prevented the metastasis of PC cells in cPTENT/fl mice [156]. Collectively, these studies
serve as a basis for future research on the potential of targeting elF4E in PC.
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6.1.4. elF4A

An alternative therapeutic strategy to targeting upstream signalling pathways is direct
interference with the components of the el[F4F complex. A study from Modelska et al. [38]
has revealed that high levels of elF4A1, elF4B and elF4E are all linked to unfavourable
clinical outcomes for ER™ BC patients, whereas the tumour suppressor programmed cell
death 4 (PDCD4), which binds to and inhibits elF4A [157], is positively correlated with
favourable outcomes in ER* BC patients. Knock-down of elF4A or elF4B using siRNA
or over-expressing PDCDA4 effectively diminished MCF-7 cell (an ER* /PR* BC cell line)
proliferation in vitro [38]. Investigation into drugs that specifically target the elFs is still
at an early stage, although some have showed promising results in preclinical studies
in BC models [158,159]. For instance, el[F4A inhibitors (e[F4Ais), which are derivatives
of a class of natural products called the flavaglines, were shown to have strong anti-
tumour actions against BC/PC cells both in vitro and in vivo [158-165]. Most of the
studies related to elF4Ais are still at a preclinical stage; however, a newly synthesized
flavagline derivative (eFT226 [166]) has just entered phase I/1I clinical trials (NCT04092673)
against selected advanced solid tumours. Interestingly, targeting elF4A influenced the
BC transcriptome and translatome in a manner distinct from mTORi-mediated eIF4E
inhibition [167], indicating that eIF4A and elF4E may affect different subsets of messages
in cancer cells and suggesting that concomitant targeting of elF4A and eIF4E is a plausible
combinatorial therapeutic strategy.

6.2. Targeting Ribosome Biogenesis

Eukaryotic ribosomes, comprised of ~80 RPs and 4 ribosomal RNAs, are macromolec-
ular complexes that function to synthesize proteins from mRNAs. Using a genome-wide
CRISPR screen (over 70,000 single guide RNAs) coupled with patient-derived metastatic BC
cells, Ebright et al. [168] recently discovered that ribosomal genes, especially eL15, uL.29 and
eL13 (encoding RPL15, RPL35 and RPL13, respectively) were highly enriched in circulating
tumour cells (CTCs). In particular, over-expression of RPL15 in CTCs promoted global pro-
tein synthesis and metastasis in the lung in mice. In addition, patient CTCs with the highest
expression levels of RPs were associated with the worst clinical outcomes. Other factors
that were highly correlated with poor patient survival rates included genes that encode
for the elFs and mTOR. A combinational therapy using omacetaxine, an FDA-approved
translational elongation inhibitor, and palbociclib, a CDK4/6 inhibitor approved for BC
treatment, effectively prevented the metastasis of RPL15-enriched CTCs [168]. Similar to
these findings in BC, Rebello et al. [169] found that the combination of two drugs (CX-5461
and CX-6258), two orally available agents which inhibit RNA polymerase I transcription
and the PIM kinase respectively, exerted strong anti-proliferative and pro-apoptotic ef-
fects on both high c-Myc and PTEN-null murine prostate tumour models. A later study
demonstrated that the CX-5461/CX-6258 combination therapy effectively inhibited growth,
increased DNA damage responses and suppressed mTOR signalling in four distinct PC
PDX models obtained from CRPC patients resistant to second-generation ADT agents,
including abiraterone and/or enzalutamide [170]. Taken together, these studies highlighted
a promising future of targeting the translation machinery, especially the ribosomes, for
BC/PC treatments.

6.3. Targeting the UPR

To cope with the abnormally high protein synthesis demand under a nutrient de-
prived, hypoxic and acidotic microenvironment, it is critical for cancer cells to maintain
energetic balance and proteostasis, for example, by triggering ISR or activating AMPK.
Nguyen et al. recently discovered that, unexpectedly, the co-existence of PTEN deletion
and high c-Myc expression (cPTEN/fl x MycT8) in murine prostates resulted in damp-
ening of the increase in global protein synthesis (compared to PTEN-null or high c-Myc
alone), which occurred concomitantly with an induction of phosphorylated PERK, one
of the four elF2« kinases [42]. In this study, the ablation of PERK rescued the reduction
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in protein synthesis in cPTENf/fl x MycT8 mice [171]. As such, one can expect that ISR
inhibition may lead to devastating consequences for PC cells but have a limited toxic effect
on normal cells. Indeed, the PERK inhibitor ISRIB [172] induced apoptosis in PC cells,
reduced tumour volume, and prolonged the survival rates of cPTENT/l x MycT8 mice,
as well as of mice bearing metastatic CRPC PDXs [171]. However, although alleviation of
ISR exerted strong anti-tumour effects in the cPTEN/H MycTg GEMM [171], it is not
clear whether the dampening of protein synthesis rates in those mice reflects the induction
of ISR.

An alternative therapeutic strategy for PC would be to target the IRE1/XBP1-axis of
UPR. Toyocamycin, an IREl«x inhibitor, effectively diminished LNCaP or VCaP xenograft
growth in vivo [127]. Similarly, MKC8866, another specific inhibitor to IRE1oc RNase
activities, potentiated the activity of conventional AR-targeted therapies (enzalutamide,
abiraterone and cabazitaxel) in mice bearing VCaP xenografts [129]. Taken together, these
studies [127,129] thus provide a molecular basis for targeting the IRE1/XBP1 arm of UPR
for PC treatment.

7. Drawbacks and New Hopes in Treatments Targeting mTOR in BC and PC
7.1. Rationale for Application of mTOR:is as an Anti-BC/PC Treatment

As described above, there are various potentially druggable targets within the trans-
lation machinery that can be exploited for anti-BC/PC therapies. Among them, mTORIis
are one of the most promising strategies. This is mainly due to a suite of unique fea-
tures associated with mTOR. Firstly, mTOR is a protein kinase initially discovered to be
the sole target of a highly specific natural compound, rapamycin, whereas most of the
early identified kinase inhibitors possess severe off-target effects [153,173,174]. Secondly,
targeting upstream signalling components such as PI3K, AKT, Raf, MEK, etc., will un-
avoidably trigger stronger side effects since they also regulate other essential cell processes,
whereas mTOR acts downstream of these signalling pathways and its best established
role so far is the homeostatic control of protein synthesis. It has been shown that the ratio
of elF4E to 4EBPs correlates with response to mTORC active site kinase inhibitors [175].
Lastly, mTOR:is, especially rapamycin analogues (rapalogs), have been in development for
>20 years; indeed, some have been approved by the FDA for clinical use against certain
types of cancer (e.g., kidney, renal and pancreatic) since the early 2000s.

7.2. Early Trials Using Rapalogs in BC/PC

Rapalogs were initially successful in early clinical trials against BC [176-178], as
evidenced by reasonable anti-tumour activities, well tolerated toxicity and prolonged
PFS in patients (Table 2, also see [179] for an early review). In 2012, a milestone phase
I study (BOLERO-2) performed by Baselga et al. proved that everolimus (a rapalog,
10 mg daily) combined with exemestane (an Al, 25 mg daily) could improve PFS in ER*
BC compared to exemestane treatment alone [180]. Accordingly, the FDA approved the
use of this combinational therapy for ER* BC treatment. However, a follow-up study of
BOLERO-2 failed to demonstrate that everolimus plus exemestane improved PFS [181].
Another similar combination, temsirolimus (rapalog) plus letrozole (Al), also failed to
provide therapeutic benefits to BC patients [182]. Although a recent study showed that the
addition of everolimus to fulvestrant (a selective ER degrader) treatment prolonged PFS in
HR*/EGFR2™ patients, this was associated with an increase in the occurrence of adverse
events [183]. Accordingly, interest in rapalogs as a treatment for BC patients has waned
considerably and they are no longer being tested in clinical trials.
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Table 2. A selection of reported clinical trials related to mTORis and their respective outcomes in BC/PC (chronological
order). Abbreviations not defined in the main text: DI: dual PI3K/mTOR inhibitor; FA: FDA approval; Gen.: generation/class
of mTORI (first listed under the column of “Drug(s)”); Ref.: reference.

Year Cancer Type Drug(s) Gen. Phase Outcome Summary Ref.
Localized or Temsirolimus Patients treated with temsirolimus
2005 . 1st 1I showed anti-tumour activity and [176]
metastatic BC (CCL-779) only well tolerated toxicity.
Everolimus The combinational therapy showed
2008 Advanced BC (RADO001) and 1st I anti-tumour activity, toxicity also [177]
letrozole well tolerated.
Continuous daily dosing but not
Recurrent or Everolimus week.ly.dosmg had anti-tumour
2009 metastatic BC onl 1st II activity. The drug was well [178]
Y tolerated but some patients
developed pneumonitis.
Sirolimus Daily dosing had no effect on
2010 Localized PC (rapamycin) 1st I tumou.r prohferatl.on/apoptosm [184]
onl despite suppresion of RP 56
Y phsophorylation.
Combinational therapy was well
Everolimus and tolerated despite 56% cases of grade
2012 CRPC bicalutamide 1st II 1/2 mucositis, but it had low [185]
activity and did not achieve the
primary endpoint.
Everolimus and Combinational therapy improved
2012 HR* BC exemestane 1st III, FA PFS of patients previously treated [180]
with non-steroidal Als.
In comparison to lotrozole
Locall monotherapy, daily and orally
2013 a dvancezll or Temsirolimus Ist 1 administrated temsirolimus failed to [182]
metastatic BC and letrozole confer added PFS benefit to
aromatase inhibitor-resistant
ER* patients.
Weekly dosing of the drug had
Temsirolimus minimal therapeutic activity, and
2013 CRPC only Ist u the study was put on halt at an [186]
early stage.
The monotherapy regime modestly
2013 CRPC Everolimus Ist I improved PFS, especially in [187]
only PTEN—/~ patients. Toxicity was
also manageable.
Addition of everolimus to
Everolimus and exemestane treatment did not
2014 Advanced BC exemestane Ist III provide further improvement to [181]
HR™ BC patients at the
secondary endpoint.
. The combinational therapy was
2017 CRPC BEZZj)Si_WIth DI I poorly tolerated; adverse effects [188]
raterone /prednisone included mucositis, hypotension,
p dyspnea and pneumonitis.
The trial was discontinued due to
BEZ235/BKM120 ) ..
2017 CRPC with DI b high levels o.f to>.<1C1ty and poor [189]
abiraterone pharmacokinetics among the

participants.
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Table 2. Cont.
Year Cancer Type Drug(s) Gen. Phase Outcome Summary Ref.
MLNO0128 exhibited high levels of
MLNO0128 toxicity in patients; dyspnea and
2018 CRPC (INK128) 2nd u maculopapular rash were the main [190]
grade 3 adverse events.
Despite increased cases of adverse
2018 ER* /EGFR2 BC Everolimus and Ist I eventg, 1mprovled I.’FS was observed [183]
fulvestrant with combinational therapy-
treated patients.
High-risk . Everolimus showed limited
2019 localized PC Everolimus Lst I clinical activity. [191]
o The combinational therapy did not
Temsirolimus improve the clinical outcome of th
2019 CRPC and Ist 1/ prove the cifticat otttcome of e [192]
bevacizumab participants, and also induced

severe adverse events.

Trials of rapalogs in PC, primarily in the CRPC setting, have also suffered setbacks
recently (Table 2). Despite modest improvement of PFS in PTEN-null CRPC patients
with everolimus treatment alone [187], most of the rapalog monotherapy regimens failed
to show therapeutic benefits in PC patients [186,191,192], perhaps due to the fact that
rapamycin can stimulate AR’s transcriptional activity [120]. A combination of everolimus
and the AR antagonist bicalutamide in a phase II trial was unable to reach the primary
endpoint due to low anti-tumour activity [185]. Similarly, temsirolimus and bevacizumab
(vascular endothelial growth factor A inhibitor) treatment together not only failed to
provide any improvement in terms of clinical outcome but also produced severe side effects
in patients [192]. Moreover, two trials involving the combination of dual PI3K/mTOR
inhibitor BEZ235 with abiraterone were also withdrawn during the early stages due to high
levels of toxicity [188,189]. It has been well known that rapamycin does not inhibit mMTORC1
completely [193] and may not affect mTORC2 [121], whereas the ATP-competitive mTORis
can simultaneously and completely blunt the activation of wild-type mTOR-associated
mTORC1 and 2 [194]. INK128, an ATP-competitive mTORi, was initially identified as
a strong candidate for PC treatment due to prominent anti-tumour activity against PC
progression in the cPTEN?/fl GEMM [156]. Unfortunately, a recent study found that
INK128 exerted strong side-effects (grade 3 dyspnea and maculopapular rash) in CRPC
patients, and thus the trial was also forced to be discontinued [190].

Some recent studies have unravelled mechanisms behind the resistance of BC/PC to
mTOR inhibition. Reactivation of the PI3K/AKT pathway is a classic feedback mechanism
driven by the rapalogs [83,122]. Yang et al. discovered that the induction of PI3K/AKT
stimulation by everolimus in ER" BC cells was mediated by the ER, which also required
the transactivation of insulin receptor/IGF1R and insulin receptor substrates [195]. Ad-
ditionally, screening of secreted proteins from the ER* BC tumour microenvironment has
revealed that the induction of fibroblast growth factor 2 was primarily responsible for
conferring resistance to the BC cells against PI3K/mTORis [196].

In short, lessons from clinical trials of mTORIis in BC and PC and associated mech-
anistic studies have established a challenging paradigm: the first generation of mTORis
usually do not provide further clinical benefits on top of existing anti-BC/PC therapies,
likely because they are relatively “weak” inhibitors against the mTORCs [193]; whereas
“stronger” drugs such as the dual PI3K/mTOR or the ATP-competitive inhibitors are often
associated with severe adverse effects on patients, since they also affect physiological func-
tions of non-malignant cells [197] and may trigger feedback mechanisms to activate other
oncogenic pathways [83]. The question of how to leverage mTORIis such that significant
anti-tumour activity is achieved with tolerable side effects remains outstanding.
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7.3. The Future of mTOR Inhibition as a Therapy for Breast and Prostate Cancer

Despite some unfavourable outcomes from those mTORi-related trials, more recent
studies provide new hope. For example, fulvestrant-resistant ER* /HER?2 kinase domain
mutant (i.e., G309A, L7555 and V777L) cells possess high level of PI3K/mTORC1 activity,
as evidenced by increased levels of phosphorylated AKT and RP S6, respectively, and
Everolimus was able to resensitize those cells to fulvestrant or estrogen deprivation [198].
In addition, an alternative approach would be to test other mTORIis, especially beyond
the rapalogs. GDC-0084, a dual PI3K/mTOR inhibitor designed to cross the blood-brain
barrier [199], was recently shown to exert growth inhibitory effects on BC brain metastatic
cell lines bearing PIK3CA mutations both in vitro and in vivo [200]. Earlier this year, La
Manna et al. also reported the first attempt of using RapalLink-1 against PC; exposure of
two bone-metastatic PC PDX models to RapaLink-1 strongly reduced their cancer stem
cell features and prevented tumour growth in vivo [201]. However, although results
from these preclinical studies appear promising, patients receiving these agents are more
likely to experience stronger side effects than those who were administered with the
rapalogs (see Section 7.2). Therefore, when it comes to future clinical trials, it is of utmost
importance to ensure the safety aspect of these drugs does not compromise their potential as
novel treatments.

8. Conclusions, Future Perspectives and Outstanding Questions

While ER and AR are clear drivers of neoplastic growth, our understanding of their
involvement in reshaping the translatome during cancer progression remains incomplete.
We propose that the most pressing outstanding questions for basic science and for clinical
translation are:

- How is translation modulated during adaption to anti-estrogen/androgen therapies
and in response to direct alterations to AR/ER (e.g., mutations and truncations)?

- Why do different ER/AR ligands exert distinct downstream effects on protein synthesis?

- How do cancer cells balance the need for increased protein synthesis while
avoiding UPR?

- Will single-cell technologies address key mechanistic questions related to the interplay
between AR/ER signalling and protein synthesis?

- Does the cytotoxicity of drugs that target the translation modulators (e.g., mTORis)
primarily rely on their effect on protein synthesis?

- How do we identify BC/PC patients who are likely to benefit from protein synthesis-
targeted therapies? Can we use translation-related genetic profiles to tailor person-
alized treatment regimens? For example, patients harbouring PTEN/PI3K/mTOR
mutations would be expected to gain the most benefit from PI3K/mTOR inhibitors.
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