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ABSTRACT

Background

Dexamethasone, a widely available glucocorticoid, was approved for use in hospitalized

COVID-19 patients early in the pandemic based on the RECOVERY trial; however, evidence is

still needed to support its real-world effectiveness in patients with a wide range of comorbidities

and in diverse care settings.

Objectives

To conduct a comparative effectiveness analysis of dexamethasone use with and without

remdesivir in hospitalized COVID-19 patients using electronic health record data.

Methods

We conducted a retrospective real-world effectiveness analysis using the harmonized, highly

granular electronic health record data of the National COVID Cohort Collaborative (N3C) Data

Enclave. Analysis was restricted to COVID-19 patients in an inpatient setting, prior to vaccine

availability. Primary outcome was in-hospital death; secondary outcome was combined

in-hospital death and severe outcome as defined by use of ECMO or mechanical ventilation

during stay. Missing data were imputed with single imputation. Matching of

dexamethasone-treated patients to non-dexamethasone-treated controls was accomplished using

propensity score (PS) matching, stratified by remdesivir treatment and based on demographics,

baseline laboratory values, and comorbidities. Treatment benefit was quantified using logistic

regression. Further sensitivity analyses were performed using clinical adjusters in matched

groups and in strata defined by quartiles of PS.

Results
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Regression analysis revealed a statistically significant association between dexamethasone use

and reduced risk of in-hospital mortality for those not receiving remdesivir (OR=0.77, 95% CI:

0.62 to 0.95, p=0.017), and a borderline statistically significant risk for those receiving

remdesivir (OR=0.74, 95% CI: 0.53 to 1.02, p=0.054). Treatment also showed secondary

outcome benefit. In sensitivity analyses, treatment effect size generally remained similar with

some heterogeneity of benefit across strata of PS.

Conclusions

We add evidence that dexamethasone provides benefit with respect to mortality and severe

outcomes in a diverse, national hospitalized sample, prior to vaccine availability.

Keywords

COVID-19; Dexamethasone; Propensity Score; Remdesivir; Electronic Health Records
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1. BACKGROUND AND SIGNIFICANCE

Our aim is to assess the real-world effectiveness of dexamethasone treatment in

prevention of poor clinical outcomes among hospitalized COVID-19 patients in the United States

(US) during the first year of the pandemic.

At the end of 2020, before vaccinations started to become available, SARS-CoV-2

infection resulted in about 17,000,000 COVID-19 hospitalizations and over 350,000 COVID-19

deaths in the United States alone1. In terms of severity, between March and November, 2020,

COVID-19 infections resulted in an estimated 12% hospitalization rate, with between 11% and

19% of those experiencing mechanical ventilation, and 9% to 16% mortality2. Given the novel

emergence of the pandemic and its morbidity and mortality, extraordinary efforts have been

undertaken to identify effective treatments for COVID-19. Of great interest since the outset of

the pandemic are existing treatments already widely available in hospitals. Especially for severe

cases, one such treatment is dexamethasone, a commonly-used glucocorticoid3; by one estimate

based on 137,870 hospitalized adult COVID-19 patients, 39.1% received dexamethasone during

their hospitalization4.

Patients with severe COVID-19 exhibit a hyper-inflammatory immune response

characterized by elevated proinflammatory cytokines and chemokines5,6. Alongside other

markers of elevated immune system activity, the hyper-inflammatory immune response

contributes to tissue damage and multi-organ failure. A systematic review that considered

commonly collected laboratory biomarkers among hospitalized patients identified multiple

markers of inflammation and immune system activity, or acute phase reactants, as markedly

different among COVID-19 positive (vs negative) hospitalized individuals7. Thus, immune
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system modulation is a critical component of clinical management in hospitalized COVID-19

patients and commonly accomplished through the use of corticosteroids, such as dexamethasone;

however, both benefits and poor outcomes have been reported as a result of corticosteroid use3.

In June of 2020, the RECOVERY trial, an open-label clinical trial in the United

Kingdom, found oral or intravenous (IV) dexamethasone at a dose of 6 mg daily (versus placebo)

to be efficacious at reducing the risk of 28-day mortality and duration of hospital stay in patients

hospitalized for COVID-198, with an age-adjusted mortality rate ratio of 0.83 (95% CI: 0.75 to

0.93). The lack of equipoise engendered by the RECOVERY trial led to early stopping of three

other comparative trials, two of which showed a likely therapeutic benefit for higher dose and

intravenous (vs oral) dexamethasone9,10, and one of which did not find a benefit for low-dose

dexamethasone11. After RECOVERY, a meta-analysis of 7 trials in 12 countries and 1703 total

critically ill participants showed a favorable odds ratio of 0.66 (95% CI: 0.35 to 0.82) for 28-day

mortality comparing systemic administration of corticosteroids to usual care or placebo.

The observational study evidence is recapitulated in a recent meta analysis of 21,350

patients across 73 studies comparing receipt of corticosteroids to no usage3. In 8 studies

restricted to severe patients, as indicated by mechanical ventilation and/or ICU use,

corticosteroids showed a mortality benefit (OR=0.65; 95% CI: 0.51 to 0.83). This is similar to

the result of the meta analysis of trial data. However, an additional 32 studies affording

comparison had high patient and between-study heterogeneity. These studies suggested a

detrimental effect of corticosteroids on mortality (OR=2.30; 95% CI: 1.45 to 3.63); the authors

noted that the population for this analysis was highly heterogeneous and selection bias may play

a critical and confounding role in this result3.
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In light of evidence from randomized intervention trials, mixed evidence from

observational studies, and current WHO recommendation for use of corticosteroids for severe

COVID-19 patients12, there remain many questions about use of dexamethasone as front-line

clinical therapy for hospitalized COVID-19 patients13. This includes confirmatory evidence of

effectiveness in real-world settings with a high degree of heterogeneity. This was true at the end

of 2020, and improved evidence about this first phase of the pandemic still has important

implications for current treatment of hospitalized COVID-19 patients. Such real-world evidence

is only possible on a large scale through use of large population-based data repositories, curated

to the point of common measures across sources, and sufficiently large sample sizes to support

meaningful comparisons. The National COVID Cohort Collaborative (N3C) Data Enclave14 was

developed to meet this challenge.

Specifically, in the rapidly evolving situation of the COVID-19 pandemic, high quality

evidence could not be produced fast enough to guide management decisions. Over two and a half

years after the pandemic began, there still remains uncertainty surrounding the effectiveness of

first-line treatments for COVID-19. In the absence of infrastructure to rapidly and rigorously

evaluate therapeutic interventions across a large enough cohort in diverse settings, the healthcare

community made clinical decisions to treat with various interventions of uncertain effectiveness.

Individual centers with resources to conduct clinical trials had to generate evidence to drive

development of practice guidelines. The health informatics community responded by developing

the N3C database as a resource to support rapid generation of evidence through secondary

analysis of electronic health record (EHR) data.

2. OBJECTIVES
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Our aim is to assess the real-world effectiveness of dexamethasone treatment in

prevention of poor clinical outcomes among hospitalized COVID-19 patients in the United States

(US) during the first year of the pandemic. To accomplish this aim, we leveraged data from the

N3C to estimate the real world effectiveness of treatment with dexamethasone in hospitalized

COVID-19 patients. In addition to the methodological rigor realized through use of a centralized,

harmonized, and highly granular EHR data repository, we demonstrate the usage of data

imputation to handle missing biomarkers and a matched propensity score approach to handle

biomarkers of disease severity with N3C data to generate high quality evidence. These methods

could be applied to a number of similar questions regarding real-world treatment effectiveness

within the N3C and beyond.

3. METHODS

3.1 Study Population and Data

3.1.1 Cohort of hospitalized COVID-19 patients from N3C

The National COVID Cohort Collaborative is a national, representative, and large

repository of electronic health record data on COVID-19 cases and controls initiated and

developed by the National Institutes of Health (NIH) National Center for Advancing

Translational Sciences (NCATS) 4,14. The N3C cohort includes patients seen in diverse clinical

settings and geographical regions. For this analysis, we used data release version 22 from

February 23, 2021, which comprises data on over 65 contributing (single- and multi-site) health

systems, over three million COVID-19 positive patients, and over nine million patients in total.

The data are harmonized through the Observational Health Data Sciences and Informatics

(OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM).
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The N3C Data Enclave provides a range of tools to manipulate, transform, analyze and display

the data using either written code or graphically-driven commands.

Data for analysis in this report were extracted, manipulated and analyzed in the N3C Data

Enclave using Spark SQL (Apache Software Foundation), Python version 3.6 (Python Software

Foundation), including PySpark (Apache Software Foundation), and R version 3.5.1 (R

Foundation). The N3C’s de-identified dataset was used, which obscures ZIP codes and

algorithmically shifts dates of service (while maintaining relative dates of service within each

unique cohort member’s trajectory). This project leverages the tables produced in the N3C cohort

characterization project 15, from which our retrospective cohort and patient variables and severity

level were extracted. The overall project is conducted under a Data Use Agreement (DUA)

between N3C and the University of Texas (UT) at Austin (PI: PJR) and an N3C-approved Data

Use Request (DUR) for this specific study.

3.1.2 Patient and site inclusion criteria and endpoint definition

Our analysis cohort was restricted to adult (over 18 years of age) COVID-19 positive

patients with inpatient hospitalizations greater than two days. This specifically excludes

emergency department visits which did not result in a hospital admission.

Following Bennett et al. (2021), for primary clinical outcome (endpoint) in the present

investigation, patients were classified by their maximum COVID-19 severity level during their

hospitalization. We restricted the cohort to three severity levels: moderate disease, consisting of

inpatient hospitalizations with no use of extracorporeal membrane oxygenation procedure

(ECMO) or invasive mechanical ventilation; severe disease, consisting of those receiving either
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ECMO and/or mechanical ventilation; and disease resulting in either in-hospital death or

discharge to hospice.

The availability of patient laboratory and vital measurements was assessed by provider

site. Two sites were removed because there were no laboratory measures available in the data at

these sites.

3.1.3 Defining dexamethasone-treated patients and comparison group

From the hospitalized patients matching the patient and site inclusion criteria defined

above, we identified the subset of patients who had a record of dexamethasone usage during their

selected visit. In that subset, we differentiated the chronic use of dexamethasone for purposes

other than treatment of COVID-19 with the use of dexamethasone for the treatment of

COVID-19 by first removing those with any dexamethasone administered prior to

hospitalization. The patients determined to have been on long-term dexamethasone therapy not

for treatment of COVID-19 were not included in either the control or treatment group. We

further restricted the entire analysis cohort to (a) those starting dexamethasone treatment in the

first two days of hospitalization (treated group), or (b) those who were not treated with

dexamethasone during hospitalization (comparison group). Finally, because our study focused on

dexamethasone, we removed patients who had records of receiving other corticosteroids

(prednisone, methylprednisolone, hydrocortisone) besides dexamethasone from the treatment and

comparison groups.

3.1.4 Key variables used in this study

Patient comorbidities, based on conditions in a common comorbidity index (Charlson

Comorbidity Index – CCI) 16, demographic variables, and laboratory and vital measurement
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variables were selected based on their availability and clinical significance for use in the

imputation, propensity score (PS) matching, and/or logistic regression models predictive of

clinical outcome.

A subset of laboratory and vital sign measurement variables were selected from all

measurement variables available in the N3C cohort characterization data tables. These variables

were selected based on physician expert (JR) opinion of clinical significance. Additionally,

selected variables were required to have measurement values available for more than 50% of

both the treated and comparison groups at baseline (i.e., taken within ±2 days of visit start). We

used a single measurement for all models; in the case of multiple recorded measurement values

for a single laboratory test or vital sign, we selected the measurement closest to the visit start for

analysis. Before propensity score (PS) matching, variables were less likely to be missing for the

treated group than for the comparison group. However, with PS matching, we attempted to

balance severity levels between treated group and matched control group, so we included the

number (count) of missing laboratory values as an additional matching variable, so that the

matched comparison group would have similar missingness patterns as the treated group. As

such, after matching, missingness in the comparison group was comparable to that in the treated

group.

The following variables were included as adjusters for remaining imbalances in severity

at admission in logistic regression models for estimation of treatment effect (see Treatment effect

estimation, below): age, an updated version of the CCI referred to as Q-score17, aspartate

transaminase (AST), creatinine, platelet count, and white blood cell count (WBC). The rationale

for these last four are that AST and creatinine are indicative of end organ damage (hepatic and
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renal damage, respectively), while platelet count and WBC reflect inflammatory or infectious

response.

For the PS matching model and procedure, the six variables above were included, in

addition to the following 13 variables: sex, race, receipt of remdesivir during hospitalization,

number of selected laboratory measurements missing before imputation, relative percentage of

neutrophils, alanine transaminase (ALT), relative percentage of lymphocytes, albumin, and six

comorbidities selected based on association with poor outcomes in hospitalized COVID-19

patients: congestive heart failure (CHF), diabetes mellitus (DM), peripheral vascular disease

(PVD), myocardial infarction (MI), pulmonary disease, and cancer. Once these 19 variables were

chosen, imputation was performed to allow for matching to patients based on a full dataset, with

missing values imputed.

For the imputation procedure, in addition to all above variables, we included the

following 7 variables to aid in the prediction of missing values: smoking status, acute kidney

injury in hospital defined by change in creatinine from baseline (AKI), ECMO received,

mechanical ventilation received, length of hospital stay, body mass index (BMI), and maximum

severity level during hospitalization. With the exception of smoking status and BMI, these

variables were all indicators of in-hospital outcomes; as such, it is not appropriate to include

them as PS matching variables, even while they are valid as a basis for imputation of missing

values.

3.2 Statistical Analysis

3.2.1 Imputation of missing data
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As described, patients, provider sites, and variables were selected to avoid high levels of

missingness; however, the analysis dataset still contained a considerable level of missing data,

especially for laboratory values. Variables that were never missing by the design of our study

include clinical endpoints, treatment with dexamethasone (and also with remdesivir), and

provider site. Age was also not ever missing. For comorbidity variables, we assumed that no

indication of an existing comorbidity meant the patient was unaffected. Missingness was handled

using a multiple imputation (MI) procedure18, although owing to limitations in the N3C platform,

we generated and analyzed only one imputed dataset. We performed imputation in R using the

mice package 19 using the 25 variables listed above (3.1.4 Key variables used in this study).

Continuous laboratory measurement variables were first log-transformed and then Winsorized;

i.e., values either greater than the 75th percentile plus three-times the IQR, or less than the 25th

percentile minus three-times the IQR were shrunk to those two boundaries. Five iterations of the

MI algorithm were used to develop and stabilize the conditional "chained equations'' models for

prediction of each potentially missing variable. All other settings were defaults in mice.

Continuous variables were imputed using predictive mean matching and the sole categorical

variable (race) was imputed using polytomous regression. Quality of imputation was assessed by

comparing observed to imputed distributions within each of the treated and comparison groups.

3.2.2 Propensity score matching

In observational data comparative effectiveness investigations, the risk of bias due to

treatment assignment being confounded with disease severity, and ultimately clinical endpoint, is

always a concern. As commonly done, we employed a propensity score (PS) matching approach

to generate a no-corticosteroid comparison group that is closely balanced, in terms of

12
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comorbidities and severity at admission, with the dexamethasone treatment group20. Propensity

score matching was performed in R using the MatchIt package21. Separate matching was

performed for the treatment group and controls receiving remdesivir and the treatment group and

control not receiving remdesivir. Propensity scores were estimated using logistic regression.

Model and control units were matched without replacement to dexamethasone-treated units using

nearest neighbor matching on the propensity score at a 3:1 (not treated with dex to treated with

dex) ratio within the non-remdesivir group and at a 1:1 ratio within the remdesivir group, owing

to a smaller number of patients who received remdesivir without dexamethasone. For the

remdesivir group, a caliper of 0.65 standard deviation units achieved sufficient balance. The 19

variables included in the PS are listed above (3.1.4 Key variables in this study). The

log-transform of continuous variables at the imputation stage was reversed before inclusion in

the PS model. We confirmed that balance in covariates was attained by computing for each

covariate the absolute standardized mean difference between the treatment groups; we also

compared this difference to that obtained before matching.

3.2.3 Treatment effect estimation

Separately within the pair of matched groups receiving remdesivir and the pair of

matched groups not receiving remdesivir, we formally compared the dexamethasone-treated

group to the matched control group in two steps. First, we considered analyses stratified by

quartile of PS, because the PS is presumably related to disease severity around time of

admission, as perceived by the provider(s). For each group, we fitted two logistic regression

models with dexamethasone (treatment group) as the primary predictor of interest. The first

model considered the combined endpoint of either severe disease (see above, 3.1.2 Patient and
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site inclusion criteria and endpoint definition) or death or hospice referral, versus moderate

disease, as the outcome. The second model considered just death or hospice (versus moderate or

severe disease) as the outcome. After having fitted quartile-specific models, in the second step,

we fitted an aggregate data model using data from all four quartiles pooled together. For all of

these models, we included six adjustors: age, Q-score, AST, creatinine, platelet count, and WBC.

The four laboratory values were all log (base-2) transformed; in this way, the regression

coefficients will be interpretable as log-odds-ratios of the outcome associated with a 2-fold

increase in the (log-base-2 transformed) predictor. As indicated above (see 3.1.4 Key variables

used in this study), the rationale for including these variables, in addition to the wholesale

adjustment provided by the PS matched design, is that they were considered a priori to be most

strongly predictive of clinical outcome. In addition, these four laboratory values may also have a

J- or U-shaped effect. For example, leukocytosis (elevated WBC count) is associated with severe

illness/infection, but it is also the case that leukopenia (reduced WBC count) can also be

associated with severe illness. As such, we performed sensitivity analyses by re-fitting models

including both linear and quadratic versions of the log (base-2) laboratory values.

4. RESULTS

4.1 Patient Characteristics

Of 4,937 COVID-19 positive patients treated with dexamethasone, 3,645 (82.9%) were

inpatient hospitalizations two or more days long where the patient did not also receive

prednisone, methylprednisolone, or hydrocortisone. Of these patients, 2,469 received

dexamethasone on the first or second day of the visit. After removal of the two sites that had a
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data quality issue, 2,457 patients remained and were used in imputation and matched to

non-dexamethasone treated controls (Figure 1).

Of 272,290 non-dexamethasone-treated COVID-19 positive patients, 28,874 (10.6%)

were inpatient hospitalizations of length two or more days where the patient did not also receive

prednisone, methylprednisolone, or hydrocortisone. After removal of the two sites that had a data

quality issue, 28,439 patients remained and were used in imputation and as potential controls

during PS matching (Figure 1).

The characteristics of the remaining dexamethasone-treated and

non-dexamethasone-treated patients after application of the inclusion criteria are shown in Table

1.

4.2 Modeling and Outcomes

4.2.1 Imputation and propensity score matching

The percentage of missing values across selected variables is shown in Table 1. The

distribution of imputed and observed values for continuous laboratory values was comparable

(Appendix A).

Propensity score matching of non-dexamethasone-treated controls to

dexamethasone-treated patients in both the remdesivir and non-remdesivir group improved

balance. The absolute standardized mean difference between the treated and control group of all

continuous covariates and all levels of categorical covariates included in assigning propensity

scores was reduced to <0.1 (Appendix B, C). Achieving balance between groups required

exclusion of treated units within the dexamethasone and remdesivir treated group which could

not be successfully matched to controls. After matching, 2,067 total dexamethasone-treated
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patients remained. Eight-hundred-four patients were also treated with remdesivir while 1,263

patients were treated with dexamethasone only (Figure 1). Three-hundred-ninety remdesivir and

dexamethasone treated patients were dropped between the PS-matching and logistic regression

stages because there were not enough controls with propensity scores similar enough to that of

the remdesivir and dexamethasone group. In the dexamethasone only group, all units were

successfully matched to three controls. The characteristics of the matched groups are

summarized in Tables 2a and 2b.

4.2.2 Effect of dexamethasone

Rates of in-hospital death or referral to hospice were lower in the dexamethasone-treated

group compared to the non-dexamethasone-treated matched control group for those receiving

remdesivir (OR=0.74, 95% CI: 0.53 to 1.02), those not receiving remdesivir (OR=0.77, 95% CI:

0.62 to 0.95), and both remdesivir and non-remdesivir treated groups combined (OR=0.77, 95%

CI: 0.64 to 0.91) (Table 3), although the smaller redemdesivir group effect was only borderline

significant

The use of dexamethasone also was associated with a lower incidence of a combined

severe outcome or in-hospital death/hospice referral for those receiving remdesivir (OR=0.82,

95% CI: 0.71 to 0.94), those not receiving remdesivir (OR=0.83, 95% CI: 0.64 to 1.09), and both

remdesivir and non-remdesivir treated groups combined (OR=0.84, 95% CI: 0.71 to 1.00) (Table

3).

In sensitivity analyses, the effect of dexamethasone on reduction of in-hospital

death/hospice referral (OR=0.74, 95% CI: 0.59 to 0.93, p=0.012) and combined severe outcome

or in-hospital death/hospice referral (OR=0.81, 95% CI: 0.67 to 0.96, p=0.02) in the
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non-remdesivir group remained similar and significant after adjusting for the effect of age,

Q-score, AST, creatinine, platelet count, and white blood cell count (Table 4a). Within the strata

defined by quartiles of propensity score, the effect of dexamethasone on reduction of both study

outcomes in the non-remdesivir group after adjustment was stronger in the fourth quartile of

propensity scores (presumably patients who presented as most severe) than in the aggregate

cohort (OR=0.62, 95% CI: 0.42 to 0.9, p=0.014 mortality outcome; OR=0.61, 95% CI: 0.44 to

0.82, p=0.002, combined severe/mortality outcome) (Appendix D, E). In the first through third

quartiles, the effect was non-significant and somewhat heterogeneous.

In the remdesivir-treated group, the use of dexamethasone showed a statistically

significant benefit in reducing in-hospital death or referral to hospice (OR=0.71; 95% CI: 0.51 to

1.00, p=0.048); however, the effect of dexamethasone on the combined severe or in-hospital

death/referral to hospice outcome was non-significant (Table 4b).

The same benefit of dexamethasone for both the remdesivir and non-remdesivir groups

was observed in further sensitivity analyses where the logistic regression models above with

linear adjusters were extended to investigate quadratic effects for the laboratory variables

included, though the effect of dexamethasone on the combined outcome was again not

significant in the remdesivir group (Appendix F, G).

5. DISCUSSION

Our analysis of multi-site EHR data in the first year of the pandemic confirmed existing

clinical trial findings that dexamethasone shows in-hospital mortality benefit. We also found that

use of dexamethasone results in a reduction in the secondary outcome of in-hospital mortality or

severe outcome defined by the use of ECMO or mechanical ventilation. The effect of
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dexamethasone on reducing the combined severe and in-hospital death/hospice referral outcome

was not as strong as the effect of dexamethasone on in-hospital death/hospice referral alone,

although this difference was relatively modest. Similar outcomes were observed in both the

remdesivir-treated and non-remdesivir-treated groups.

Whereas evidence for benefit of dexamethasone was shown in the RECOVERY trial,

real-world effectiveness of dexamethasone over a wide range of patients with varying levels of

comorbidities and baseline severity was needed to ensure that its benefit applied in these settings.

Meta-analyses of corticosteroid trials and studies showed general benefit, but mixed results.

Additionally, there were many clinical questions concerning the use of dexamethasone and

corticosteroids, of which many remain. Although co-administration of remdesivir with

dexamethasone was not directly assessed by our study, our analysis suggests that remdesivir did

not appear to affect the benefit of dexamethasone in reduction of either mortality or the

secondary outcome.

The treatment effects observed in the cohorts were subjected to sensitivity analyses.

Treatment effect size was the same when checking for both linear and quadratic effects of

included adjusters; however, we found that the odds ratios for the secondary outcome in the

remdesivir groups were non-significant. It is likely that more data are needed in the remdesivir

groups to confirm the effect. Sensitivity analyses also involved assessment of outcome by

quartile of propensity score. In both remdesivir and non-remdesivir groups, there was significant

variability of the odds ratios across strata; however, one notable trend was a statistically

significant reduction in both study outcomes in the fourth quartile of the non-remdesivir analysis

group. This suggests those in the fourth quartile of PS, who were likely perceived as most severe
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at baseline, benefited most from dexamethasone treatment in comparison to other patients

assigned dexamethasone treatment, consistent with current practice of use of dexamethasone

primarily in more severe patients.

Several issues related to the statistical methodology arose in the course of our study, and

some comments about those follow here. First, we expected to find very few patients who had

received remdesivir in the absence of dexamethasone or another corticosteroid. Indeed, this

number was not large, but it did allow for comparison of dexamethasone treatment to lack

thereof within a separate remdesivir stratum – we did not feel that remdesivir recipients and

non-recipients could be combined in primary analyses, although we do present some pooled

results for ease of exposition. Nevertheless, it could be that within the remdesivir stratum, the

PS-based matching on severity is less complete than in the non-remdesivir stratum. The two

strata do in principle allow for comparison of dexamethasone treatment effects between those

also receiving and not receiving remdesivir. We did not detect strong evidence of such

heterogeneity of treatment effects, although our sample size was limited to be able to detect such

interaction terms.

Second, regarding concerns about the considerable amount of missing data, we note that

other N3C investigators have also struggled with this issue and have nevertheless come away

able to draw robust and useful conclusions using the N3C platform. A major strength of our

analysis is that we matched on the number of missing lab values as a predictor of dexamethasone

treatment (versus no such treatment). Of course, we counted the number of missing values before

imputation, and then conducted imputation before running the PS matching algorithm. Indeed,

those treated with dexamethasone had far more complete laboratory profiles, most likely

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.22.22281373doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.22.22281373
http://creativecommons.org/licenses/by-nc-nd/4.0/


reflecting severity of disease. This component of matching may be one of the more powerful

variables to achieve balance on severity (which is not directly observed).

A third issue is that we were only able to perform a single imputation of missing values

(i.e., a single iteration of a standard multiple imputation algorithm). This is of little consequence

in terms of effect estimation, but it could lead to mild underestimation of standard errors, and this

is a limitation. However, the architecture of the N3C platform meant that the imputation, the PS

matching, and the logistic regression analyses each took place in their own N3C “data

transformation” nodes.  In order to conduct multiple imputation, we would need to create

multiple parallel pipelines across such nodes, a task beyond our capabilities. Despite these issues,

the benefit of the comprehensiveness and national representativeness of the N3C platform

outweighed these methodological considerations.

There are also some other general limitations associated with the data to be aware of.

These are mostly fundamental limitations that come with the use of electronic health record data,

especially data harmonized across many sites. Underlying causes of missing data are not always

clear. Likewise, the sites contributing to the N3C may not be an accurate representation of the

population, as there may be selection bias in which sites have the resources to be able to

contribute to the N3C database. Additionally, there is uncertainty in available measurements and

the details of the measurement procedure at each source – and how such procedures vary across

sources – are generally not available. These issues may result in bias, though we did not notice

any abnormal missingness patterns and we detected and handled implausible measurement

values in the statistical analysis. Patients were assumed to be unaffected if a given comorbidity

was not present in the data, though it was reported that around half of patients in the N3C have
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pre-existing health condition data available to allow determination of comorbidity15.

Demographic data such as race have known quality limitations when collected from EHRs which

may contribute to bias22. Key data such as detailed ventilator flow settings, ICU admission,

oxygen saturation (SpO2), and supplemental oxygen that would have enabled us to answer

additional questions about the effects of dexamethasone were also not available in the N3C.

Finally, specific details about the administration of dexamethasone including delivery route (IV

vs oral) and dosage were absent in a portion of patients who received dexamethasone, limiting

the potential to study how these factors specifically affect outcomes.

Despite limitations which make the exploration of certain questions less feasible, the

large number of sites and patient-level variables included in the N3C enabled our study of

dexamethasone on patient outcome and interaction with remdesivir, adding to the body of

evidence that dexamethasone generally reduces mortality and severe outcomes whether

administered alone or in addition to remdesivir. There is great potential to use the N3C for future

research in related directions. The effect of other corticosteroids or drugs which were used or

considered to treat hospitalized COVID-19 can be studied in a similar way as described in this

work. More drug-drug interactions may be explored as the data resource grows. Additionally,

future research could include subgroup analyses to answer questions about the effect of certain

drugs on outcomes within more specific groups of interest or even uncover groups with different

outcomes defined by, for example, key biomarkers.

As the N3C resource continues to improve the quality, quantity, and veracity of data,

increase the diversity of sites contributing, and expand the granularity of data elements, the

potential for higher quality analyses increases. We demonstrated the value of the N3C as a
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resource with the use of methods described in this paper to conduct robust secondary analyses of

EHR data producing high quality evidence evaluating the effectiveness of interventions to

manage COVID-19. This provides a framework to equip the field to respond quickly to generate

evidence to guide management interventions when facing the next emerging, rapidly evolving

pandemic when there is not sufficient time to conduct robust prospective clinical trials.

6. CONCLUSIONS

Using real-world data for effectiveness analysis of dexamethasone therapy in hospitalized

COVID-19 patients prior to vaccine availability, this study on a national EHR sample adds

evidence that such therapy provides benefit with respect to mortality and severe outcomes such

as mechanical ventilation or ECMO.
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Clinical Relevance Statement

Our real-world effectiveness analysis supports dexamethasone as an option for

hospitalized COVID-19 patients, useful in reduction of mortality and severe outcomes, in a

heterogeneous group of patients and matched, untreated, controls.  We find weaker but positive

support for dexamethasone in combination with remdesivir versus remdesivir alone. We also find

evidence that the most severe patients at baseline may benefit most from dexamethasone

treatment.
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FIGURES

Figure 1. Application of inclusion criteria to patients in the N3C and development of matched

pairs for comparing the effect of dexamethasone among patients who had and had not received

remdesivir, independently groups. Note that 390 remdesivir and dexamethasone treated patients

were dropped between the PS-matching and logistic regression stages because there were not

enough controls with propensity scores similar enough to that of the remdesivir and

dexamethasone group.
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TABLES

Table 1. Characteristics of the dexamethasone-treated patients and potential controls at baseline

before imputation and PS matching.

Characteristic Dexamethasone,

N = 24571

Non-Dexamethasone,

N = 28,4391

Age 61±16 56±19

Sex

Female 1,121 (46%) 14,588 (51%)

Male 1,336 (54%) 13,851 (49%)

Race

Asian 58 (3.1%) 792 (3.3%)

Black or African American 687 (37%) 7,544 (32%)

Native Hawaiian or Other Pacific

Islander

<20 62 (0.3%)

Other <20 355 (1.5%)

White 1,106 (59%) 15,132 (63%)

Missing 582 (23.7%) 4,554 (16%)

Remdesivir Received 1,194 (49%) 1,014 (3.6%)

Comorbidities

Cancer 151 (6.1%) 2,819 (9.9%)

Congestive Heart Failure 293 (12%) 3,856 (14%)

Diabetes Mellitus 690 (28%) 8,274 (29%)

Myocardial Infarction 157 (6.4%) 1,992 (7.0%)

Pulmonary Disease 397 (16%) 5,402 (19%)

Peripheral Vascular Disease 273 (11%) 3,807 (13%)

Q Score 1±2 2±2
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Laboratory and Vital Measurements

BMI 32±9 31±8

Missing 1,087 (44.2%) 6,935 (24.4%)

ALT (IU/L) 42±45 39±56

Missing 836 (34%) 11,483 (40.4%)

AST (IU/L) 54±54 48±57

Missing 653 (26.6%) 9,454 (33.2%)

Albumin (g/dL) 3.59±0.47 3.62±0.59

Missing 657 (26.7%) 9,992 (35.1%)

Creatinine (mg/dL) 1.27±1.09 1.34±1.26

Missing 597 (24.3%) 7,331 (25.8%)

Neutrophils (%) 76±11 71±13

Missing 880 (35.8%) 11,269 (39.6%)

Lymphocytes (%) 16±10 19±11

Missing 682 (27.8%) 10,404 (36.6%)

Platelet Count (x1000/uL) 225±92 228±96

Missing 792 (32.2%) 8,931 (31.4%)

White Blood Cell Count

(x1000/uL)

7.8±4.8 8.0±4.8

Missing 603 (24.5%) 7,674 (27%)

Acute Kidney Injury in Hospital2 332 (14%) 978 (3.4%)

Smoking Status

Current or Former 138 (5.6%) 3,040 (11%)

Non smoker 2,319 (94%) 25,399 (89%)
1 Statistics presented: mean±SD; n (%).
2 AKI was included in imputation
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Table 2a. Patients not receiving remdesivir: Characteristics of dexamethasone-treated patients

and 3:1 PS matched non-dexamethasone-treated controls, after imputation.

Characteristic2 Dexamethasone,

N = 12631

Non-Dexamethasone

Matched Controls,

N = 37891

Age 61±16 61±17

Sex

Female 571 (45%) 1,696 (45%)

Male 692 (55%) 2,093 (55%)

Race

Asian 52 (4.1%) 171 (4.5%)

Black or African American 501 (40%) 1,496 (39%)

Native Hawaiian or Other  Pacific

Islander

<20 <20

Other <20 48 (1.3%)

White 691 (55%) 2,059 (54%)

Comorbidities

Cancer 88 (7.0%) 260 (6.9%)

Congestive Heart Failure 178 (14%) 523 (14%)

Diabetes Mellitus 379 (30%) 1,143 (30%)

Myocardial Infarction 104 (8.2%) 322 (8.5%)

Pulmonary Disease 234 (19%) 718 (19%)

Peripheral Vascular Disease 157 (12%) 456 (12%)

Q Score 1±2 1±2

Laboratory and Vital Measurements

BMI 32±9 31±8
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ALT (IU/L) 43±57 42±58

AST (IU/L) 56±61 56±73

Albumin (g/dL) 3.57±0.48 3.57±0.57

Creatinine (mg/dL) 1.36±1.23 1.36±1.24

Neutrophils (%) 75±11 76±11

Lymphocytes (%) 16±10 16±10

Platelet Count (x1000/uL) 229±94 230±96

White Blood Cell Count

(x1000/uL)

7.9±4.8 8.0±4.0

1 Statistics presented: mean±SD; n (%)
2 Cells with patient count less than 20 obscured to protect confidentiality

Table 2b. Patients receiving remdesivir: Characteristics of dexamethasone-treated patients and

1:1 PS matched non-dexamethasone-treated controls, after imputation.

Characteristic2 Dexamethasone,

N = 8041

Non-Dexamethasone

Matched Controls,

N = 8041

Age 62±15 62±16

Sex

Female 365 (45%) 377 (47%)

Male 439 (55%) 427 (53%)

Race

Asian <20 <20

Black or African American 296 (37%) 305 (38%)

Native Hawaiian or Other Pacific

Islander

<20 <20
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Other <20 <20

White 478 (59%) 464 (58%)

Comorbidities

Cancer 50 (6.2%) 56 (7.0%)

Congestive Heart Failure 96 (12%) 102 (13%)

Diabetes Mellitus 242 (30%) 253 (31%)

Myocardial Infarction 45 (5.6%) 55 (6.8%)

Pulmonary Disease 138 (17%) 146 (18%)

Peripheral Vascular Disease 93 (12%) 94 (12%)

Q Score 1±2 1±2

Laboratory and Vital Measurements

BMI 32±9 33±9

ALT (IU/L) 42±46 41±49

AST (IU/L) 52±52 51±44

Albumin (g/dL) 3.55±0.49 3.53±0.52

Creatinine (mg/dL) 1.18±0.92 1.18±0.86

Neutrophils (%) 75±11 75±11

Lymphocytes (%) 16±10 16±9

Platelet Count (x1000/uL) 221±92 222±83

White Blood Cell Count (x1000/uL) 7.6±4.8 7.6±4.5

1 Statistics presented: mean±SD; n (%)
2 Cells with patient count less than 20 obscured to protect confidentiality
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Table 3. Outcomes and crude odds ratios (95% CI) comparing dexamethasone recipients to

PS-matched non-recipients in N3C hospitalized COVID-19 patients. Non-recipients of

remdesivir are matched 3:1 (non-dex to dex), while remdesivir recipients are matched 1:1.

All Study Patients

Dexamethasone Received Death/Hospice Severe or

Death/Hospice

Characteristic3 FALSE,

N = 4,5931

TRUE,

N = 2,0671

OR 95% CI OR 95% CI

Maximal Clinical Severity

Death/Hospice 530 (12%) 188 (9.1%) 0.77 0.64, 0.91
0.82 0.71, 0.94

Severe 312 (6.8%) 133 (6.4%)
ref.

Moderate2 3,751 (82%) 1,746 (84%) ref.

ECMO 27 (0.6%) <20

Invasive Ventilation 525 (11%) 234 (11%)

Non-recipients of remdesivir

Characteristic FALSE,

N = 37891

TRUE,

N = 12631

OR 95% CI OR 95% CI

Maximal Clinical Severity

Death/Hospice 433 (11%) 114 (9.0%) 0.77 0.62, 0.95
0.84 0.71, 1.00

Severe 271 (7.2%) 89 (7.0%)
ref.

Moderate 3,085 (81%) 1,060 (84%) ref.

ECMO 25 (0.7%) <20

Invasive Ventilation 437 (12%) 146 (12%)

Recipients of remdesivir

Characteristic FALSE, N =

8041

TRUE, N =

8041

OR 95% CI OR 95% CI
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Maximal Clinical Severity

Death/Hospice 97 (12%) 74 (9.2%) 0.74 0.53, 1.02
0.83 0.64, 1.09

Severe 41 (5.1%) 44 (5.5%)
ref.

Moderate 666 (83%) 686 (85%) ref.

ECMO <20 <20

Invasive Ventilation 88 (11%) 88 (11%)
1 Statistics presented: n (%)
2 Moderate is the best possible outcome in this cohort: It represents hospitalization without

major complication.
3 Cells with patient count less than 20 obscured to protect confidentiality
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Table 4a. Patients not receiving remdesivir: Prediction of in-hospital death/hospice referral and

combined in-hospital death/hospice referral and severe outcome by receipt of dexamethasone

with logistic regression models.

Aggregate PS Matched Cohort4

Characteristic2,3,4 Death/Hospice Severe or Death/Hospice

OR1 95% CI1 p-value OR1 95% CI1 p-value

Dexamethasone 0.75 0.59, 0.95 0.017 0.82 0.68, 0.98 0.028

Age 1.06 1.05, 1.07 <0.001 1.03 1.02, 1.03 <0.001

Q-Score 1.14 1.09, 1.18 <0.001 1.11 1.07, 1.15 <0.001

AST 1.34 1.22, 1.47 <0.001 1.37 1.27, 1.47 <0.001

Creatinine 1.27 1.14, 1.42 <0.001 1.21 1.10, 1.32 <0.001

Platelet 0.64 0.54, 0.76 <0.001 0.69 0.60, 0.79 <0.001

WBC 1.89 1.62, 2.21 <0.001 2.01 1.77, 2.28 <0.001
1 OR = Odds Ratio, CI = Confidence Interval.
2 The model included a categorical variable indicating which PS quartile the patient was in

(Q1, Q2, Q3, Q4)
3 AST, creatinine, platelet count, and WBC count were log-base-2 transformed.
4 See Appendix D for results within strata defined by quartile of PS

Table 4b. Patients receiving remdesivir: Prediction of in-hospital death/hospice referral and

combined in-hospital death/hospice referral and severe outcome by receipt of dexamethasone

with logistic regression models.

Aggregate PS Matched Cohort4

Characteristic2,3 Death/Hospice Severe or Death/Hospice

OR1 95% CI1 p-value OR1 95% CI1 p-value

Dexamethasone 0.72 0.51, 1.00 0.054 0.83 0.63, 1.10 0.2
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Age 1.06 1.04, 1.07 <0.001 1.02 1.01, 1.03 <0.001

Q-Score 1.06 0.98, 1.14 0.2 1.06 0.99, 1.14 0.070

AST 1.51 1.24, 1.83 <0.001 1.56 1.33, 1.84 <0.001

Creatinine 1.15 0.89, 1.46 0.3 1.06 0.85, 1.30 0.6

Platelet 0.62 0.45, 0.85 0.003 0.63 0.48, 0.82 <0.001

WBC 1.45 1.11, 1.88 0.006 1.83 1.47, 2.29 <0.001
1 OR = Odds Ratio, CI = Confidence Interval. *AST, creatinine, platelet count, and WBC

count were log-base-2 transformed.
2 The model included a categorical variable indicating which PS quartile the patient was in

(Q1, Q2, Q3, Q4)
3 AST, creatinine, platelet count, and WBC count were log-base-2 transformed.
4 See Appendix E for results within strata defined by quartile of PS
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