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The poultry industry is one of the main providers of protein for the world’s population,

but it faces great challenges including coccidiosis, one of the diseases with the most

impact on productive performance. Coccidiosis is caused by protozoan parasites of the

genus Eimeria, which are a group of monoxenous obligate intracellular parasites. Seven

species of this genus can affect chickens (Gallus gallus), each with different pathogenic

characteristics and targeting a specific intestinal location. Eimeria alters the function of

the intestinal tract, generating deficiencies in the absorption of nutrients and lowering

productive performance, leading to economic losses. The objective of this manuscript

is to review basic concepts of coccidiosis, the different Eimeria species that infect

chickens, their life cycle, and the most sustainable and holistic methods available to

control the disease.
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INTRODUCTION

The poultry industry is one of the main suppliers of animal protein worldwide, contributing both
meat and eggs (1, 2). This is an industry in constant growth, as demonstrated by the United States
Department of Agriculture (USDA). The USDA reported that 102.9 million tons of chicken meat
were produced in January of 2020, which represents a 3.9% increase compared to the same period
of the previous year (3). This increase is important, given that by 2050 the human population is
expected to exceed nine billion people, making sustainable and safe protein production a worldwide
priority (4). Any pathogen that compromises the efficiency of a poultry production system can pose
a threat to food security worldwide (5).

There are many pathogens of great importance in the poultry industry, and among these are
several coccidiosis-causing species of Eimeria belonging to the Apicomplexa phylum. These are
obligate intracellular parasites with special organelles within the apical complex. These organelles
are necessary for invasion of the host’s intestinal cells (6). There are seven species of Eimeria
recognized in poultry, each of them targeting a specific niche within the intestines and each with
different pathogenicity characteristics (7).

The infection process begins with the ingestion of sporulated oocysts (their infectious form);
depending on the species, infection can cause deficiencies in the absorption of nutrients, reduction
in growth rates and, in the case of the most pathogenic species, increased mortality (8). Coccidiosis
control has focused on several strategies including: management practices at the farm level,
vaccines, and natural and traditional anticoccidials (9), the latter being the most successful and
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frequently used method of control (10). However, heavy use of
anticoccidials has selected for strains of resistant parasites (11,
12). As a result of drug resistance, diminished performance, and
increased mortality, coccidiosis is one of the most economically
important diseases of poultry (13).

The objective of this manuscript is to review basic concepts of
coccidiosis, including the different Eimerian species that infect
chickens, their life cycle and the most sustainable and holistic
methods to control the disease. The current global trend toward
reduced use of anticoccidial drugs in poultry production requires
us to improve our understanding of the causative agent and the
pathogenesis of the disease in order to achieve better control.

ETIOLOGICAL AGENT OF AVIAN
COCCIDIOSIS

Coccidia consist of a wide variety of unicellular parasites in the
protozoan subgroup of the phylum Apicomplexa. As a group,
coccidia of the genus Eimeria (Eimeridae family) are species-
specific, infecting a single host species or a group of closely
related hosts (14). The phylum (Apicomplexa) is characterized by
obligate intracellular parasites, which possess unique specialized
organelles that form the apical complex (15). These include:
micronemes, rhoptries, dense granules, and conoid and polar
rings (Figure 1.1) that provide the structural stability required
during invasion of the host cell (15). Infection by a sufficiently
large number of coccidia produces clinical manifestations of the
disease called “coccidiosis,” whereas subclinical infections are
asymptomatic but cause adverse effects on performance. The
mildest form of infection that causes no symptoms and no
adverse effects on performance infection is called “coccidiasis”
(16–18). Eimeria spp. destroy host mucosal cells (19) as they
invade enterocytes to begin their multi-stage replication process.
This results in pathological changes such as elevated cell
permeability, nutrient and plasma protein leakage, and impaired
digestion and protein absorption (20, 21). Additionally, it causes
morphologic alteration in the intestinal mucosa resulting in
the reduction of absorptive surface area (20), compromising
chicken well-being and productivity (21). The coccidia cycle is
short, with an approximate duration of 4–6 days, depending
on the species. The mode of transmission is oral-fecal and
the infection can easily be transmitted through ingestion of
sporulated oocysts (infective state of the parasite). Once inside
themicroenvironment of the host’s intestinal tract, where they are
exposed to digestive enzymes, the oocysts undergo excystation in
the gizzard, aided by mechanical disruption, ultimately releasing
sporozoites (6, 20) which start the life cycle of the coccidian (22).

LIFE CYCLE OF EIMERIA SPP.

The protozoans of the genus Eimeria have a direct life cycle,
characterized by high tissue and host specificity, involving stages
of asexual and sexual multiplication, with three development
phases: the formation of schizogony (agamogony/merogony),
gametogony (gamete formation for sexual reproduction), and
sporogony (6).

As shown in Figure 1A, transmission occurs via fecal-oral
route and infection begins with the ingestion of sporulated
oocysts containing eight sporozoites, starting the stage called
schizogony (18). The enzymatic microenvironment of the
digestive tract and the mechanical action of the gizzard alter
the structure and permeability of the oocyst wall (23). The
sporozoites contained within each sporocyst begin to remove the
protein and carbohydrate plug called the Stieda body, located in
the sharp and narrow end of the sporocyst, thus allowing the
sporozoites to exit into the oocyst cavity. This process, called
excystation, releases them into the intestinal lumen through the
oocyst micropyle (Figure 1B) (24).

The sporozoites invade the enterocytes, changing into
trophozoites and starting a parasitic feeding period that lasts
∼12–48 h (25, 26). The parasitophorous vacuole is formed,
the trophozoite begins to enlarge, and the parasite nucleus
performs multiple asexual divisions (27), forming the schizont
or meront, which is full of merozoites. Approximately 3 days
post infection, the mature schizont ruptures and releases the
merozoites (Figure 1C) (20), which are fusiform and have an
apical complex (Figure 1.1) that allows them to move and
infect intestinal epithelial cells to form additional schizont
generations that reproduce asexually. The number of phases of
asexual reproduction is characteristic of each Eimeria species
(Table 1) and is thought to be genetically programmed (34).
The main purpose of this phase is to boost the number
of merozoites within the host as preparation for the sexual
reproduction phase, which is an important characteristic of every
apicomplexan life cycle (35). When the asexual reproduction
phase is complete, the sexual reproduction stage or gametogony
begins, occurring in three events. The first is gametocytogenesis,
in which gametocytes are produced from merozoites. Second,
during gametogenesis, haploid micro and macrogametes are
differentiated from the gametocytes. Finally, macrogametocytes
are fertilized by microgametocytes (Figure 1D), producing
diploid zygotes, at which point sexual reproduction is completed;
meiosis proceeds, inside the protective oocyst wall, followed by
mitosis to produce the infectious sporozoites (24, 35, 36).

The micro and macrogametocytes are morphologically
different (35). The macrogametocyte grows quickly and forms a
single macrogamete (37), with polysaccharide granules and lipid
droplets (35); while the microgametocyte matures, breaks up and
releases many small biflagellate microgametes that are a vehicle to
deliver DNA (35). The amount ofmicrogametes varies depending
on the species, for example, E. acervulina can produce between
20 and 30, and E. maxima 100 or more (38). After fertilization,
the oocyst is formed with an undifferentiated cytoplasmic mass
which corresponds to the zygote; this mass is protected by a
double wall of proteins and fats that give it great resistance to
mechanical and chemical damage from the environment (2).
The duration of the parasite’s endogenous or internal phase is
determined by the time needed to complete asexual and sexual
reproduction and form oocysts.

Once the oocyst is excreted from the animal in the feces
(Figure 1E), the third phase of the cycle, sporulation, takes places
(39). If environmental conditions are adequate, the diploid oocyst
initiates sporogony formation, which occurs in three stages
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FIGURE 1 | Life cycle of Eimeria spp and apical complex of Eimeria.
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TABLE 1 | Eimeria species that affect poultry (Gallus gallus) and their main characteristics.

Species Development site Pathogenicity Schizogony

numberU
Lesion scoring Reference

E. praecox Duodenum, Jejunum + 2 Intestinal water content, mucus and molten mucous material. (24)U , (28)

E. acervulina Duodenum, Jejunum ++ 4 Limited enteritis, causing loss of fluids. Poor absorption of

nutrients.

(8), (29)U

E. mitis Ileum + 4 Limited enteritis, causing loss of fluids. Poor absorption of

nutrients.

(8), (30)U

E. maxima Jejunum, Ileum ++ 2 –more 3 Swelling of the intestinal wall with hemorrhagic points, detachment

of the epithelium.

(8), (24)U , (31)U

E. brunetti Cecum and Rectum +++ 3 Swelling of the intestinal wall with hemorrhagic points, detachment

of the epithelium.

(8), (24)U

E. tenella Cecum +++ 3 Thickening of the walls and blood content in the proximal end.

Relaxation of the cecum. Destruction of villi, causing large

hemorrhages and death. Intestine may be bloated.

(8), (24)U , (32)U , (33)

E. necatrix Jejunum, Ileum, Cecum +++ 3 Thickening of the mucosa and intestinal lumen filled with liquid,

blood and the remains of tissue. Lesions in dead birds are

observable as white and black sheets (salt and pepper

appearance).

(8), (32)U

+ low pathogenicity; ++moderate pathogenicity; +++high pathogenicity. UReference for Schizogony number. Modified from Quiroz and Dantán (2).

TABLE 2 | Comparative sporulation time (h) of Eimeria spp.

Species Temp. 20◦C

(43)

Temp. 29◦C

(43)

Temp. 29◦C

(44)

Temp.

32–39◦C (42)

E. acervulina 27 17 11.4 168

E. mitis 48 18 – 192

E. maxima 48 30 38.1 216

E. necatrix 48 18 19.7 96

E. tenella 48 18 21.2 96

E. brunetti 24-48 18 38.3 120

Modified from Venkateswara et al. (42).

(24): (1) Division of the zygote nucleus, and preparation and
reorganization of the cytoplasm. This division is performed twice,
giving rise to four nuclei. (2) Formation of four sporoblasts and
their cytoplasmic reorganization, going through the pyramidal
stage and the formation of oval sporoblasts, which will give rise to
four sporocysts in total. There is no nuclear division in this stage.
(3) Sporozoite formation. A single nuclear division occurs in
each sporocyst and the cytoplasm is divided into two longitudinal
parts to form two sporozoites inside each sporocyst with a Stieda
body at its end (14) (Figure 1F). For this process to occur, optimal
conditions of oxygen, temperature and humidity are required
(40). Oxygen is necessary for the oocyst’s respiration, as it
cannot develop in anaerobic conditions. Temperature is another
key factor, as oocysts have demonstrated sensitivity to high or
very low temperatures (24). Studies evaluating the efficiency of
sporulation at different temperatures found sporulation rates of
88.91, 88.03, and 82.44% at 25, 20, and 30◦C, respectively (39).
The last necessary factor is humidity, for example, a relative
humidity in the environment of 75% is optimal for sporulation
(40), but a dry environment causes water loss, dehydration and

deformation of the oocyst wall. As a result, the zygote is pressed
by the collapsed walls and there can be no normal formation
of sporogony (24). Awais et al. (41) reported that in Faisalabad,
Punjab, Pakistan, the incidence of coccidiosis was higher in
the fall (60.02 ± 4.38) compared to other seasons, likely a
result of more favorable environmental conditions that promote
sporulation and survival of the oocyst; but the moisture content
of the litter can also influence these rates. For example, in the
case of E. maxima, the sporulation rate is most efficient under
the driest conditions (16% moisture content), and poorest in
the presence of higher moisture content (62%) (40). Sporulation
time can also be influenced by the Eimeria species in question.
Venkateswara et al. (42) evaluated the sporulation dynamics of
six Eimeria species subjected to a temperature range between 32
and 39◦C and a relative humidity of 65% to 75%. Table 2 shows
the results obtained by Ventakeswara et al. (42) and others that
studied sporulation time in Eimeria species of chickens.

EIMERIA SPECIES THAT INFECT GALLUS

GALLUS

Among chickens, seven species of Eimeria have been described
that infect different sections of the intestine (Table 1) (6, 7). Each
species of the parasite has a preference for a specific site in the
gastrointestinal tract (45), as well as differentiating characteristics
in the appearance of macroscopic lesions, the morphology of the
oocysts, the minimum sporulation time, the minimum prepatent
period (time between the bird’s infection with a sporulated oocyst
and the shedding of the first oocysts into the environment
through feces) (46), the size of the schizont and the location of the
development of the parasite in the intestinal epithelium (39, 47).
Within the described species, there are three particularly relevant
species in broilers: E. acervulina, which develops in the epithelial
cells in the proximal region of the small intestine, mainly in
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the duodenum (48), E. maxima, which targets the intermediate
region of the intestine and is easily recognizable due to the size
of its oocysts (the largest), and E. tenella, which infects the cecum
and causes bloody diarrhea (49).

While the majority of research has focused on the seven
species mentioned above, in recent years, three cryptic Eimeria
genotypes have been identified, initially in Australian chicken
populations, and have now been proposed as novel species.
They were initially characterized as novel operational taxonomic
units (OTUs) (50). Following their discovery, these OTUs were
divided into three distinct phylogenetic clusters, denoted by the
abbreviations OTUx, y, and z. (51). The differences in biological
traits, genetic and antigenic diversity were evaluated, comparing
these directly with the seven recognized Eimeria spp. Significant
differences were found, enough to propose them as new Eimeria
species that can infect Gallus gallus, called Eimeria lata n sp.
(previously OTUx), Eimeria nagambie n sp. (previously OTUy),
and Eimeria zaria n sp. (previously OTUz) (52).

PATHOLOGY AND DIAGNOSIS OF AVIAN
COCCIDIOSIS

It has been shown that the degree of infection and the
clinical signs of coccidiosis are influenced by multiple factors
including the species of Eimeria, the infective dose, host-parasite
interactions and environmental conditions of the poultry barn.

The Eimeria Species
The pathogenicity of different Eimeria ranges from moderate to
severe (36), some species may cause loss of fluids and a decrease
in nutrient absorption (E. acervulina and E. mitis), swelling of
the intestinal wall with petechiae and loosening of the epithelium
(E. brunetti and E. maxima) or complete destruction of villi,
producing hemorrhages and death (E. necatrix and E. tenella),
each species causes recognizable and distinct signs of coccidiosis,
independent of the other species (8, 53).

Infective Dose
Coccidial infections are self-limiting and depend largely on the
number of sporulated oocysts ingested (6). Several studies have
shown that there is an optimal dose, such that the reproductive
potential of the parasite is met and they efficiently replicate within
the epithelial cells. Very high doses of ingestion can cause the
so-called “crowding effect,” interrupting the continuity of the
parasite’s life cycle, while still generating intestinal damage (54–
56). For example, Williams in 2001 (55) was able to characterize
the reproductive potential of each species of Eimeria under
experimental conditions, using infective doses of 903, 16, 39, 14,
16, 16, or 72 sporulated oocysts, of E. acervulina, E. brunetti, E.
maxima, E. mitis, E. necatrix, E. praecox or E. tenella, respectively.

Host
The host is a pivotal factor of Eimeria infections in poultry (6).
Some Eimerian parasites are highly immunogenic in chickens,
and primary infections can stimulate protective immunity to
subsequent challenge by the homologous parasite (57). Lillehoj
in (58) used two chicken lines SC (B2B2) and FP (B15B21), to

demonstrate that age and host genetic background can affect the
outcome of coccidial infections. These two lines were subjected
to an experimental infection with different doses of sporulated
oocysts of Eimeria tenella,where is was found that in a reinfection
process at different ages, the FP line wasmore resistant to Eimeria
than the SC line when the primary innoculation contained a
high dose of oocysts. Further, they determined that older animals
demonstrated total immunity to Eimeria.

Additionally, some publications suggest that host sex
influences the prevalence of coccidiosis; for example, Hadas et al.
(59) andWondimu et al. (60) report a prevalence of coccidiosis in
farms of Gondar Town, Ethiopia that is relatively higher in male
(44.3–43.6 percent) than female chicken (42.4–41.2 percent), but
no significant statistical difference was found in either study.

Poultry House Environment
There are specific factors that jeopardize and increase the
spread of the parasite, including inadequate biosecurity protocols
and poor hygiene of both personnel and equipment (60, 61).
Sanitization plays a major role in reducing the dissemination
of the parasite (62), as the most frequent mode of transmission
of oocysts is through mechanical vectors such as movement of
personnel or equipment between farms, and the presence of
rodents and insects such as flies and beetles (6, 63).

Diagnosis
Correct identification of Eimeria species is important for the
diagnosis and control of the disease (64) and from a commercial
standpoint, a diagnosis of coccidiosis is required when the
gross lesions are evident (6, 49). Classical methods for the
evaluation of Eimeria infections include macroscopic diagnosis
with observation of clinical signs in infected animals, the
location and appearance of gross lesions during necropsy; and
microscopic diagnosis, which focuses on evaluating the size
and shape of oocysts (Figure 2) (49). Sometimes the evaluation
of other developmental stages in microscopic smears is also
included (65). In addition, when greater diagnostic precision is
needed, molecular diagnostics can be included (35, 66, 67).

Clinical Signs
Coccidia invade the intestinal mucosa and induce a certain
degree of epithelial cell damage and inflammation. Meronts,
gamonts, and oocysts cause marked histological alterations
of host intestinal epithelial cells over a short time period
including distortion, rupture, separation from adjacent cells,
and sloughing (68). Infected birds present with ruffled feathers
and signs of depression or drowsiness (Figure 2). Additionally,
feed and water consumption are decreased, and the feces may
be watery, whitish and occasionally bloody (69). This results
in dehydration, impaired weight gain, and in the absence of
treatment, death (61). Additionally, there is the problem of
malabsorption due to reduced brush border enzyme activity (70)
and disruption of intestinal integrity (71).

Infection can cause other intestinal changes, as well;
for example, an inoculation with E. acervulina and E.
maxima oocysts increased the size and number of goblet
cells along ileal crypts in broilers (72). Goblet cells represent
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FIGURE 2 | Classical methods for the evaluation of Eimeria infections. (A,B)

Gross lesion E. acervulina and E. tenella. (C) Bird with coccidiosis. (D) Feces

with blood. (E,F) Shape of oocysts of Eimeria spp.

an important defense mechanisms in the intestinal tract
(73), secreting glycoproteins of high molecular weight called
mucins (74). Mucins are the first line of defense against
intestinal pathogens and act to protect the epithelium
from pathogens and irritants in the intestinal lumen (75).
Similarly, it has been reported that when E. tenella invades
cecal epithelial cells, the cecum increases the rate of mucus
production and promotes a protective phenotype as an
immunological reaction against the parasite (76, 77). However,
this increase in mucin production can also be harmful,
promoting secondary colonization by other pathogens
such as Clostridium perfringens (72, 78, 79), Salmonella and
certain viruses like Marek’s disease virus or infectious bursal
disease virus (6, 80). This has the effect of further altering
intestinal health by impairing metabolism and nutrient
absorption (81).

For the evaluation of gross lesions, a standardized intestinal
lesion scoring technique is used (82), which is based on giving
a score on a scale of zero to four, with the goal of obtaining
a numeric classification of the gross lesions caused by each
Eimeria species (65, 67–83) (Figure 2). For this scoring system,
the entire intestine of the bird must be evaluated, beginning
with the duodenum. The mucus and serous membranes are
examined to detect lesions, and a good light source (solar or
lamp) is essential for reliable scoring (49). Table 3 summarizes
the changes visible in the walls of infected organs by oocysts
of E. acervulina, E. maxima and E. tenella and respective lesion
scoring. Generally, a set number of birds per flock are assessed
(between 5 and 6) and the individual scores are added for
all Eimeria spp. (84). This is a laborious method, it can be
subjective, and it needs experienced personnel to obtain an

accurate outcome. However, it is still the most widely used
diagnostic method (49).

Microscopic Diagnosis
Scrapings of the intestinal mucosa can be taken to evaluate the
presence and shape of oocysts (65) or this count can be done
using droppings (85). Typically, the intestinal lesion score is
complemented with counts of oocysts per gram (OPG) of feces or
poultry litter through the McMaster technique (86). It is believed
that the correlation between lesion scoring and productive
performance is stronger than the relationship between oocyst
counts (OPG) and performance (49). Perhaps, oocyst shedding
does not correlate well with decreased body weight gain or
intestinal lesion scores because high doses of Eimeria can result
in a crowding effect that reduces oocyst shedding while still
causing significant damage to the intestine (55). Regardless,
greater accuracy is needed to determine the level of intestinal
lesions at which performance begins to be impacted, especially
when subclinical conditions are present (49).

Recently, the Mini-FLOTAC (Figure 3) was developed as
a new method for qualitative and quantitative diagnosis of
infections by helminths and protozoans in several mammal
hosts. This is a useful technique to process large amounts of
samples rapidly at the laboratory or at the farm (87). The Mini-
FLOTAC technique is based on flotation principles with saturated
solutions, using a device with two components, the Fill-FLOTAC
and reading chamber (86). The Fill-FLOTAC is a clear plastic
container with a capacity of 70mL, used to carry out the first
four steps of the technique i.e., sample collection and weighing;
homogenization; filtration; and filling of the chambers. The other
component is theMini-FLOTAC reading chamber, which has two
components (the base and the disk with two reading chambers,
1mL each, with ruled grids on the surface, which divide each
chamber into 12 sections) and two accessories (the key and the
microscope adaptor) (87).

The microscope reading is done at a magnification of 100x
(86), up to 400x when there are small sized protozoa (87). This
technique has become an alternative to the McMaster method,
especially in cases where greater accuracy is needed (60), and has
been used successfully in different species including goats and
horses (88, 89). According to Bortoluzzi et al. (86), who compared
the precision of the McMaster technique and the Mini-FLOTAC
to quantify Eimeria maxima oocysts, the Mini-FLOTAC is a
reliable and precise method of quantification for this species with
the detection limit ranging between 100 and 500 oocysts per
gram of excreta (OPG). Other works like Das et al. (90), found
the Macmaster technique to be less sensitive than Mini-FLOTAC
when the load was 50 OPG, whereas there was no difference
observed when 100, 250, 300, 450, 625 and 1,250 OPG were
present. Additionally, this study concludes that the McMaster
method is faster than Mini-FLOTAC and both McMaster and
Mini-FLOTAC underestimate true OPG counts.

Molecular Diagnosis
In practical conditions, Eimeria infections are often caused by
more than one species, with similar pathological characteristics,
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TABLE 3 | Description of changes and score of intestinal lesions due to infection with Eimeria spp.

Eimeria spp. Score Description

acervulina 0 No gross lesions

1 The presence of white scattered lesions (not more than five per square centimeter) oriented transversely or ladder-like, clearly visible

on the mucosal surface of the duodenal loop. White lesions contain developing oocysts.

2 Lesions are much closer together, but not coalescent; The intestinal walls show no thickening. With a good light source, these

distinctive transversely elongated white plaques may be readily recognized on the serosal as well as the mucosal surface

3 Lesions are more numerous and beginning to coalesce. The intestinal wall is thickened and the contents are watery. Lesions may

extend as far posterior as Meckel’s diverticulum.

4 Lesions are coalescing in the portion of the duodenum attached to the gizzard and the mucosal wall is grayish, the intestinal wall is

greatly thickened, and the intestine is filled with a creamy exudate which may bear large numbers of oocysts.

maxima 0 No gross lesions

1 Small red petechiae may appear on the serosal side of the mid-intestine. There is no ballooning or thickening of the intestine, though

small amounts of orange mucus may be present

2 Serosal surface may be speckled with numerous red petechiae; intestine may be filled with orange mucus; little or no ballooning of

the intestine; thickening of the wall

3 Intestinal wall is ballooned and thickened. The mucosal surface is roughened; intestinal contents are filled with pinpoint blood clots

and mucus

4 The intestinal wall may be ballooned for most of its length; contains numerous blood clots and digested red blood cells giving a

characteristic color and putrid odor; the wall is greatly thickened; dead birds are recorded with this score

tenella 0 No gross lesions

1 Very few scattered petechiae on the cecal wall; no thickening of the cecal walls; normal cecal contents present.

2 Lesions more numerous with noticeable blood in the cecal contents; cecal wall is somewhat thickened

3 Large amounts of blood or cecal cores present; cecal walls greatly thickened; little, if any, fecal contents in the ceca

4 Cecal wall greatly distended with blood or large caseous cores; fecal debris lacking or included in cores

Modified from Johnson and Reid (82).

FIGURE 3 | Mini-flotac® diagram. Fill- flotac® with lid, filter and homogenizer and Mini-flotac® with disc, two reading chambers and key.

making diagnosis in the field difficult (64). This means that
methodologies that can be more sensitive and less subjective
are very important for correct diagnosis (91). Molecular

biology techniques offer improved diagnostic precision in many
cases. One example is polymerase chain reaction (PCR) based
identification of Eimeria; the amplification of regions of the
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internal transcribed space 1 (ITS1) of the ribosomal DNA (92–
94) is now a widely available technique. The ITS is a piece
of non-functional RNA located between structural ribosomal
RNAs (rRNA) on a common precursor transcript. This region
of the genome contains several segments used for Eimeria spp.
identification, including the 5’ external transcribed sequence
(5’ETS), 18S rRNA, ITS1, 5.8S rRNA, ITS2, 26S rRNA, and
finally the 3’ETS. Because it is easy apply this technique with
only small amounts of DNA and because there is a high degree
of variation between closely related species, the ITS region
is widely used in molecular phylogeny and taxonomy (91).
Other molecular techniques that have been reported for the
identification of Eimeria species have been Random Amplified
Polymorphic DNA (RAPD) (95), Sequence Characterized
Amplified Region (SCAR) markers (96, 97), quantitative PCR
(7) and Loop-Mediated Isothermal Amplification (LAMP) (97,
98). Furthermore, multiplex PCR techniques for detecting the
seven Eimeria species of interest have been described, which
combine primers for each species in a single reaction (99). Given
that this is a parasite with a wide epidemiological distribution
and with reports of taxonomic variants throughout the world
(100), continued study is necessary. Continued advances in
Next Generation Sequencing techniques (NGS) are allowing for
precise identification of emerging or region-specific Eimeria spp.
as well as facilitating other avenues of research for control of
coccidiosis (66, 67).

METHODS USED TO CONTROL AVIAN
COCCIDIOSIS

The prevention and control of coccidiosis is based on the use of
vaccines, natural feed additives, prophylactic anticoccidial drugs,
and improved handling practices on farms. Some beneficial
practices include cleaning and disinfection of facilities, and
adequate ventilation and clean water, all of which contribute
to maintaining litter conditions that minimize the sporulation
of oocysts (10). Prevention (prophylaxis) has traditionally
been a pillar of broiler chicken production (101), relying on
anticoccidials to avoid outbreaks of the disease (62).

Control With Anticoccidial Agents
Since the 1950s, it has been common to raise broiler chickens
and turkeys with feed anticoccidials. According to Agri Stats Inc.
(Fort Wayne, IN), in the late 1990s, 99% of broiler chickens were
raised with an anticoccidial drug in one or more phases, and
this practice is still prevailing in many markets (102). However,
trends in some markets are changing and today, some of the
largest producers of broiler chickens in the world, like the USA,
are raising up to 60% of broilers without anticoccidials (103).

Anticoccidials, based on their mode of action, may be
divided into coccidiostats and coccidicides. Coccidiostats halt the
development of the parasite, compromising its replication and
growth, but their effect can be reversible, as removal from the
diet can lead to the re-emergence of the disease. Coccidicides
are characterized by killing or causing irreversible damage to the
parasite (62).

TABLE 4 | Anticoccidial agent’s classification.

Category Anticoccidial agent Recommended

dose

(ppm)-Broiler

Ionophores Monovalent Monensin 100–120

Narasin 60–80

Salinomycin 44–66

Monocyclic

glycosidic

Maduramicin 5–6

Semduramicin 25

Divalent Lasalocid 75–125

Chemicals Amprolium 125–250

Aprinocid 60

Clopidol 125

Decoquinate 30

Diclazuril 1

Dinitolmide (zoalene) 125

Halofuginone 3

Nequinate (methyl

benzoquate)

20

Nicarbazin 125

Robenidine 33

Mixed Synthetic with

ionophore

Salinomycin/nicarbazin* 50

Narasin/nicarbazin
†

54–90

(combination)

Maduramicin/nicarbazin 3.75–40

Semduramicin/nicarbazin* 15–40

Monensin/nicarbazin* 40

Synthetic with

synthetic

Meticlorpindol/

methylbenzoquate*

110

Adapted from Peek and Landman (10); *Recommended dose commercial product

(106–110).
†
Feed additive compendium (111).

Anticoccidials may also be classified into two categories
according to their origin (10, 104): (1) synthetic compounds,
which are produced by chemical synthesis and have a specific
mode of action against the metabolism of the parasite (10);
(2) polyether or ionophore antibiotics, which are produced by
the fermentation of Streptomyces spp. or Actinomadura spp.,
which generally destroy coccidia by interfering with the passage
of monovalent or divalent ions including sodium, potassium,
calcium and magnesium, through the parasite’s cell membrane
(81, 102, 105). Additionally, in the market there are “mixed
products” that are comprised of a combination of the two (10).
Table 4 provides further characterization of these categories.

The extensive use of these anticoccidials prophylactically has
resulted in a loss of efficacy of these compounds, triggered
by increasing resistance by the parasite (11). To overcome
this, anticoccidials are now used under programs called dual
(or shuttle) or straight rotation. In the first program, two or
more anticoccidials, usually with different modes of action, are
alternated in the different feeds supplied during the chicken life
cycle; whereas in the second program, the same drug is used
continuously throughout a production cycle, but is changed for
an alternative drug after one or several flocks (2, 8, 10).
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Control of Coccidiosis in Chickens by
Vaccination
Infection with Eimeria spp. triggers a variety of mechanisms in
a host’s immune system, resulting in an effective, long-lasting,
but species-specific immunity (68). Generally, generating an
immune response against Eimeria requires a large number of
inoculating oocysts, with the exception of E. maxima, which
is considered to be highly immunogenic and requires only
a small number of oocysts to induce strong immunity (68).
Additionally, the early endogenous stages of the parasite life cycle
are considered to be more immunogenic than the later sexual
stages (112). The immune system of birds is well-developed
and when facing a challenge from an intestinal parasite like
Eimeria (68), the gut-associated lymphoid tissue (GALT) is the
first line of defense. This system has evolved into a specialized
immune com-plex with organs such as Peyer’s patches (PP),
the bursa of Fabricius, and the cecal tonsils, hosting a variety
of specialized immune cells such as epithelial, NK, and den-
dritic cells (9). Infection stimulates a host response that begins
with a non-specific immune response, mediated bymacrophages,
granulocytes, natural killer (NK) cells and soluble factors such as
serum proteins. This precedes the development of an antigen-
specific memory immune response mediated by lymphocytes
(113) and their secretions, in the form of antibodies and cytokines
(9, 68). The works of Rose et al. (114, 115) and Lillehoj and Choi
(116) demonstrate the progression of the innate and adaptive
responses to Eimeria infection in mouse and chicken models.

The first study that showed resistance in chickens against
infection with E. tenella was reported by Beach and Corl in 1925;
but it was not until 27 years later that the first live commercial
vaccine against coccidiosis (CocciVac R©) was launched in the
United States (17, 62, 81, 105). Vaccination is included in coccidia
control programs with the aim of inducing an immune response,
generating protection against subsequent challenges with Eimeria
spp., and decreasing the severity of coccidiosis (9, 10, 83).

Different vaccines are available on the market, including
live virulent, live attenuated, and non-infectious derivatives of
the parasite (subunit vaccines) (9, 117). Live vaccines use the
oral introduction of low doses of Eimeria oocysts to stimulate
humoral and cellular responses from the host immune system.
The ingested oocysts generate a variety of antigens in different
stages of the Eimeria life cycle to stimulate this response
(8), with the cellular response being the most important in
terms of resistance to the disease. This is supported by a
scientific paper published by Lillehoj (118) in which birds were
treated with Cyclosporin A to suppress cell-mediated immune
responses, or treated with hormones to abrogate their humoral
response by interfering with the bursa. The result was that
birds with a hormonal bursectomy showed no alteration in their
response to challenge with Eimeria tenella, while birds who had
been previously treated with cyclosporin a showed increased
susceptibility to the parasite.

These and other studies are crucial in the development
of future vaccines. These studies are important to more fully
understand the nature of the immune response against the
parasite, as well as other interactions between the host and
parasite (17, 62–65, 67–119).

Virulent Vaccines
Virulent strains isolated from the field without any alteration
in their pathogenicity can be used as vaccines, as well (62),
being highly effective and relatively cheap to produce. However,
this practice also risks compromising flock performance and
occurrence of clinical disease if managed incorrectly (120, 121).
In mass vaccination, it is important to carefully standardize the
dosage methods and conditions, enabling uniform inoculation
within the flock, increasing oocyst shedding into the litter
and reinfection of the flock. Animals that do not receive an
appropriate dose of the vaccine may perpetuate subsequent
infections that can cause asynchronous immunity, compromising
the performance of the birds and increasing future susceptibility
to the disease (9). These drawbacks have limited the use of
virulent vaccine strains and they are not currently licensed for
use in the European Union (122). However, this type the vaccine
is used widely across much of North America, as well as in parts
of Africa and Asia (121, 123).

Live Attenuated Vaccines
The goal of attenuation is to decrease the pathogenicity of the
parasite and therefore, its deleterious effects on the host. Several
methods of attenuation have been used, including, selection for
precociousness (124), irradiation (125), chemical treatment (126)
and serial passage in chicken embryos (127). Precocious lines of
Eimeria are characterized by a shortened endogenous life cycle
due to the elimination of one or more schizogonies, leading to
less damage to the intestinal tract and decreased production of
oocysts. By selecting the first oocysts that are excreted in the
feces to inoculate chickens during the second pass and repeating
this process over and over, the reproductive potential and the
pre-patent period of the Eimeria species selected is lowered.
Along with these reductions there is a concomitant reduction in
pathogenicity while the immunogenicity is retained (124). This
type of vaccine is used extensively in much of Europe, as well
as parts of Africa, Asia and Australasia, primarily with layer and
breeder stock owing to their relative cost and limited productive
capacity (123).

Subunit Vaccine
Identification of protective antigens is essential for the
development of new vaccines against coccidiosis (128). Isolated
and purified epitopes from virulent strains have been used in
anticoccidial vaccines, mainly native or recombinant proteins
expressed during various stages of development (sporogonies,
merogonies, gametogonies) of the Eimeria parasite (62). This
is particularly useful for maternal immunization, stimulating
the production of large amounts of immunoglobulin Y (IgY),
which is then transferred through the yolk of the egg, providing
protective immunity to its offspring. This vaccination strategy
can decrease the excretion of oocysts in birds challenged with
Eimeria maxima up to 83%, and can provide some cross-
protection against heterologous species like E. tenella and E.
acervulina (128).

Attempts to develop next-generation recombinant
anticoccidial vaccines have led to the identification of many
potential vaccine antigens. Small-scale vaccination trials
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using antigens in recombinant protein, DNA or live-vectored
formulations have been reported to achieve 30–90% reductions
in parasite replication and/or gut lesion score, or comparable
improvements in feed conversion ratio and/or body weight gain
(122). However, one major constraint in deployment of such
antigen-specific vaccines is an appropriate and effective delivery
system (51). Several possible vectors for oral administration,
including Bacillus, Salmonella, transgenic Eimeria and yeasts
such as Saccharomyces cerevisiae, are currently in development
and could be appropriate (51, 129, 130).

Currently, vaccination is a practice that is being promoted
mainly due to demand for products satisfying a “No antibiotics,
ever” label (51). In the past, it was a common practice only in
breeder pullets and turkeys (131); this trend has been changing
because public and legislative pressures are encouraging the
search for cost-effective alternatives to anticoccidial drugs in
broiler production, especially in countries such as the US,
where (unlike the EU) ionophores are regulated as antibiotics
(123). In response to these external pressures, 35–40% of US
broiler companies have adopted annual cycles where two out
of every six flocks receive anticoccidial vaccination instead of
drugs (104). This practice is known as a bio-shuttle program
in which vaccination of broilers on day of hatch is followed
by the administration of grower and finisher diets containing
anticoccidial drugs (132). This allows producers greater control
in managing the risk of outbreak posed by the use of non-
attenuated vaccines.

Another important advantage to using live vaccines for
the control of coccidiosis is the replacement of Eimeria
populations residing in the poultry house. This often has
the effect of restoring the susceptibility of the Eimeria
population in the house to traditional anticoccidial drugs,
as evidenced in the work of Chapman and Jeffers (12).
This study was an anticoccidial resistance trial in broiler
chickens, tracking five consecutive flocks on a rotation
schedule of anticoccidials. The use of vaccination in
conjunction with salinomycin (ionophore) and diclazuril
(chemical), restored sensitivity to these anticoccidials: they
demonstrated that the anticoccidial programs that followed the
vaccination program had improved sensitivity of the parasite to
the anticoccidials.

Natural Products for Coccidiosis Control
Currently, difficulties including resistance to the
cost of anticoccidials (133); consumer pressure for
poultry products labeled as “antibiotic-free,” “no
antibiotics ever,” or “raised without antibiotics”;
(134), as well as the pathogenicity of live vaccines,
is leading poultry producers worldwide to intensify
their search for strategies that include safe, effective
and economically viable alternatives for controlling
coccidiosis (11, 133).

These alternatives include prebiotics, probiotics, essential oils,
organic acids, antioxidants and nanobiotics (plant nanoparticles
that have been used as antibacterial agents) (81, 135). Many
of these compounds are used as dietary supplements with

various applications including immune system stimulation,
and anti-inflammatory and antioxidant action (2, 133). For
example, the work Ali et al. (69), showed the anticoccidial
effect of garlic (Allium sativum) and ginger (Zingiber officinale)
against experimentally induced coccidiosis. Feed intake, body
weight and feed conversion ratio (FCR) were significantly
improved in ginger and garlic supplemented birds compared
to the positive control (infected without additives). Similarly,
oocyst shedding, lesion score and histopathology of the small
intestines improved in ginger and garlic supplemented birds
after challenge.

Table 5 shows some natural compounds that have been
used for Eimeria control, their mechanism of action, and
their efficacy in controlling coccidiosis (140). Mixed results
in many studies show the need for further research into
the potential of these alternative control strategies. For
example, Scheurer et al. (137) examined three phytogenic
compounds (oregano; combination of Curcuma, saponins,
and inulin; Quillaja), and showed that there were no
effects against Coccidiosis. Similarly, Idris et al. (141)
reported that the use of essential oils as an alternative to
anticoccidials is limited because of their antinutritional
factors, toxicity, low dose effectiveness and their reduced
protective response.

Further investigations should explore their mechanisms of
action, and their protective response should be evaluated alone or
in combination with a vaccine (141), as future control strategies
are likely to include combinations of products as replacements
for traditional anticoccidials.

CONCLUSION AND PERSPECTIVES

Coccidia is considered to be a ubiquitous parasite in poultry
production, as reflected by the prevalence and frequency of
Eimeria infection in various regions of the world. For example,
Colombia reports a frequency of 92.8% (142); 90% in Argentina
(143); 92% in Romania (47), 79.4% in North India (144), 65.8%
in East China (145), and 78.7% in South Korea (146). Even in
countries with lower reported incidence, Eimeria is a frequent
and expensive problem (59, 60, 147, 148). This review have
shown how the control in poultry was achieved successfully,
by a combination of improved management, the prophylactic
use of drugs, and vaccination. However, because the parasite
has not been totally eradicated from commercial facilities where
animals are reared and is still capable of causing performance and
health issues due to the generation of resistance to anticoccidials
through the rotation programs. Moreover, information gleaned
from molecular assays can guide the poultry producers in
managing disease by allowing informed decisions on which
anticoccidial compounds (traditional or naturals) or live oocyst
vaccines should be used in the field. For this reason, is important
to update and expand the understanding of basic concepts
about Eimeria, which causes a negative impact on poultry
farming globally. Further, continued basic and applied research
based on molecular methodologies and field test, that support
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TABLE 5 | Alternative products with potential anticoccidial effect.

Additive Major component(s) Doses/

concentration

Action mode Effect Type of study Reference

Artemisia

(essential oil)

β-thujone: 64%; 1-8

cineol: 18%;

p-cymene: 9.6%;

sabinene: 7.8%

0.3–20 mg/ml Induction of oxidative

stress

Reduces the number

of oocysts

In vitro (136)

Clove

(essential oil)

Eugenol: 72.9%;

eugenyl acetate: 5.8%

0.3–20 mg/ml Unknown Reduces the number

of oocysts

In vitro (136)

Turmeric combined

with saponins and

inulin

Curcuma longa,

Quillaja saponaria,

Cichorium intybus

1,000 (ppm)

in feed

Stimulation of the

system by inactivation

of reactive nitrogenous

radicals

Has no significant

effect on lesion

scoring

In vivo Broiler

Research facility

(137)

Oregano

(essential oil)

Oreganum vulgare 200 (ppm)

in feed

Mucosal immunity

stimulation

Has no significant

effect on lesion

scoring

In vivo Broiler

Research facility

(137)

Quillajacea

(plant extract)

Quillaja saponaria 1,000 (ppm)

in feed

Antiprotozoal activity

(It binds to the protein

of the membrane of

protozoal cells)

Has no significant

effect on lesion

scoring

In vivo Broiler

Research facility

(137)

S-nitrosoglutathione

(GSNO)

– 20mM Inhibits the sporulation

process of E. tenella

oocysts

Interrupts the

sporulation process

for 10 h after the initial

sporulation; no effect

after 12 h

In vitro (138)

Lespedeza cuneata

(plant extract)

Condensed tannins 1–2 and 4%

diet supplement

Tannins have

anticoccidial activity

against the parasite

No significant

difference in the

number of oocysts

In vivo Broiler

Research facility

(139)

Tea tree

(essential oil)

Terpinen-4-ol: 40%;

gamma-terpinen:

21.4%

0.3–20 mg/ml Unknown Reduces the number

of oocysts

In vitro (136)

Thyme

(essential oil)

Thymol: 36.6%;

p-cimène: 16.5%

0.3–20 mg/ml Unknown Reduces the number

of oocysts

In vitro (136)

Modified from Kadykalo et al. (140).

the identification and characterization of different Eimerias in
order to achieve more accurate identification of the different
Eimerias. In this way, alternative control strategies focused
on global trends in production without antibiotics needs to
be developed.
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