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Freeze-fracture electron microscopy enabled us to observe the molecular architecture of the biological membranes. We were
studying the myofiber plasma membranes of health and disease by using this technique and were interested in the special
assembly called orthogonal arrays (OAs). OAs were present in normal myofiber plasma membranes and were especially numerous
in fast twitch type 2 myofibers; while OAs were lost from sarcolemmal plasma membranes of severely affected muscles with
dystrophinopathy and dysferlinopathy but not with caveolinopathy. In the mid nineties of the last century, the OAs turned out
to be a water channel named aquaporin 4 (AQP4). Since this discovery, several groups of investigators have been studying AQP4
expression in diseased muscles. This review summarizes the papers which describe the expression of OAs, AQP4, and other AQPs
at the sarcolemma of healthy and diseased muscle and discusses the possible role of AQPs, especially that of AQP4, in normal and
pathological skeletal muscles.

1. Introduction

Water is an essential substance for mammals, invertebrates,
plants, and microorganisms. Water channel proteins named
aquaporins (AQPs) have been found in the cell membranes
of these organisms. In mammals, they have been identified
in cell membranes such as in epithelial and endothelial
cells. The first cloned water channel, AQP1, was purified
from human erythrocytes by Agre and his associates [1]
and its cDNA sequence was reported by Preston and Agre
[2]. Then its water transporting capacity was demonstrated
by cDNA expression studies in Xenopus oocytes [3]. So far
13 AQPs (AQP0∼AQP12) have been cloned and sequenced
in mammalian tissues. Each is a small intrinsic membrane
protein of molecular weight ∼30 kDa. These AQPs are
classified into two groups: one is water selective channel
(orthodox AQPs) and another is water, glycerol, and urea
channel (aquaglyceroporins). Among 13 AQPs, AQP4 has
a characteristic ultrastructural feature, since AQP4 can be
identified by freeze-fracture (F-F) electron microscopy and
can be seen as orthogonal arrays (OAs) in this method
[4, 5]. We have so far been studying the pathophysiology

of dystrophic muscles at RNA and protein levels including
F-F electron microscopy. We found that the densities of both
OAs and their subunit particles were reduced in Duchenne
muscular dystrophy (DMD) muscles [6, 7]. So I would like
to begin this review from F-F aspect of biological membrane
especially focusing on OAs.

2. Tissue Distribution of Orthogonal
Arrays (OAs)

The cleavage line of F-F goes into hydrophobic interior of
biological membrane and F-F technique yields two leaflets
of biological membrane: one is protoplasmic (P) face and
another is extracellular (E) face [8]. The presence of OAs
in cytoplasmic half (P face) of frozen cleaved biological
plasma membranes has been described in different cell types
of different species and different organs and tissues. Those
containing OAs in their membranes include epithelial cells
of the small intestine [9], brain astrocytes [10, 11], skeletal
muscle cells [12–14], cardiac muscle cells [15], light cells
of the kidney collecting tubules [16], tracheal epithelial
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cells [17], satellite cells of developing spinal ganglia [18],
sympathetic ganglia [19], gastric parietal cells [20], olfactory
receptor cells of the newt [21], and tanycytes of the organum
vasculosum of the lamina terminalis in dog [22]. The
functional significance of this specific assembly (OAs) was
unknown until Verkman and his coworkers discovered its
function as water channel [4, 23–25]. Possible functions
thought before the discovery included (1) regulation of
membrane permeability [10, 16], (2) membrane transport of
ions and so on [10, 14, 19–22, 26], (3) regulation of osmotic
pressure [21], (4) conduction of activities of epithelial
cells [17], (5) cell-to-cell communication [27], (6) adhesive
properties [19], and (7) cellular junction [9, 22]. Before the
discovery of OAs function as water channel, it was unknown
whether the OAs acted as a monofunctional apparatus or one
with several functions that differed in different organs and/or
tissues.

3. OAs in Skeletal Muscle

In skeletal muscle, P face of muscle plasma membrane
contains OAs and E face contains pits of OAs. Sirken and
Fischbeck [28] reported that, in normal rat muscle, OAs
were virtually absent at birth, but increased steadily from
day 1 to day 27. After day 27, the number of OAs declined
somewhat, then plateaued. The OA density is the highest at
two months after birth in mouse skeletal muscle and, then,
decreases gradually after that time [29]. The OA density is
reported to be high in fast twitch type 2 myofibers; while it is
few in slow twitch type 1 myofibers [30]. In human skeletal
muscle, distribution frequency of OAs per square micron in
normal muscle plasma membrane showed that almost all
myofibers contained the OAs [7]. The age-related changes of
OA densities were not studied in human skeletal muscles.

4. Discovery of Dystrophin and
Its Associated Glycoproteins

DMD is a devastating disorder characterized by severe
progressive muscle wasting and cardiac involvement both of
which lead to a loss of ambulation by about 11 years of age
and death by the third decade, mostly due to cardiac and/or
pulmonary insufficiency [31]. Novel studies by Kunkel and
his associates cloned the entire cDNA responsible for DMD
[32] and determined its complete sequence [33]. The protein
product of the cDNA is a large 427-kDa muscle protein that
has been named dystrophin [34]. The immunofluorescent
studies performed by the several groups of investigators
demonstrated the localization of dystrophin at the sur-
face membranes of the normal skeletal myofibers [35–38].
The immunoelectron microscopic investigations revealed
the localization of dystrophin along the inner surface of
muscle plasma membrane [39, 40]. Dystrophin constitutes
5% of membrane cytoskeletons in skeletal muscle [41].
Dystrophin is a membrane cytoskeletal protein anchored to
the inner surface of the sarcolemma of normal myofibers by
dystrophin-associated glycoproteins (DAGs) [42, 43]. DAGs

contain extracellular α-dystroglycan, the transmembrane β-
dystroglycan, α-, β-, γ-, δ-sarcoglycan and sarcospan, and
cytoplasmic syntrophins and dystrobrevins [43]. The trans-
membrane β-dystroglycan and extracellular α-dystroglycan
are encoded by a single messenger RNA and are translated in-
frame from a single 97-kDa precursor protein [44, 45]. The
α-dystroglycan binds to laminin of extracellular matrices in
muscle and nonmuscle tissue [45]; whereas β-dystroglycan
interacts directly with dystrophin [46]. α-, β-, γ-, and δ-
Sarcoglycans contain one transmembranous domain; while
sarcospan has four transmembranous domains [47–52].
Syntrophins and dystrobrevins are the cytoplasmic com-
ponents of DAGs [43]. Syntrophins contain α, β1, β2,
γ1, and γ2 isoforms which have been characterized so far
[53, 54]; while dystrobrevins have α (−1 ∼ −5) and β-
isoforms [55–58]. Alternative splicing yields five forms of α-
dystrobrevin, of which two predominate in skeletal muscle:
full-length α-dystrobrevin-1 (84 kDa), and C-terminal trun-
cated α-dystrobrevin-2 (65 kDa) [57]. α-Dystrobrevin-2,
short isoform, binds dystrophin; whereas α-dystrobrevin-1
binds both dystrophin and utrophin [57]. Among five
syntrophin isoforms, α1-syntrophin is present at its highest
levels in skeletal muscle [59, 60] where it is located close
to the inner surface of muscle plasma membrane together
with β1-syntrophin. In contrast, β2-syntrophin is mainly
concentrated at the neuromuscular junction [61]. AQP4
molecule turned out to be associated with α1-syntrophin as
described below, although the association is not always the
case.

5. Discovery of AQP4 and Its Relation to OAs

In 1995, Frigeri et al. [24] proposed that the OAs seen in F-
F electron microscopy are AQP4. Then Yang et al. [25] first
demonstrated that OAs are AQP4. Finally Verbavatz et al.
[4] showed that OAs are absent in AQP4 knockout mouse.
In central nervous tissues, astroglial endfeet membranes
contain numerous OAs. Rash et al. [62] described that the
direct immunogold labeling of AQP4 was observed in OAs
of astrocyte and ependymocyte plasma membranes in rat
brain and spinal cord. In skeletal muscle, Shibuya et al. [63]
reported that anti-AQP4 antibody labeled OAs in the plasma
membrane of normal rat skeletal myofiber by using fracture
label electron microscopy.

6. AQP4 Binds to α-Syntrophin

α1-Syntrophin knockout mice do not reveal any abnor-
mal clinical phenotype and their skeletal muscles do not
show pathological features in hematoxylin-eosin staining
specimens. However, their muscle specimens with anti-
AQP4 antibody immunostaining did not reveal any positive
immunoreactivity [64, 65]. Adams et al. [66] thought that
the C-terminal amino acid sequence of AQP4 is-VLSSV
which is a potential class I PDZ domain interaction sequence.
So they generated transgenic mice to determine whether the
membrane localization of AQP4 depended on a syntrophin
PDZ domain. Using their mice, they found that AQP4 was
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Figure 1: High magnification freeze-fracture view of muscle plasma membrane P faces (a) and (b) and E faces (c) and (d). Normal control
muscle contains numerous orthogonal arrays (arrows in (a)) and their pits (arrows in (c)); while Duchenne muscular dystrophy muscle
contains apparently no orthogonal arrays (b) and their pits (d). Asterisk in (a)–(d) is caveolae. Scale bar in (a)–(d) = 0.1 μm.

absent from the sarcolemma and thought that the syntrophin
PDZ domain is likely involved in targeting or stabilizing
AQP4 [66]. Amiry-Moghaddam et al. [67] studied mice
homozygous for targeted disruption of the gene encoding
α-syntrophin (α-Syn−/ −) and also found that these mice
showed a marked loss of AQP4 from perivascular and subpial
membranes but no decrease in other membrane domains
[67]. In addition, Au et al. [68] described that AQP4 loss
did not always correlate with loss of α-syntrophin in muscle
disease. Based on these reports, it is suggested that AQP4 is
associated with α-syntrophin, although this association is not
always the case.

7. OAs and AQP4 Expression in Diseased
Muscles and Muscles of Animal Models

The myofiber plasma membrane of DMD was thought to
be fragile [69] and, in fact, the plasma membrane defect of
DMD myofiber was demonstrated by electron microscopic
observations [70–72]. So expression and distribution fre-
quency of OAs in the diseased muscles were the interesting
research subject at that time. Those of DMD were well
analyzed [6, 73, 74]. The F-F findings of DMD muscle
plasma membrane were the decreased density of individual
intramembranous particles as well as OAs, or the loss of
OAs [6, 33, 34] (Figure 1). The subunit particles constituting
OAs were also reduced in the muscle plasma membrane of

DMD [7]. Similar findings were recognized in the muscle
plasma membrane of Fukuyama type congenital muscular
dystrophy (FCMD) [75]. The muscle plasma membranes
with Becker muscular dystrophy also showed the decrease of
OA density. In the muscles of the mdx mouse, the mouse
model of DMD, the muscle plasma membranes revealed
the decrease of OA density but there was less conspicuous
depletion of the individual intramembranous particles [76,
77]. The depletion of OAs was also seen in the muscle
plasma membranes of dy/dy mice [78] and dystrophin exon
52 knockout mice [79]. In the denervated muscles, the
muscle plasma membranes with early to moderate stage of
amyotrophic lateral sclerosis (ALS) contained the substantial
number of OAs [35]. Although the F-F study of muscle
plasma membranes with advanced stage of ALS has not
been reported, the muscle plasma membranes of advanced
stage of ALS may have few OAs, since the rat muscles with
early denervation contained no OAs [28]. DMD is a major
type of human muscular dystrophy and AQP4 expression
in DMD muscles has been intensively investigated. Three
groups of investigators [68, 80, 81] reported the results
of AQP4 expression of DMD muscles and those of mdx
mouse muscles have also been described [82, 83]. All reports
described that the AQP4 protein expression was reduced
in the muscles of DMD boys (Figure 2) and mdx mice
by immunohistochemistry. At RNA level, the results of
the relative AQP4 mRNA contents of muscles with DMD
boys [68, 81] and mdx mice [83] were somewhat different.
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Figure 2: Immunofluorescence with anti-AQP4 antibody of
normal control muscle (a) and Duchenne muscular dystrophy
muscle (DMD) (b), and that with anti-spectrin antibody of serial
muscle section of DMD (c). Positive immunoreactivity with anti-
AQP4 antibody is seen in apparently all myofibers of normal
control muscles (a); while it is noted in mosaic pattern in
DMD muscle (b). DMD muscle contains less numerous myofibers
with positive immunoreactivity of anti-AQP4 antibody (b) than
myofibers with that of anti-spectrin antibody (c). Scattered anti-
AQP4 immunonegative fibers (asterisks in (b)) are noted in DMD
muscle. Scale bar in (a)–(c) = 50 μm.

We [81] and Au et al. [68] reported the decreased contents
of AQP4 mRNA in DMD muscles; while Frigeri et al.
[83] reported the normal level of AQP4 mRNA content
of mdx mouse muscles and described that the decreased
total content of AQP4 protein was not at transcriptional
level. Au et al. [68] conducted the immunohistochemistry
of AQP4 in the cultured DMD muscle cells and found
the normal expression of AQP4. So they suggested that
the reduced expression of AQP4 in DMD muscles was
secondary to dystrophic process. Reduced AQP4 expression
was also reported in severe muscular dystrophies such as
FCMD [84], limb girdle muscular dystrophy (LGMD) type
2B [68, 85], sarcoglycanopathies [85], and animal models of
sarcoglycanopathies [86]. However, in immunofluorescence
analysis, AQP4 was reported to be expressed normally at
the sarcolemma of biopsy samples from LGMD type 1C and
facioscapulohumeral muscular dystrophy [80]. Many inves-
tigations revealed that the muscle contractile cycle appears to
be associated with water entry into and exit out of the muscle
cell [87, 88]. Muscle contraction needs energy supply which
depends on anaerobic glycolysis in the fast twitch type 2
myofibers. The end product of anaerobic glycolysis is lactate
and an increase of lactate by exercise promps a rapid flux of

water from the vascular compartment. The fast twitch type
2 myofibers contain many OAs (AQP4) in their sarcolemmal
plasma membranes. The water molecule passes the cell mem-
brane very rapidly through AQP4 water channel [89]. This
water displacement may affect the membrane potential and
thus muscle membrane excitability. Thus AQP4 is suggested
to play a role in determining a rapid osmotic transfer of water
from blood to muscle cell during muscle contraction. The
dystrophic muscle immunohistochemistry tends to show the
slow twitch type 1 fiber predominance. Slow twitch type 1
fiber contains less numerous OAs (AQP4) in the sarcolemmal
plasma membrane. The decreased expression of AQP4 in
the diseased muscles may relate to the slow contraction
of voluntary muscles and thus, in part, may have relation
to the slow motion of the myopathic patients, although
the patient’s slowness mostly results from their muscle
weakness. The defective expression of AQP4 in FCMD
muscles may be based on the reduced expression of α1-
syntrophin, which binds to AQP4, in FCMD muscles [90].
The central part of FCMD pathophysiology is the defective
glycosylation of α-dystroglycan [91], however, the decreased
expression of α1-syntrophin in FCMD muscles is reported
to be due to the retarded maturation of FCMD muscles
[91]. Reduced density of OAs was also reported in Becker
muscular dystrophy (BMD) muscles and this reduction was
correlated to the severity of BMD [92]. Furthermore, AQP4
expression of muscles with neurogenic muscular atrophy
such as ALS was studied by Jimi et al. [93]. They reported that
reduced expression of AQP4 was detected in ALS muscles.
This phenomenon is confirmed by experimental studies
[28, 94]. The implication of decreased AQP4 expression in
the muscles of human muscular dystrophies and neurogenic
atrophy is unknown. Animal models such as AQP4 knockout
mice [95] and AQP4 overexpressing mice [96] showed no
abnormal clinical phenotype. In dy/dy (laminin 2 deficient)
mice, the reduction of OAs in the muscle plasma membrane
was more marked than that of mdx mice [78].

8. Other AQPs Expressed in Sarcolemma

The presence of AQP1, 3, 4 mRNAs in skeletal muscle has
been described [97–99]. Further Wang et al. [100] reported
that they detected the mRNAs of AQP1, 3, 4, 7, 8, 9,
and 10 in human masseter muscle and those of AQP1,
3, 4, and 10 in human infrahyoid muscle by RT-PCR.
However, these AQPs mRNA expressions were considered to
be the contamination of blood vessels (AQP1), adipocytes
(AQP7), and leukocytes (AQP9) in skeletal muscle tissues
[95]. To rule out this possibility, we and others conducted
the immunocytochemical investigation of AQP1, 3, 5, 7, 9 of
skeletal muscles, and confirmed the presence of these AQPs
[101–105]. However, AQP1, 7 expression of normal skeletal
myofiber is controversial. The negative immunostainings of
AQP1 [106] and AQP7 [107] were described at the plasma
membrane of skeletal myofiber, although the AQP1 and
AQP7 immunoreactivities were recognized at the endothelial
cells of endomysial blood vessels. We [104] and Au et al. [68]
have performed the immunohistochemical study of AQP1
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in the skeletal muscle and showed the presence of AQP1
at the muscle membrane as well as the endothelial cells of
endomysial blood vessels. With regard to AQP1 expression
in the DMD muscles, Au et al. [68] reported that AQP1
transcript and protein expression was significantly elevated
in DMD biopsies and was localized to the sarcolemma of
muscle fibers and endothelia of muscle capillaries. The func-
tional significance of aquaglyceroporins in skeletal muscle is
unknown, however, these aquaglyceroporins function as a
glycerol channel and may relate to the lipid metabolism in
skeletal myofibers [108, 109].

9. Triglyceride Utilization and Its
Possible Aquaglyceroporin Participation in
Skeletal Muscle

The intracellular triglyceride in liver and skeletal mus-
cle has a metabolic importance [110, 111]. Fatty acids
of muscle triglyceride are derived from both circulating
lipoprotein-triglyceride and free fatty acid which comes at
least partially from adipose tissue lipolysis [110]. Lipolysis
of circulating lipoprotein-triglyceride occurs in the capillary
lumen prior to cellular uptake of fatty acids [110]. This
extracellular lipolysis is controlled by lipoprotein lipase
which is associated with the luminal side of the capillary
endothelium. Lipoprotein lipase is activated by circulating
apolipoprotein CII and inhibited by apolipoprotein CIII
[110]. Adipose tissue lipoprotein lipase activity is the
greatest [112] and is reciprocally regulated by hormone-
sensitive lipase [113]. Adipose tissue lipoprotein lipase
activity has diurnal fluctuation and is most active post-
prandially for the aim of fatty acids uptake for stor-
age; while its activity decreases when there is a flux
of fatty acids from adipose tissue such as the case in
fasting [114]. In lipogenic conditions, intracellular glucose
is converted by glycerol kinase to glycerol-3-phosphate
which is then esterified into triglycerides in adipocytes
[115].

The discovery of AQPs has greatly influenced the medical
sciences. AQP3, 7, 9, and 10 are subcategorized as aquaglyc-
eroporins, which transport the glycerol in addition to water.
Adipocytes are a major source of glycerol which is one of
the substrates for hepatic gluconeogenesis [115]. AQP7 and
9 are the glycerol channels in adipocytes and hepatocytes,
respectively, [115]. Recently AQP9 is reported to be expressed
weakly at the surface membrane of skeletal myofibers [105].
Hepatocytes and myocytes are two major insulin-sensitizing
cells [115]. Through AQP7, the hydrolyzed glycerol is
efficiently released from adipocytes into the blood stream.
AQP7 mRNA levels in adipose tissue are reduced by feeding
and increased by fasting in opposite to the changes in plasma
insulin levels. Insulin suppresses AQP7 mRNA levels through
the insulin negative element located on the promoter region
of the AQP7 gene [115]. Therefore, plasma glycerol levels are
partly determined by the action of insulin in adipose tissue.
Thus long-term regulation of AQP7 is controlled by insulin
at the transcriptional level; while short-term regulation is
under the control of catecholamines [115].

AQP9 is a glycerol channel in liver cells and is localized
at the sinusoidal plasma membrane which faces the portal
vein [115–118]. On the other hand, weakly expressed
skeletal muscle AQP9 is localized at the myofiber surface
membrane [105]. AQP9 mRNA levels are increased by
fasting and decreased by feeding [115–117], and this pattern
of changes is similar to that for glycerol kinase and for
phosphoenolpyruvate carboxykinase, the latter of which is a
key enzyme in gluconeogenesis [115]. In the feeding state, an
elevation of plasma insulin suppresses lipolysis in adipocytes,
reduces adipose AQP7 mRNA levels, and lowers the rate
of glycerol release; while liver and possibly myocyte AQP9
mRNA levels are reduced, and glycerol-based gluconeoge-
nesis seems to be suppressed [115]. The investigations of
aquaglyceroporins’ expression including that of AQP9 in
the pathological muscles due to endocrine disorders such as
muscles with type 2 diabetes mellitus will suggest some in
the functional role(s) of muscle aquaglyceroporins in these
pathological conditions.

10. Closing Remarks

The expression of AQPs in normal skeletal muscles and their
altered expression in the diseased muscles so far reported
were summarized in this review. The research of AQPs in
skeletal muscles has not been done so extensively until now
and has just begun in recent years. Further studies will
throw light into the functional role(s) of AQP4 and other
AQPs in the normal muscle physiology as well as in the
pathophysiology of diseased muscles.
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