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Abstract
Purpose Live intra-operative functional imaging hasmultiple potential clinical applications, such as localization of ischemia,
assessment of organ transplantation success and perfusion monitoring. Recent research has shown that live monitoring of
functional tissue properties, such as tissue oxygenation and blood volume fraction, is possible using multispectral imaging
in laparoscopic surgery. While the illuminant spectrum is typically kept constant in laparoscopic surgery and can thus be
estimated from preoperative calibration images, a key challenge in open surgery originates from the dynamic changes of
lighting conditions.
Methods The present paper addresses this challenge with a novel approach to light source calibration based on specular
highlight analysis. It involves the acquisition of low-exposure time images serving as a basis for recovering the illuminant
spectrum from pixels that contain a dominant specular reflectance component.
Results Comprehensive in silico and in vivo experiments with a range of different light sources demonstrate that our approach
enables an accurate and robust recovery of the illuminant spectrum in the field of view of the camera, which results in reduced
errors with respect to the estimation of functional tissue properties. Our approach further outperforms state-of-the-art methods
proposed in the field of computer vision.
Conclusion Our results suggest that low-exposuremultispectral images arewell suited for light source calibration via specular
highlight analysis. This work thus provides an important first step toward live functional imaging in open surgery.

Keywords Specular highlights · Dichromatic reflection model · Illuminant spectral estimation · Multispectral imaging ·
Perfusion imaging · Surgical data science
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Introduction

The most commonly applied approach to computer-aided
surgery (CAS) relies on intra-operative registration of preop-
erative images with the current patient anatomy. While this
concept has the potential to significantly enhance surgical
perception, it has one major bottleneck: It cannot account for
tissue dynamics as the superimposed information has been
extracted from“offline” images taken prior to surgery.Recent
developments have shown that multispectral imaging (MSI)
has the potential to overcome this drawback by enabling the
live extraction of functional tissue parameters [19]. Despite
the recent success of functional MSI in the field of mini-
mally invasive surgery, a key challenge related to transferring
the technique to open surgical procedures is the lack of
accurate information on the illumination conditions. Due to
multiple different light sources (e.g., overhead lights, ceil-
ing lights, head torches) being present and moved during the
surgical procedure, the combined illuminant spectrum at the
surgical site changes drastically and dynamically. Previous
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Fig. 1 Concept overview.Based on low-exposuremultispectral images,
specular highlight masks are computed, which represent regions in the
image that are not over- or underexposed and are assumed to contain a

dominant specular component. A machine learning algorithm adapted
to the illuminant estimate is then applied to high-exposure multispectral
images to compute functional tissue parameters

approaches have addressed this issueby requiring the surgical
lights to be turned off and/or by enforcing static illumination
conditions (e.g., no movement of the light sources) [8,14].
Both solutions can be seen as severe interference with the
surgical workflow.

Toovercome this bottleneck,wepropose thefirst approach
to live illuminant spectrum estimation in the operating room
(OR). As illustrated in Fig. 1, the core idea is to capture low-
exposure images, from which the illuminant spectrum in the
field of viewof the camera canbe estimated via specular high-
light analysis. The estimation of functional tissue parameters
is then performed on standard high-exposure images with a
machine learningmethod [18] adapted to the (current) illumi-
nant estimate. The remaining part of this paper is structured
as follows. As we are not aware of any prior work on auto-
matic illuminant estimation in surgery, we review the related
work on illuminant estimation outside the medical domain
(Section “Related work”). Next, we present our approach
to illuminant estimation (Section “Materials and methods”)
alongwith the in silico and ex vivo experimentswe performed
to validate our approach (Section “Experiments and results”).
We then concludewith a discussion of our findings in Section
“Discussion”.

Related work

Illuminant estimation refers to the estimation of the illumi-
nant spectrum in the field of view of the camera from one or
multiple images. Note that illuminant estimation is strongly
related to color constancy (CC) methods [13], which are
developed with the aim of perceiving the color of objects
independently of the color of illumination. They are typi-

cally developed for computer vision applications [1] and can
be classified in two main groups: model-based methods and
machine learning methods.

Model-based methods Model-based methods use basic
assumptions on the image formation process to extract the
illuminant directly from (single) images. Khan et. al. [13]
recently identified the four most widely used methods for
RGB image data and described how to extend them to mul-
tispectral images. M1: Max-RGB is based on Land’s white
patch algorithm [15], which states that there is at least one
pixel in each channel of an image that produces maximum
reflection of the illuminant. Combining the maximum reflec-
tion from each channel, the illuminant can be recovered.M2:
Gray-world is based on the assumption that the average
value of each channel computedover one image is achromatic
and contains only information of the illuminant. Combin-
ing the average from each channel, the illuminant can be
recovered. M3: Shades-of-gray is a generalization of M1
andM2, whereM1 is equivalent to using L∞ normalization
on each channel, while M2 is equivalent to using L1 nor-
malization. Given a multispectral image I ∈ R

Nx×Ny×Ns of
spatial dimensions Nx ×Ny and number of channels Ns , Ik ∈
R

Nx×Ny represents one image channel k (k ∈ {1, . . . , Ns})
and (Ik)(i, j) ∈ R represents the intensity value at the pixel
position (i, j) (i ∈ {1, . . . , Nx }, j ∈ {1, . . . , Ny}). With p
being the order of the Minkowski norm, the estimated illu-
minant Lk is derived as follows:

(∫∫ |Ik |pdxdy∫∫
dxdy

)1/p

≈
⎛
⎝

∑Nx ,Ny

(i, j) |Ik |p(i, j)
Nx · Ny

⎞
⎠

1/p

∝ Lk
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ForM3, p is set to 6 following the suggestion of Finlayson
et. al. [5].M4:Gray-edge is based on the assumption that the
average of the reflectance derivative in a scene is achromatic.
This can be expressed as follows

(∫∫ |I ′′σ
k |pdxdy∫∫
dxdy

)1/p

≈
⎛
⎝

∑Nx ,Ny

(i, j) |I ′′σ
k |p(i, j)

Nx · Ny

⎞
⎠

1/p

∝ Lk

I ′′σ
k =

√
(∂i I σ

k )2 + (∂ j I σ
k )2

where (I ′′σ
k ) represents the smoothed derivative of image

channel k with a Gaussian filter of standard deviation σ .
Following the recommendation of [5], p is set to 6.

Other widely used methods are based on the dichromatic
reflectionmodel [10]which states that the light reflected from
an object can be separated into a specular and a diffuse reflec-
tion component.

(Ik)(i, j) =
di f f use︷ ︸︸ ︷

(Sk)(i, j)Lk +
specular︷ ︸︸ ︷
c · Lk

where (Ik)(i, j) is the intensity of image channel k at posi-
tion (i, j), (Sk)(i, j) is the surface spectral reflectance, c is a
constant and Lk is the illuminant spectrum in channel k. In
this approach, reflections from objects are projected to a two-
dimensional space via principal component analysis (PCA),
specular and diffuse clusters are then identified and a linear
fit of the specular cluster yields the illuminant. Yet, according
to our experience, the data acquired from complex surgical
scenarios do not generally allow for straightforward identifi-
cation of clusters in the PCA data. Moreover, the labeling of
clusters (if any) is also challenging because there is generally
no dominant specular component. This is in strong contrast
to imaging data representing dielectric materials where the
specular component is dominant and the corresponding clus-
ter is bigger and clearly separable.

Other model-based approaches either are only applicable
to RGB images [6] or rely on restrictions not fulfilled by
the target images acquired in a surgical setting. For example,
[12] assume that the object surface is composed of a dielec-
tric material such as plastic or paint. [11] require materials to
be uniform and relies on a statistical daylight model, which
is not available for surgical scenarios. Furthermore, most of
the methods in [13] assume that the average color of a scene
is achromatic, which is a strong restriction for surgical sce-
narios.

Machine learning methods Among machine learning app-
roaches to illuminant estimation, convolutional neural net-
works are widely used to estimate single and multiple scene
illuminants [3,4,9]. Some of these approaches work on the
whole image, yielding one illuminant estimation for the
whole scene, while others work on patches, yielding one

illuminant estimation for each patch. Some of them enable
the estimation of multiple illuminants for each patch [16]. A
challenge related to machine learning algorithms is that the
training of these algorithms requires ground-truth knowledge
on the illuminant, usually obtained by placing a color checker
on each scene. However, the spectral mixing of different light
sources can change during the procedure rendering accurate
calibration of the light source based on preoperative or post-
operative data infeasible.

Summary To our knowledge, no prior work on illuminant
estimation for MSI in surgery has been proposed to date.
Methods proposed outside the field of medicine typically
suffer either from unrealistic model assumptions (model-
based approaches) or the need to acquire labeled training
data (machine learning-based approaches).

Materials andmethods

This section presents the multispectral camera and light
sources (LS) used for our study (Section “Multispectral cam-
era and light sources”), our method for LS calibration (Sec-
tion “Automatic light source calibration”), hyperparameter
settings for our proposed method (Section “Hyperparameter
settings”) and our framework for generating in silico data
(Section “Simulation framework for validation”).

Multispectral camera and light sources

We used a xiSpec MQ022HG-IM-SM4X4-VIS snapshot
mosaic camera (XIMEA®,Münster,Germany)which records
multispectral images at 16 bands in the visible range at a
resolution of 512 × 272 pixels at video frame rate. Five dif-
ferent LS were used to validate our approach. The spectra
of these are shown in Fig. 2 and represent some of the com-
mon illumination conditions in the OR. The reference (gold
standard) illuminant spectra of all LS were obtained with
an HR2000+ spectrometer (Ocean Optics®, Largo, USA)
over a Spectralon® SRT-99-050 diffuse reflectance standard
(Labsphere®, North Sutton, USA) [2]. To quantify the differ-
ence between two LS, we consider their illuminant spectra
as vectors and compute the Euclidean angle between them
as proposed in [13], which we refer to as angular error. The
angular error for the five LS used in this study ranges from
1.0◦ (LS 1 and LS 4; both xenon) to 25.9◦ (LS 1 and LS 3;
xenon and fluorescent) as depicted in Fig. 2b.

Automatic light source calibration

Our approach to automatic LS calibration is illustrated in
Fig. 1 and comprises the following three main steps:
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Fig. 2 Reference light sources (LS). LS 1: xenon (D-light P 201337 20
endoscopic light source,Karl StorzGmbH,Tuttlingen,Germany); LS 2:
halogen (Halopar 16 GU10 light bulb, Osram®, Munich, Germany);
LS 3: fluorescent light (FLS 11W 2700K fluorescent lamp, Paulmann®,
Springe Völksen, Germany); LS 4: xenon (Auto LP 5131 endoscopic

light source, Richard Wolf GmbH, Knittlingen, Germany); LS 5: light-
emitting diode (Endolight LED 2.2 endoscopic light source, Richard
Wolf GmbH, Knittlingen, Germany). a Relative irradiance of LS 1-5
normalized with the L1 norm. b Distance matrix showing the angular
error between the different LS

Acquisition of calibration images Our original idea was
to recover the illuminant directly from the specular highlights
of standard multispectral images (i.e., high exposure time).
However, we observed that specular reflections typically sat-
urate the detector, leading to “invalid” pixels. Other parts
of the image, on the other hand, are typically substantially
affected by underlying tissue properties and thus not well
suited for the recovery of the illuminant. To overcome this
problem, we propose the acquisition of dedicated LS cali-
bration images, which are typically images acquired with a
lower exposure time compared to that used for the multi-
spectral images that serve as a basis for physical parameter
estimation.While these (low-exposure) images are generally
associated with a low signal-to-noise ratio (SNR), they are
acquired in a way that “valid” specular highlight pixels (not
overexposed and not underexposed) containmaximum infor-
mation about the illuminant. In order to determine the optimal
exposure time for these images, we performed several exper-
iments that empirically establish a metric to determine the
optimal exposure time. These experiments are detailed in
Section “Experiments and results”.

Specular highlight segmentation Our approach to spec-
ular highlight segmentation involves removing overexposed
and underexposed pixels by selecting pixels with intensities
Ims in a specific range Imin < Ims < Imax . The mini-
mum intensity Imin is set to the level of dark current for
a given exposure time, determined once for each camera.
The maximum intensity Imax accounts for the nonlinearity
in the camera response at high intensities and is set according
to manufacturer specifications (here Imax = 950). Exclud-
ing underexposed and overexposed pixels results in a set
of pixel indices corresponding to “valid” pixels V. Based
on this index set, specular highlight pixels are identified
as follows. Initially, the lightness (IL)(i, j) is computed for
all (i, j) ∈ V by averaging the reflectance over all bands:

(IL)(i, j) = ∑Ns
k=1

(Ik )(i, j)
Ns

, where Ns is the number of bands
and (Ik)(i, j) is the intensity corresponding to band k at pixel
(i, j). From the “lightness image,” a number of NP high-
light pixels with the highest values of (IL)(i, j) are selected.
The corresponding indices are represented by νhl ⊆ V.
Based on an empirical analysis (see Section “Experiments
and results”), we set NP = 100.

Estimation of illuminant The illuminant is computed
based on the assumption that the diffusely reflected light from
the tissue can be neglected in specular highlight pixels. For
each (i, j) ∈ νhl , an estimate of the illuminant is computed
by normalizing the acquired spectra (Ik)(i, j):

(Lk)(i, j) = (Ik)(i, j)
||I(i, j)||1

where (Lk)(i, j) represents the estimated illuminant spectrum
in band k from a pixel at position (i, j). The final illuminant
estimation Lk in band k is then set to the mean of all illumi-
nant estimations from Np single pixels:

Lk = 1

NP

∑
(i, j)

(Lk)(i, j)∈νhl

Hyperparameter settings

Weempirically determined the appropriate values for the two
hyperparameters: the exposure time Texp (for the calibration
images) and the number of highlight pixels NP per image.
We performed initial experiments using three of the five LS
summarized in Fig. 2, namely LS 1-3. We refer to these LS
as validation LS, while we refer to LS 4-5 as test LS. We
observed that varying Np in the range of 75 − 200 had a
negligible influence on performance and thus set Np = 100.
When analyzing the low-exposure images in the validation
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set (exposure times between 5ms and 150ms), we further
found a goodness metric G, for which the angular error of
illuminant estimations decreases as G increases, where we
define G as:

G(Texp) = median((i, j)∈νhl (Texp))(
(IL)(i, j)(Texp) − D(Texp)

D(Texp)

)

with D(Texp) corresponding to the mean lightness value
obtained for dark current (lights turned off) and νhl(Texp)
representing the indices of the highlight pixels for exposure
time Texp. Note that G is positive (as D(Texp) is small) and
does not necessarily increase with exposure time due to over-
exposed specular highlight pixels. Based on these findings,
we suggest to acquire multiple exposure images (5–150ms,
every 5ms) and to then set Texp, such that the correspond-
ing (low-exposure) image has the maximum G. Note that we
also investigated acquiring multiple images of the same Texp
and averaging the corresponding results, but did not find an
improvement with this approach.

Simulation framework for validation

To generate in silico data for quantitative validation, we
closely follow the work in [19]. In our framework, a mul-
tispectral imaging pixel is generated from a vector ti of
tissue properties, which are assumed to be relevant for the
image formation process. Like [19], we assume a 10-valued
vector comprising optical tissue properties (e.g., scattering
properties and oxygenation) and properties related to the lay-
ered structure of the tissue (e.g., layer thickness). The tissue
model used has 3 layers with thickness ranging from 20 to
2000mm.Blood volume fraction on each layer is set between
0% and 30%, and blood oxygen saturation is varied between
0% and 100%. To convert a vector of tissue properties to a
reflectance spectrum rsim(λ, ti ) (where λ corresponds to the
wavelength), the Monte Carlo method is applied. The inten-
sity in band k of a pixel for a given LS and camera is then
computed as

(Ik)(i, j)(ti ) = α(i, j) · wk

∫ λmax

λmin

ξk(λ) · rsim(λ, ti ) dλ

∀k ∈ {1, . . . , Ns}

where (i, j) represents spatial coordinates in the image,α(i, j)

accounts for constant multiplicative changes of reflectance,
wk accounts for the noise of band k (shot noise due to the
particle nature of light, which can be approximated as multi-
plicativeGaussian noise in the limit of large image intensities
[7]), ξ j (λ) represents the irradiance of the illuminant (e.g.,

xenon or halogen) and other components in the imaging sys-
tem, such as transmittance of optical systems, and Ns is the
number of camera bands. By drawing samples ti from the
layered tissue model and generating corresponding measure-
ments, a data set of simulated multispectral measurements
with corresponding ground-truth oxygenation can be gener-
ated.

Experiments and results

We investigated the following research questions (RQs):

RQ1How accurate and robust is our approach to estimat-
ing the spectrum based on specular highlight analysis?
This is addressed in Section “Accuracy of light source
calibration”
RQ2 What is the effect of errors in the estimation of the
spectrum of the LS on the accuracy of functional param-
eter estimation? This is addressed in Section “Effect on
oxygenation estimation”
RQ3 How does the proposed method perform compared
to state-of-the-art methods (M1–M4)? This is addressed
in Section “Comparison to state-of-the-art methods”.

Accuracy of light source calibration

To address RQ1, we gathered multispectral images of an ex
vivo pig liver illuminated with the five LS described in Fig.
2. To determine the robustness of our approach to illuminant
estimation, we acquired images corresponding to a total of
eight different poses of the camera relative to each LS (at
different angles and distances). Images were recorded at dif-
ferent exposure times (5–150ms). To quantitatively assess
the performance of our method for illuminant estimation, we
applied our method to a total of 5×8 = 40 (number of LS×
number of poses per LS ) images.We then computed descrip-
tive statistics for the angle between the reference spectrum
and the estimated spectrum.

Figure 3a shows the reference illuminant spectrum (large
blobs) along with our estimations (crosses) on the first two
principal components of the five reference illuminants,where
symbols with the same color correspond to the same LS. The
true illuminant is consistently the nearest neighbor to the esti-
mates with the exception of LS 1 and LS 4, which are both
xenon LS from different manufacturers and have an angular
error of only 1◦. The performance of our illuminant estima-
tion method is summarized in Fig. 3b. It can be seen that
the angle between our estimate and the reference is always
below 3◦. The performance for the test LS LS 4–5 is similar
to those of the validation LS LS 1–3, which were used to tune
the two hyperparameters (Texp and Np).
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Fig. 3 Performance of illuminant estimation. aReference spectra (large
circles) and corresponding estimates (crosses) for the light sources (LS)
described in Fig. 2. All illuminant spectra were projected onto the first
two principal components of the five reference spectra, determined with

principal component analysis (PCA). Crosses of the same color repre-
sent different poses of the multispectral camera relative to the same
LS. b Box plots of the angle between the reference spectrum and the
estimated spectrum for each LS

Fig. 4 a Error in oxygenation estimation when (1) using the reference
illuminant for training (LStrain = LStest), (2) using a random illuminant
for training (LStrain 
= LStest) and (3) using our approach to illuminant
estimation to estimate the LS (LStrain = L̂ Stest). b In vivo qualitative
validation. When assuming a constant LS, the estimated blood oxy-

genation in an ROI on the human lips (yellow rectangle) changes when
illumination conditions alter (and no longer match the training condi-
tions). Our approach compensates for this by automatic LS calibration.
The gap between index 85 and 100 represents the transition phase in
which light sources were switched on and off, respectively

Effect on oxygenation estimation

Toquantify the impact of the error in illuminant estimation on
the resulting oxygenation estimation error (RQ2), we used
the simulation pipeline presented in “Simulation framework
for validation” section to simulate a set of ground-truth opti-
cal properties O with |O| = 15, 000, which was divided
into a training data set Otrain with |Otrain| = 10, 000 and
a testing data set Otest with |Otest| = 5, 000. Otrain was
used to generate 5 + 40 = 45 training sets following the
approach presented in “Simulation framework for valida-
tion” section, each corresponding to one of the five ground
truth LS (LSi ∀i ∈ {1, 2, 3, 4, 5}) or their estimates L̂ Si
(n = 40; one for each LS and each of the eight poses) and
each comprising 10,000 tuples of tissue properties and cor-
responding measurements. Note that the training sets for
the different illuminants correspond to the same ground-
truth tissue parameters (including oxygenation, which is the
parameter we wish to recover). For each training data set, we
then trained a regressor for oxygenation estimation using the

approach in [19]. For testing the performance of the regres-
sors, we used Otest to generate a test set for each of the five
reference LS, following the approach presented in Section
“Simulation framework for validation” and each comprising
5000 tuples of tissue properties and corresponding measure-
ments.We then computed descriptive statistics for the quality
of oxygenation estimation: (1) using the reference illuminant
for training (LStrain = LStest; n = 5), (2) selecting ran-
domly one of the other illuminants for training (LStrain 
=
LStest; n = 20) and (3) using our approach to illuminant
estimation to estimate the LS (LStrain = L̂ Stest; n = 40).

For qualitative validation, we acquired a multispectral
imaging stream from the lips of a human subject and switched
the LS from LS 1 to LS 5 during recording. We applied our
approach to automatic light source calibration to continu-
ously update the regressor to one tailored to the (estimated)
light source. As a baseline method, we applied a regressor
trained on LS 1 (the first LS used) throughout the whole
acquisition process. Qualitative analysis was performed by
plotting the mean oxygenation in a region of interest (ROI).
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Fig. 5 Angular error of baseline methods and our proposed method (Specular highlights) for different exposure times. Box plots of the same color
correspond to the same method

As shown in Fig. 4a, the mean absolute error in oxygena-
tion estimation when using the ground-truth illuminant for
training ranges from 10.5pp (percentage points for LS 1)
to 12.5pp (LS 3) with a mean of 11.3pp (averaged over all
five LS). The mean, median and max values of the mean
oxygenation error were 11.6pp, 11.3pp and 13.1pp when
applying our approach (n = 40). The results were similar
for the validation LS (mean 11.3pp) and the test LS (mean
12.0pp). Compared to using an arbitrary LS (no calibra-
tion performed), we reduced the mean oxygenation error by
an average of 47%. Figure 4b illustrates the benefit of our
approach in vivo.

Comparison to state-of-the-art methods

To address RQ3, we analyzed the state of the art in illu-
minant estimation and picked four related methods that fit
our requirements, namely that (1) no supervised training is
needed and (2) no assumption about homogeneity or com-
position of the surface is needed. Following the terminology
introduced in Section “Relatedwork”,we refer to thesemeth-
ods as (M1–M4). M1–M4 were applied to the recordings
described in section “Accuracy of light source calibration”
to perform a comparison with our approach on identical data
sets.

Figure 5 shows the performance of all methods, quan-
tified by the angular error introduced in Sect. 3, for three
different exposure times (low 20ms, normal 40ms and high
60ms) and averaged over all poses of all LS (LS 1–LS 5)
(n = 8). While our method outperformed all the competi-
tors and yielded relatively consistent performance over the
three exposure times, the performance of M1-M4 was more
sensitive to the exposure time applied.

A systematic robustness analysis using the ChallengeR
tool developed by Wiesenfarth et al. [17] confirmed our
hypothesis that our method is superior compared to the state-
of-the-art approaches (Fig. 6).

Fig. 6 Ranking stability of different methods when applied to different
exposure times. Here, the rank of a method on each data set (1 best to 5
worst) is based on the angular error. Eachmethod is color-coded, and the
area of each blob at position (Ai , rank j) is proportional to the relative
frequency (Ai ) eachmethod achieved rank j for 1000 bootstrap samples
across the different tasks, where one task represents one exposure time.
Themedian rank of each algorithm is indicated by a black cross and 95%
bootstrap confidence intervals across bootstrap samples are indicated by
black lines

Discussion

To our knowledge, we are the first to propose an approach
to illuminant estimation that can be applied to multispectral
imaging in a surgical setting. While the machine learning
algorithm for recovering tissue parameters given the LS
has already been adapted from previous work [18,19], the
methodological innovation of the present paper is mainly
related to the LS estimation. The guiding hypothesis that
specular highlights extracted from low-exposure multispec-
tral images can be processed to recover the illumination
spectrum with high accuracy has been confirmed in our
experimental analysis (RQ1). We further showed that the
high quality of our estimations results in a high accuracy
for recovering oxygenation (RQ2). While we optimized our
hyperparameters Texp and NP on a subset of the LS used in
our study, we did not observe a decrease in accuracy on the
test LS. We attribute this to the fact that the estimation results
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were robust to changes in these parameters. A comparison
with the state-of-the-art methods introduced in Sect. 2 on an
identical data set showed that our method outperforms all of
the competitors and ismore robust to changes in the exposure
time of the multispectral camera. A possible explanation for
this phenomenon is that our method is not based on the entire
image, but on specular highlight pixels.

While our approach pioneers automatic LS calibration
and live functional imaging in open surgery, several limi-
tations need to be overcome to fully exploit the potential
of our method. First of all, we currently assume the illumi-
nant spectrum to be homogeneous in the field of view of
the camera. While initial experiments in a surgical environ-
ment suggest that this is a good approximation, we aim to
extend our method such that different illuminants for differ-
ent image patches can be computed. Secondly, we currently
adapt the machine learning algorithm for oxygenation esti-
mation by choosing a pre-trained regressor from a discrete set
of regressors, each corresponding to a different LS. A more
elegant approachwould involve adapting a single regressor to
dynamically changing lighting conditions. Finally, the cap-
ture of low-exposure images can be regarded as a disruption
of the surgical workflow. We aim to compensate for this
by implementing a method for illumination change detec-
tion, which would result in the acquisition of low-exposure
images “on demand.” Given the high accuracy of our method
compared to related methods along with the high process-
ing speed (currently ∼ 50ms), we believe that an occasional
acquisition of low-exposure images (∼ 1-2 s) is acceptable.

In conclusion, we have demonstrated that low-exposure
multispectral images arewell suited for recovering the illumi-
nant via specular highlight analysis. This work thus presents
an important first step toward live functional imaging in open
surgery.
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