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Deep learning predicts hip fracture using confounding patient
and healthcare variables
Marcus A. Badgeley1,2,3, John R. Zech4, Luke Oakden-Rayner5, Benjamin S. Glicksberg6, Manway Liu1, William Gale7,
Michael V. McConnell 1,8, Bethany Percha2, Thomas M. Snyder1 and Joel T. Dudley2,3

Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed
diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD)
algorithms have shown promise for helping radiologists detect fractures, but the image features underpinning their predictions are
notoriously difficult to understand. In this study, we trained deep-learning models on 17,587 radiographs to classify fracture, 5
patient traits, and 14 hospital process variables. All 20 variables could be individually predicted from a radiograph, with the best
performances on scanner model (AUC= 1.00), scanner brand (AUC= 0.98), and whether the order was marked “priority” (AUC=
0.79). Fracture was predicted moderately well from the image (AUC= 0.78) and better when combining image features with patient
data (AUC= 0.86, DeLong paired AUC comparison, p= 2e-9) or patient data plus hospital process features (AUC= 0.91, p= 1e-21).
Fracture prediction on a test set that balanced fracture risk across patient variables was significantly lower than a random test set
(AUC= 0.67, DeLong unpaired AUC comparison, p= 0.003); and on a test set with fracture risk balanced across patient and hospital
process variables, the model performed randomly (AUC= 0.52, 95% CI 0.46–0.58), indicating that these variables were the main
source of the model’s fracture predictions. A single model that directly combines image features, patient, and hospital process data
outperforms a Naive Bayes ensemble of an image-only model prediction, patient, and hospital process data. If CAD algorithms are
inexplicably leveraging patient and process variables in their predictions, it is unclear how radiologists should interpret their
predictions in the context of other known patient data. Further research is needed to illuminate deep-learning decision processes
so that computers and clinicians can effectively cooperate.
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INTRODUCTION
An estimated, 1.3 million hip fractures occur annually and are
associated with 740,000 deaths, and 1.75 million disability-
adjusted life years.1 The chance of death in the 3 months
following a hip fracture increases by fivefold for women and
eightfold for men, relative to age- and sex-matched controls.2

When a middle-aged or elderly patient presents with acute hip
pain and fracture is suspected, clinical guidelines recommend first
ordering a hip radiograph.3 However, not all fractures are
detectable on radiographs.4,5 If a patient with high clinical
suspicion of fracture has a negative or indeterminant radiograph,
then it is usually appropriate to follow-up with a pelvic MRI.3

Fractures are the most commonly missed diagnosis on radio-
graphs of the spine and extremities, and the majority of these
errors are perceptual (i.e., a radiologist not noticing some
abnormality as opposed to misinterpreting a recognized
anomaly).6

Statistical learning models can both detect fractures and help
radiologists detect fractures. Past studies used machine learning
(ML) to identify combinations of hand-engineered features
associated with fracture, and more recent studies used deep

learning (DL) to discover hierarchical pixel patterns from many
images with a known diagnosis. Most studies detect fracture in
algorithm-only systems.7–9 Kasai et al. performed a clinical trial to
study how algorithms can augment radiologists and found
radiologists were significantly better at detecting vertebral
fractures when aided by an ML model that had a standalone
sensitivity of 81%.10 Convolutional Neural Networks (CNNs), the DL
models best suited for image recognition, have recently been
used to detect fracture in the appendicular skeleton, including
wrists,11 shoulders,12 and hands and feet.13 Gale et al. developed
the only previously reported hip fracture detector using DL; their
model achieved an area under the receiver-operating curve (AUC)
of 0.994.14 These academic DL reports compared isolated image
model performance against humans, but none tested whether
algorithms could aid human diagnosis. In contrast, the company
Imagen Technologies’ OsteoDetect DL system reported improving
humans from an unaided AUC 0.84 to AUC 0.89 (improvement of
0.05, 95% CI 0.02–0.08), according to a letter from the FDA (https://
www.accessdata.fda.gov/cdrh_docs/pdf18/DEN180005.pdf).
Deep-learning studies on various image-based fracture prediction
tasks have been published, but they do not consider patient and

Received: 24 October 2018 Accepted: 5 March 2019

1Verily Life Sciences LLC, South San Francisco, CA, USA; 2Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 3Department of
Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 4Department of Medicine, California Pacific Medical Center, San Francisco, CA, USA;
5School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia; 6Bakar Computational Health Sciences Institute, University of California, San Francisco,
CA, USA; 7School of Computer Sciences, The University of Adelaide, Adelaide, South Australia, Australia and 8Division of Cardiovascular Medicine, Stanford School of Medicine,
Stanford, CA, USA
Correspondence: Joel T. Dudley (joel.dudley@mssm.edu)

www.nature.com/npjdigitalmed

Scripps Research Translational Institute

http://orcid.org/0000-0001-8743-0932
http://orcid.org/0000-0001-8743-0932
http://orcid.org/0000-0001-8743-0932
http://orcid.org/0000-0001-8743-0932
http://orcid.org/0000-0001-8743-0932
https://doi.org/10.1038/s41746-019-0105-1
https://www.accessdata.fda.gov/cdrh_docs/pdf18/DEN180005.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/DEN180005.pdf
mailto:joel.dudley@mssm.edu
www.nature.com/npjdigitalmed


hospital covariates, or how algorithms can augment human
decision processes.
Statistical learning algorithms sometimes learn unintended or

unhelpful patterns contained in the model training data. Diverse
examples for common DL applications include gender being
differentially classified on photographs of the face depending on a
person’s race15 as well as gender detection on photographs of the
outer eye leveraging disproportionate use of mascara.16

Language-processing algorithms learned to perpetuate human
prejudices from the text to the web.17 An observational ML study
on healthcare labs found that the timing of a lab order (day of
week, hour of day, and time since prior order) was more predictive
of patient mortality than biological signal (the measured value and
abnormal flag) for 68% of labs associated with mortality.18 All
observational datasets have some bias and confounding.19 A
confounding variable (e.g., time since prior lab order, or which
scanner in a hospital is used to acquire a radiograph) is associated
with both an explanatory variable (e.g., acuity of a patient’s illness,
or a patient’s clinically predicted risk of fracture) and an outcome
(e.g., mortality, or the likelihood of a radiograph’s pixels containing
patterns suggestive of fracture). When researchers overlook a
confounding variable, the purported explanation for an outcome
is distorted. Patient and healthcare process variables impress
patterns into observational healthcare data, and these patterns
can be learned by statistical learning algorithms.
DL has previously been shown to detect patient demographics

and clinical variables from fundoscopy images.20 We previously
showed that DL can learn individual hospital sources in a multisite
trial and leverage this for disease detection, which leads to
inconsistent performance when deployed to new hospitals.21

Here, we perform a comprehensive analysis of what patient and
hospital process variables DL can detect in radiographs and
whether they contribute to the inner workings of a fracture
detection model. We group variables into four classes: disease
(fracture), image (radiograph pixels), patient (sex, age, body mass
index, pain, and recent fall), and hospital processes (department,
scanner model, scanner manufacturer, laterality, study date [and
day of week], order priority, technician, radiologist, radiation dose,
time from image order to acquisition, time from image acquisition
to initial interpretation, and time from image acquisition to final
interpretation). See Supplementary Table 1 for descriptions of the
scalar (non-image) variables. We use these scalar variables to
develop multivariate models and to create matched patient
cohorts to test image-only models. We refer to multivariate
models that combine image features with scalar variables as
“multimodal” models. To assess the suitability for image-only
models augmenting human interpretations, we experiment with
Naive Bayes model ensembles. We reanalyze test data from the
best published hip fracture model by Gale et al. and conclude by
highlighting design of clinical experiments and strategies to
mitigate the susceptibility of models to confounding variables.

RESULTS
Dataset and unsupervised analysis
We collected 23,602 hip radiographs from 9024 patients and
associated patient and hospital process data from the medical
imaging and clinician dictation databases, of which 23,557 were
used to train and test (3:1 split) Convolutional Neural Networks
(CNNs) (Supplementary Fig. 1). The prevalence of fracture was 3%
(779/23,602), and patients with fractures were more likely to
report a recent fall and less likely to report pain (Supplementary
Table 3). Extracted variables are separated into disease (i.e.,
fracture), image (IMG), patient (PT), or hospital process (HP)
variables, and only those known at the time of image acquisition
are used as explanatory variables (Fig. 1b). We used the inception-
v3 model architecture (Fig. 1a) and computed image features for

all radiographs with randomly initialized model weights and
weights pre-trained on everyday images. The pre-trained model
takes a 299 × 299 pixel input and computes 2048 8 × 8 feature
maps, and we averaged each feature map to get a 2048-
dimensional feature vector. Clustering analyses showed that the
greatest source of variation between radiographs is the scanner
that captured the image, and within each scanner the laterality
forms further discrete clusters (Fig. 1c). The image feature matrix
demonstrates a concomitant clustering by these image acquisition
features (Supplementary Fig. 2). The scanner model is the best
predictor of the first Principal Component (PC) (R2= 0.59) and
eight of the first ten PCs (Supplementary Table 4).

Modeling fracture, patient traits, and hospital process variables
We transformed all scalar variables into binary factors and trained
logistic regression models for fracture, PTs, and HPs as described
in detail in the Methods section (see Supplementary Table 2 for
original and binarized variable representations). All 20 of 20 image
models were significantly better than random (DeLong 95% AUC
CI > 0.5) (Fig. 2a, Supplementary Table 5). Hip fracture was
detected with AUC 0.78 (95% CI: 0.74–0.81), and the best detected
secondary targets were the device that took the scan (AUC 1,
CI 1–1), scanner manufacturer (AUC 0.98, 95% CI 0.98–0.99), and
whether the image was ordered as a high priority (AUC 0.79, 95%
CI 0.77–0.80). The difference in performance across targets is not
explained by differences in the total sample size or the number of
examples in the smaller class (Supplementary Fig. 3). Most of the
patient and hospital process factors (15/19) were themselves
significantly associated with fracture (Fisher’s exact test, p < 0.05);
and, after stratifying by device, the other four covariates were
associated with fracture on at least one device (Supplementary
Fig. 4). The best-predicted continuous variable is the year the scan
was ordered (R2= .39) (Fig. 2b; Supplementary Table 6).

Multimodal deep-learning models
We then compared combinatorial sets of IMG, PT, and HP features
for fracture prediction. Missing PT+ HP data were imputed as
described in Supplementary Methods. Multivariate model perfor-
mance metrics are provided in Supplementary Tables 7–8, and
operating point independent statistics are shown in Fig. 2c.
Fracture was better predicted by HP features (AUC 0.89, 95% CI
0.87–0.91) than either IMG features (AUC 0.78, 95% CI 0.74–0.81)
or PT features (AUC 0.79, 95% CI 0.75–0.82). Adding IMG to the HP
set did not improve performance (DeLong paired AUC compar-
ison, p= 0.97). The best predictor set was the full set of IMG+ PT
+ HP (AUC 0.91, 95% CI 0.90–0.93).

Evaluating CNNs on matched patient populations
We sought to disentangle the ability of a CNN to directly detect
fracture versus indirectly predicting fracture by detecting con-
founding variables associated with fracture. We manipulate the
associations between confounders and fracture by subsampling
the full (cross-sectional) test set in a case–control fashion (see the
Methods section for case–control subsampling details). By
selecting non-fracture cases (controls) with similar distributions
of patient and hospital process variables as fracture cases, the
conditional probability of fracture becomes constant across
different patient and hospital process profiles. We derived test
sets with fracture risk balanced across demographics (age,
gender), PT variables, or PT+ HP variables, and found that with
increasingly comprehensive matching, the number of fracture-
associated covariates consistently decreased (Table 1, Fig. 3a).
We then evaluated the image-only classifier for fracture on each

test set (Fig. 3b–d; Supplementary Tables 9–10). The area under
the Precision Recall Curve (PRC) is dependent on the disease
prevalence, and since the original population had a 3% fracture
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Fig. 1 The main source of variation in whole radiographs is explained by the device used to capture the radiograph. a Schematic of the
inception v-3 deep learning model used to featurize radiographs into an embedded 2048-dimensional representation. Inception model
architecture schematic derived from https://cloud.google.com/tpu/docs/inception-v3-advanced. b Data were collected from two sources.
Variables were categorized as pathology (gold), image (IMG, yellow), patient, (PT, pink), or hospital process (HP, green). Italicized variables are
not known at the time of image acquisition and are not used as explanatory variables. c The distribution of radiographs projected into clusters
by t-Distributed Stochastic Neighbor Embedding (t-SNE) and designates how the unsupervised distribution of clusters relates to hip fracture
and categorical variables
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learning regression models to predict eight continuous variables from hip radiographs. Each dot represents one radiograph, and the purple
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prevalence, but case–control cohorts have a 50% prevalence, the
PRC is significantly higher for case–control cohorts. Random
subsampling had no effect on the primary evaluation metric, AUC
(0.78 vs. 0.77, DeLong unpaired AUC comparison, p= 0.96). Model
performance was consistent after matching by demographics
(AUC= 0.76, p= 0.65), but significantly lower after matching by all
patient variables (AUC= 0.67, p= 0.003). When evaluated on a
test cohort matched by all covariates, the fracture detector was no
longer better than random (AUC= 0.52, 95% CI 0.46–0.58) and
significantly worse than when assessed on all other test cohorts.

Evaluating effect of confounding variables on model of Gale et al.
We repeated this case–control testing experiment on the model
previously reported by Gale et al.14 There were fewer covariates to
match patients by (Supplementary Tables 11–12, Supplementary
Fig. 5A), and the fracture detection results were robust across
case–control subsampling routines (Supplementary Fig. 5B–D,
Supplementary Tables 13–14). Performance on a randomly
subsampled test (AUC 0.99, 95% CI 0.99–1.0) was similar (DeLong
unpaired AUC comparison, p= 0.14) to the fully matched cohort
(AUC 0.99, 95% CI 0.98–1.0).

Secondary evidence integration from image models and clinical
data
Computer-Aided Diagnosis (CAD) tools provide clinicians with
Supplementary Information to make diagnostic decisions. We
have shown that deep-learning models benefit from leveraging
statistical relationships between fracture and patient and hospital
process variables when the algorithms are tested in isolation, but
we have not studied the impact this has under a CAD use scenario.
We simulate a CAD scenario by training separate models that
predict fracture with individual sets of predictors and then train
ensembles or multimodal models that use a combination of
predictor sets (Fig. 4a). To simulate a clinician’s reasoning, we use
a Naive Bayes ensemble that integrates the CNN’s image
prediction with the likelihood of disease based on covariates.
We opine that this ensemble model is reflective of how a clinician
might use an image model—without any knowledge of the inner
workings of predictive models, a clinician would be unable to
control for the fact that available models may be basing their
predictions on overlapping information. For a positive control, we
train a multimodal model which encodes the interdependencies
between image and covariate predictor sets.

Multimodal models trained directly on IMG+ PT and
IMG+ PT+ HP outperform models without image data (Fig.
4b–d). Secondary integration of IMG predictions with PT predic-
tions (Naive Bayes AUC 0.84, 95% CI 0.81–0.87) is better (DeLong
paired AUC comparison, p= 2e-8) than considering only PT (AUC
0.79, 95% CI 0.75–0.82), but worse (p= 0.01) than directly
combining IMG+ PT data (multimodal AUC 0.86, 95% CI
0.83–0.89). Similarly, secondary integration of IMG predictions
with PT+ HP predictions (Naive Bayes AUC 0.90, 95% CI
0.88–0.93) is better (DeLong paired AUC comparison, p= 5e-
11) than considering only PT+ HP (AUC 0.87, 95% CI 0.85–0.89),
but worse (p= 0.004) than directly combining IMG+ PT+ HP
(AUC 0.91, 95% CI 0.90–0.93). Combining an image-only model
result with other clinical data improves upon the clinical data
alone, but does not reach the performance of directly modeling
all data (Supplementary Tables 15–16).

DISCUSSION
CNNs can use radiograph pixels to predict not only disease but
also numerous patient and hospital process variables. Several prior
studies demonstrated the ability of CNNs to learn patient traits20

and image acquisition specifications,13,14,22 but this study system-
atically compared how deep learning can detect disease,
demographics, and image acquisition targets, and use all of these
factors to improve prediction performance. We further show that
CNNs learn to encode the statistical relationships between patient
and hospital process covariates and hip fracture. Despite CNNs
directly encoding some of these variables, the direct addition of
patient and hospital process variables to image features in
multimodal models further boosts predictive performance, while
secondarily combining an image model with other variables is less
beneficial. This study expands on previous work that incorporates
interdependencies between disease comorbidities to improve
CNN predictions23 by considering the compendium of patient and
hospital process variables involved in routine clinical care.
The standard of care a patient receives is based on his or her

differential diagnosis and the pre-test probability of disease, and
these differences in diagnostic workups can induce structure into
healthcare data that is learned by statistical learning algorithms.
We reproduced known associations between patient traits and hip
fracture (e.g., older age, low body weight).24 Because of these
known patient associations, middle aged or elderly patients
clinically suspected to have a hip fracture should have a follow-up

Table 1. Cohort Characteristics after various Sampling Routines

Cohort cs-train cs-test cc-Random cc-Dem cc-Pt cc-PtHp

Sampling Cross-sectional Cross-sectional Case–control Case–control Case–control Case–control

Matching NA NA NA Age+ gender PT PT+HP

Partition Train Test Test Test Test Test

No. of radiographs 17,587 5970 416 405 416 411

No. of patients 6768 2256 275 252 217 186

No. of scanners 11 11 10 9 8 6

No. of scanner manufacturers 4 4 4 4 4 4

Age, mean (SD), years 61 (22) 61 (22) 67 (24) 75 (20) 75 (21) 74 (19)

Female frequency, no. (%) 11,647 (66) 3873 (65) 260 (62) 249 (61) 263 (63) 253 (62)

Fracture frequency, no. (%) 572 (3) 207 (3) 207 (50) 207 (51) 207 (50) 207 (50)

BMI, mean (SD) 28 (7) 28 (7) 25 (5) 25 (5) 24 (5) 24 (4)

Fall frequency, no. (%) 3214 (18) 1139 (19) 133 (32) 160 (40) 174 (42) 165 (40)

Pain frequency, no. (%) 9010 (51) 2960 (50) 164 (39) 137 (34) 117 (28) 104 (25)
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Fig. 3 Deep-learning hip fracture from radiographs is successful until controlling for all patient and hospital process variables. a The
association between each metadata variable and fracture, colored by how the test cohort is sampled. (*) indicate a Fisher’s Exact test with p <
0.05. (b) ROC and (d) precision recall curves for the image-classifier tested on differentially sampled test sets. The best operating point is
indicated with crosshairs. (*) represents a 95% confidence interval that does not include 0.5. c Summary of (b) with 95% bootstrap confidence
intervals
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MRI if the X-ray is negative or indeterminant.3 The different
standards of care based on patients’ global health was previously
noted by Agniel et al. to be more predictive than the biological
values that were being measured.18 They concluded that
“Electronic Health Record (EHR) data are unsuitable for many
research questions.”
We leveraged case–control matching to eliminate the associa-

tions between fracture and PT+ HP variables. The ML model of
clinical laboratory tests by Agniel et al. had discrete inputs which
made biologic and non-biologic signals easily separable (e.g., the
time a lab is ordered was an explanatory variable in a healthcare
process model, and the measured lab value was used in a
pathophysiology model). In contrast, we used deep learning of
radiographs and found that DL can detect both biologic and non-
biologic signal from the image pixels, which precluded us from
simply separating these variables. As an alternative to manipulat-
ing each image (e.g., obscure the image pixels that suggest a
device’s identity), we used matched subsampling to alter the
statistical associations between fracture and PT+ HP variables on
a population scale. When deep learning rare conditions, it is
common to perform class balancing by downsampling normal
examples, but this is generally done randomly without consider-
ing PT or HP variables. Clinical trials with a case–control study
design sometimes down-sample the normal patients with a
matching routine to evenly distribute known confounding
variables.25 After selecting control radiographs that match the
PT+ HP distributions of fracture cases, the associations between
these factors and fracture were blotted out, and the model was no
longer able to detect hip fracture. This loss of predictive
performance indicates that the model was predicting fracture
indirectly through these associated variables rather than directly
measuring the image features of fracture.
While most DL models perform random class balancing,

exceptions have used demographics for radiograph matching.26

However, we found that a richer set of matching variables was
required to uncover the dependency on confounding variables.
Our model’s performance was consistent after matching demo-
graphics, and the dependence on other variables was only
revealed when additionally controlled by patient symptoms and
hospital process variables. The addition of patient symptoms to
demographics matching had the side effect of equating the odds
of fracture on the top two devices, consistent with the hypothesis
that patients are triaged differently which induces HP biases into
the data. Given that DL is able to detect so many variables from
the radiographs, balancing just demographics does not suffice to
reveal the classification mechanisms that were exposed after
balancing with PT+ HP variables.
Although our model was dependent on covariates to predict

fracture, the previously reported DL model for hip fracture
detection by Gale et al. was not. We attribute this to the fact
that Gale et al. used different training data and modeling
strategies.
The datasets had different sizes, scalar variables, diversity, and

label accuracy. Gale et al. had twice as many training examples
and a much higher fracture rate (12% vs. 3%). The patient
populations came from different clinical settings (Emergency
Department [ED] patients in Australia versus ED, inpatients, and
outpatients at Mount Sinai Health System [MSHS] New York City
[NYC]). Among the Sinai ED patients, the fracture rate was 4%, a
one-third of Adelaide’s ED fracture frequency. This may reflect
discrepancies in healthcare policy. Australia has free and universal
health care, while the US has no free or universal healthcare but
Centers for Medicare & Medicaid Services aggressively enforces
legislation mandating EDs to evaluate and care for all patients
(Emergency Medical Treatment and Labor Act).27 The American
healthcare policy can result in patients with chronic or low-acuity
illness seeking treatment from the ED (especially if they cannot

afford care elsewhere). There were stronger associations between
fracture and HP covariates at MSHS, possibly because radiographs
were collected from a wider range of clinical settings or because
NYC has a richer patient diversity or more tragic health disparities.
The metadata collected from MSHS was more extensive so
patients were matched on additional symptoms and HP variables.
The labels for Gale et al. were semi-manually curated, whereas
MSHS was solely inferred from clinical notes (see Limitations
below).
Gale et al. also used a different deep-learning strategy that

leveraged multiple CNN models. Specifically, Gale et al. developed
an extra set of labels for the location of the hip joint and trained a
preprocessing CNN to crop the whole radiograph and zoom in on
this region of interest. Then they feed the resulting hip joint image
into a DenseNet classifier to predict fracture. This sequential CNN
localization and classification approach has been referred to as
using cascaded CNNs. Gale et al. also used a customized DenseNet
architecture that allowed them to maintain high resolution of the
region of interest (1024 × 1024 pixels, in contrast to the 299 × 299
of the inception v3 model used for our primary experiments).
Our training dataset had 17,587 radiographs, but only 572 of

those had a fracture. DL studies on radiographs have used training
datasets with magnitudes of different image counts: ~1000,8,12,28

~10,000,29–32 ~50,000,14 ~100,000,23,33 250,000,13 and 1.5 M.27

Some of these datasets had class imbalance, with minor classes
found in few images: 15,8 32,30 492,28 515,12 695.11 Class
imbalance can be partly mitigated by data augmentation
strategies.8,12,28,29,33 Islam et al. report that training a cardiomegaly
classifier with fewer than 50 positive examples leads to poor
performance, and that performance plateaus at 200 positive
examples.30 Outside of medical imaging, DL models are com-
monly trained with larger datasets, on the order of Brestel et al.’s
1.5 M. The limited number of positive examples in this study may
be a contributing factor to why the model resorted to leveraging
correlated PT and HP data instead of directly learning fracture.
We previously reported that confounding variables are more

likely to be leveraged by deep learning in heterogenous datasets
and that confounders may be located at the edge of whole
radiographs (within the image, but outside of the patient).21 Gale
et al.’s hip localization step may mitigate the impact of non-
biological variables being considered by DL classification mod-
els.21 Various localization strategies have been employed before
applying DL to radiology data. We and others perform whole-
image classification since labels can be extracted in a semi-
automated fashion from clinical notes.11,23,28–31,33 Some investi-
gators manually indicate the region of interest on every single
image before “automated detection”12 or use heuristics to crop
scans.13,32 The use of cascaded CNNs to initially segment images
requires an additional training dataset, but it has been embraced
by several investigators.14,34–36 The description of the FDA-
approved OsteoDetect suggests that it was not performing
classification but trained with pixel-level data to perform pure
segmentation. The combination of zooming down to a region of
interest and maintaining high resolution of the CNN’s receptive
field may ensure that valuable fracture-specific radiographic
findings were not lost in the process of image downsampling.
Deep learning is frequently criticized because the predictions

lack clear attribution, and people are uneasy about blindly trusting
a machine. If a DL model is acting fully autonomously, as has been
proposed for retinopathy screening,37 then it can benefit from
incorporating patient and process variables, and it is incon-
sequential whether this behavior is explicitly known. However, if
the algorithm is intended to provide a radiologist with an image
risk score so the radiologist can consider this in addition to the
patient’s documented demographics and symptoms, a patient
interview and physician exam, then it is undesirable if the CNN is
unknowingly exploiting some portion of these data. This behavior
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creates uncertainty around how much of the CNN’s prediction is
new evidence or redundant information. If the clinician presumes
an image-only interpretation model is not leveraging patient or
process variables, they may consider the evidence as statistically
independent, as the Naive Bayes model assumes. For a Naïve
Bayes evidence ensemble, this false assumption produces a worse
prediction than one based on full knowledge of
interdependencies.
Clinicians are better at interpreting images when they consider

a patient’s clinical context.27,38 As clinicians are frequently
considering other evidence sources not available to the model
(e.g., clinical history, past imaging), it is important to enable them
to synthesize a model’s predictions with a patient’s larger clinical
scenario. Multimodal models allow an algorithm’s prediction to be
separately attributed to image or PT+ HP variables. Patient risk
profiles have been created from deep-learning representations of
EHR data that compute the risk difference attributable to age,
gender, and prior hospitalizations.39 With an analogous system for
multimodal models, a physician could integrate further context.
For example, if a multimodal model explicitly computes the risk
differential for fracture due to a women being postmenopausal, a
physician could make informed adjustments for those women on
hormone replacement therapy.40 We used 20 variables that were
recorded in the image metadata and radiologists dictation
database, but future studies could develop a richer patient
representation by incorporating features from the EHR.
Previous image recognition CAD studies may not have

considered PT and HP variables because they are inconsistently
reported and/or unstructured in the EHR. Better standards for
documenting the risk factors a clinician considers during diagnosis
could allow more image recognition studies to incorporate
multimodal predictor sets.
Several factors limit this study’s input data quality and model

predictive performance. First, we did not have gold standard
images: plain film radiology is the first line of the diagnostic work-
up, but not the gold standard imaging modality for hip fracture
detection.3 Second, our labels have limited accuracy: we used
natural language processing to automatically infer the presence of
fracture in a radiographic study from the clinical note. Since the
radiologist had multiple images and non-imaging data, a fracture
may not be discernible on every image we labeled as fracture,
which has been previously reported.13 Third, our covariate data
have limited accuracy: we imputed missing patient BMIs and HP
variables when they were not documented consistently. Fourth,
our preprocessing reduces image resolution: we used a pre-
trained network, which required us to downscale the images from
full resolution to 299 × 299 pixels. We further reduced the detail in
the image representation by using a CNN feature dimensionality
reduction to constrain the image feature space. Finally, we used a
simple fine-tuning strategy and did not optimize model hyper-
parameters or model selection with a validation set. These image
preprocessing and fine-tuning simplifications were done to
expedite model training since our investigative questions involved
training and comparing many models rather than training a
best model.
Further research is needed to investigate sampling biases and

generalization in DL observational medical datasets. Pixel-level
image annotation can enable pre-segmentation in cascaded
networks. Datasets with complete metadata can perform matched
experimental designs, but the largest medical radiology datasets
that are publicly available do not contain image acquisition
specifications or hospital process variables, and we would need to
develop more intricate methods to mitigate the influence of non-
biological signal in these resources. Genomic analyses have
accounted for unmeasured confounding variables via surrogate
variable analysis,41 factor analysis,42 and mixed models.43 DL
approaches to mitigate undesired signal include adversarial
networks44 and domain separation networks.45

DL algorithms can predict hip fracture from hip radiographs, as
well as many patient and hospital process variables that are
associated with fracture. Observational medical data contain many
biases, and radiographs contain non-biological signal that is
predictive of disease, but may not be ideal for computer-aided
diagnosis applications. Directly extending DL image models with
known covariates can improve model performance, and perform-
ing localization steps before classification may mitigate depen-
dence on these covariates. Given that the largest public datasets
lack covariate annotations, further research is needed to under-
stand what specific findings are contributing to a model’s
predictions and assess the impacts of DL’s incorporation of non-
disease signal in CAD applications.

METHODS
Study design
We collected a new dataset from Mount Sinai Health System (MSHS), and
then reanalyzed the previously published results from the University of
Adelaide. The University of Adelaide data and deep-learning model
methods were previously described14 and differ from those used on MSHS
data. Below we elaborate on the MSHS dataset and model development
methods. Separate models were developed from each site and used to
predict fracture on internal test set images. The patient matching and
model evaluation described below were applied to both site’s test set
predictions. Train-test partition was stratified by patient so no patient had
radiographs in both train and test sets.

Imaging studies
Overall, 23,602 hip radiographs were retrieved from the Picture Archiving
Communication System (PACS) in a DICOM file format, of which 23,557
radiographs from 9024 patients were included in the study (see
Supplementary Fig. 1). The retrospective study was performed in
accordance with ethical regulations and approved by the Icahn School
of Medicine at Mount Sinai institutional review board with waived
informed consent. Hip radiographs were collected from 2008 to 2016.
Image were acquired for routine medical practice from several clinical sites
(inpatient 4183, outpatient 3444, ED 7929, NA 8005) on 12 devices
manufactured by Fujifilm, GE, Konica, and Philips. All films had an
anteroposterior or frog-leg projection, and the laterality was mixed (left,
right, or bilateral). The distribution of sample characteristics by device and
department are shown in Supplementary Tables 17–18, and the
association between departments and devices is depicted in Supplemen-
tary Fig. 6.

Image preprocessing
Radiographs were standardized to a common size and pixel intensity
distribution. Image were downsampled and padded to a final size of 299 ×
299 pixels. Pixel intensity mean and standard deviation were normalized
per-image.

Scalar variable extraction
Fracture, PT, and HP variables were parsed from two sources: the DICOM
file header and clinical notes (see Fig. 1b). The DICOM file headers
recorded the image acquisition specifications in a tabular format. The
clinical notes recorded patients’ demographics and radiologists’ inter-
pretation times in a tabular format, and the patients’ symptoms and
radiologists’ image impression in free text. These clinical notes were
retrieved via Montage (Nuance Communications, Inc, New York, NY). To
abstract the presence of a symptom (i.e., pain, fall), we applied regular
expressions to the noted indication. To abstract fracture from the
physicians’ image interpretation, we used a word2vector-based algorithm
previously described by Zech et al.46 This supervised learning algorithm
required a subset of radiologists’ notes to be manual labeled as either
reporting “acute fracture” or “no acute fracture”. Fractures reported
anywhere in the image were considered positive (irrespective of anatomic
location), and if there was no mention of fracture then the sample was
considered an implicit negative. Radiology reports that did not have a
corresponding image were used for training the NLP algorithm, which was
then used to infer fracture status on the 23,557 matched images and
reports used in image model development. We manually reviewed another
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100 notes used in image model development to evaluate to performance
of the NLP algorithm (Supplementary Table 19). Further label processing
was performed to remove infeasible values, binarize values for binary
classification models, and impute missing data, as described in the
supplementary methods.

Scalar variable selection
We selected these 20 variables because they have been previously
associated with fracture risk (age, gender, and BMI), were common
presenting symptoms for patients with hip xrays (fall, pain), have been
individually learned in prior image recognition studies (view, radiation
dose [OCR]), or mentioned in prior image recognition studies (scanner
model, scanner manufacturer, order priority, imaging wait time, time to
interpretation, department). We further included HP variables inspired by
Agniel et al. (time and date).18 The dicom header has hundreds of
additional fields, but most are technical minutiae (e.g., table height,
distance source to patient) or highly correlated to the aforementioned
variables.

Scalar value filtering
We applied several feasibility filters to remove improbably data values. For
any values outside the expected range, we replaced the value with an “NA”
indicator. Entries with “NA” values were ignored during the primary
regression and logistic modeling, and new values were imputed for
secondary analyses as described in “scalar value imputation”. In the clinical
note database from Montage, we retrieved the latency times between
image order, acquisition, and interpretation. We removed any value that
was less than 1min, or greater than 1 day. Patient BMI values documented
greater than 60 were removed.

Nominal variable consolidation
The hospital has many radiology technicians and physician radiologists
who were involved in acquiring and interpreting images in this study,
respectively. Because of large imbalances between how many studies each
staff member was involved with, we kept the three most common values
and consolidated all less frequent values into “other_valid_entry”.

Scalar variable binarization
For logistic regression models, we coerced continuous or categorical
variables into a binary representation. For continuous variables, we simply
took the median value and indicated whether values were greater than the
median or not. For categorical variables, we used a natural abstraction
where possible or took the two most common levels and filling in the
remaining entries with “NA” values. For day of week, we abstracted to
weekday and weekend. For scan projection, we abstracted to lateral versus
bilateral views. For all other categorical variables, we kept the two most
common values and removed the others.

Scalar value imputation
To train multimodal models and perform radiograph case–control
matching, we needed to handle missing data in numerous PT and HP
variable fields. For categorical variables, missing entries were replaced by
an explicit “(Missing)” value. The only PT variable with missing data was
BMI. To impute BMI, we trained linear regression models on the subset of
data with available BMIs using each combination of predictor variables,
possibly with imputed HP variables (see Supplementary Table 20). We used
the model with all predictor sets and imputed HP variables to impute all
missing BMI entries. For other continuous variables, we simply performed
median imputation.

Model architecture
We used deep-learning models called CNNs to compute abstract image
features from input image pixel arrays. Deep-learning models require an
abundance of training images to learn meaningful image features during
an initial training phase to select parameters that improve a model’s
performance on a particular task. We used the inception-v3 CNN
architecture47 with parameters that have been optimized for natural
object recognition in the ImageNet challenge.48 We use the pre-trained
model to encode radiograph image features and then re-train the final
layer, which is a practice called transfer learning and has previously been

performed for image recognition tasks in medical radiology.11–13 The final
classification layer is removed, and we compute the penultimate layer of
2048 image feature scores for each radiograph. We use these abstract
feature vectors in subsequent unsupervised models. Deep-learning
processing was performed with the python packages keras and tensorflow.

Unsupervised analysis
After computing the image features for each image, we use several
dimensionality reduction techniques to visualize the distribution of image
variation. For comparison, we featurized images with one inception-v3
model with randomly initialized parameters and a second that was pre-
trained on ImageNet. We performed t-Distributed Stochastic Neighbor
Embedding (t-SNE) to project the image feature vector into a 2d plane with
the R package Rtsne (initial PCA to 50 dimensions, perplexity 30, theta 0.5,
initial momentum 0.5, final momentum 0.8, learning rate 200).

Supervised analysis
We fine-tune models using image and/or covariate explanatory variable
sets and predict binary and continuous outcome variable. For image-only
models, we use the 10 principal components of the 2048-dimensional
image feature vectors as model input (which describes 68% of image
variation in the 2048-d space, see Supplementary Fig. 7), and for combined
image–metadata models, we concatenate the 10-principal component
image vector with the scalar metadata values. To predict binary variables,
we use logistic regression fit to maximize AUC and for continuous variables
linear regression to minimize RMSE. This fine-tuning was done in R using
the caret package.49

Naive Bayes
Naive Bayes was used to ensemble the predictions of an image-only CNN
model with PT or PT+ HP variables. The prior probability was estimated
using a kernel based on 10-fold cross validation with the training partition.
The R package klaR was used to compute the posterior probability of
fracture assuming independence between predictors.

Case–control matching
We create several case–control test cohorts to evaluate the effect of
patient matching on fracture detection. Missing data are imputed as
discussed in the Supplementary methods. We generate four cohorts by
downsampling the images without fracture: random, matched demo-
graphics, matched PT, and matched PT+ HP (see Supplementary Table
11). For the random case–control group, we randomly select one control
for each case. For the three matched cohorts, we compute the dissimilarity
between all case–control patient pairs by applying Gower’s method to the
pertinent PT and HP covariates and then iteratively select the closest
control to each case without replacement.

Classifier receiver-operating curves
All receiver- operator curves (ROCs) analyses and comparisons were done
with the R pROC package.50 We compute area under the curve (AUC) with
95% confidence intervals inferred from the DeLong definition for ROC
variance.50 Comparisons between ROC curves that involved different
cohorts (i.e., cross-sectional versus case–control cohort evaluations) were
done with unpaired DeLong AUC comparison tests (two-sided, null
hypothesis= no difference in AUC). Comparisons between ROC curves
that used different predictor sets for the same cohort (i.e., combinatorial
IMG, PT, HP predictor models, and Naive Bayes models) used Delong’s
paired AUC comparison tests (2-sided, null hypothesis= no difference in
AUC). We select the best operating point with Youden’s method to further
compute sensitivity, specificity, and other threshold-dependent statistics.

Odds ratios
Associations between each variable and fracture are performed with the
binarized covariates and a two-sided Fisher’s exact test for count data.
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