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Background: Type 2 diabetes (T2D) can go undiagnosed for years, leading to a stage where

produces complications such as delayed skin wound healing. Animal models have been

developed in the last decades to study the pathological progression in this disease.

Streptozotocin (STZ), that has a selective pharmacological toxicity toward pancreatic b

cells, in addition to high fat diet has been widely used to induce diabetes however no

evidence has shown its effects on the skin integrity.

Methods: Eighteen C57BL/6J male mice, were divided in 3 groups; the first was fed with

chow diet and the second was kept on a high fat diet and the third injected with STZ

intraperitoneal for 5 days consecutively before starting the diet protocol with high fat. Mice

were maintained 5 weeks in total.

Results: We show that animals treated with STZ-high fat diet exhibit skin injuries without

significant alterations on basal insulin and triglycerides, compared to the control. The skin

from these animals presents higher levels of oxidative stress, lower levels of adhesion

proteins and alterations in lipid mediators, effects that are not produced by the high fat

diet itself.

Conclusion: Our results suggest that this in vivo model represents a relevant approach for

studying skin damage induced by diabetes.
Diabetes affects over 340 million people worldwide. It is

characterized by sustained hyperglycemia and can go undi-

agnosed for years [1]. Its chronicity leads to delayed wound

healing due to skin complications increasing the risk of
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missions in the developed world and is a major morbidity
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The oxidative stress and lipids content has been consid-

ered as the mechanism underlying the abrogated skin integ-

rity [3]. However, there is no report showing the local

alterations in the skin of diabetic animal models.

Several non-genetic mice models have been established.

The most widely used are based on high fat (HF) diet with or

without a chemical ablation of the pancreatic b cells using

streptozotocin (STZ) [4]. Nevertheless, no characterization of

the skin alterations on the models have been reported [5].

We used two diabetic-induced mice models to study the

skin condition in addition to the oxidative stress and local

levels of lipid mediators that might contribute to the skin

disruption.
Materials and methods

Eighteen C57BL/6J male mice of 15e21 weeks of age (average

weight 23± 0.5 g), were divided in 3 groups. The first groupwas

fed with a low fat chow D12450B as a control, the second was

kept on a HF diet D12492. The content in fat percentage of

the diets are 10% kcal% fat and 60% kcal% fat, respectively.

The third was injected with STZ (40 mg/kg) (Cayman Chem-

icals, catalog no. 18883664) intraperitoneal (IP) for 5 days

consecutively before starting the diet protocol with HF. The

compound was dissolved in 0.05 M citrate buffer, pH 4. In

parallel the control and HF groups were injected with the

vehicle during the pretreatment. Mice were maintained 5

weeks in total, since STZ or vehicle treatment.

Parameters were controlled weekly after 6 h of fasting. The

study protocol was approved by the Ethics Committee for

Animal Experimentation at Juntendo University, Japan.

Triglycerides and blood glucose levels were measured

using CardioChek® PA (catalog no. 0197) and the compatible

PTS Panel® test strips. Insulin was measured using the Ultra-

sensitive Mouse ELISA kit (Mercodia, article no. 10-1249-01).

Ex vivo trans-epithelial electrical resistance (TEER) mea-

surement was performed in skin samples with an 8 mm

diameter and 1 mm thickness obtained from the back of the

animal using disposable biopsy punches (Kai Medical, catalog

no. BP-80F). Samples were placed facing up onto a 12 mm

polycarbonate filter (0.4 mm pore) (Millicell Merck Millipore,

catalog no. PIH01250) suspended inside a cell culture well

containing 1X PBS (500 mL). The TEER was measured immedi-

ately using the Millicell® ERS-2 Voltohmmeter (Millipore, cat-

alog no. MERS00002).

Oxidative stress was measured using TBARS assay Kit

(Cayman Chemicals, catalog no. 10009055).

Histological analysis was performed in skin samples fixed

with 10% formalin, paraffin-embedded, and stained with he-

matoxylin eoisin (HE) and masson’s trichrome (MT). Images

were taken using Keyence BZ-9000 microscope.

Western blot used anti-ZO-1 pAb (Thermo Fisher Scientific-

Invitrogen catalog no. 61e7300), anti-E-Cadherin mAb (Cell

Signaling Technology catalog no. 3195), anti-Occludin pAb

(Thermo Fisher Scientific-Invitrogen catalog no. 71e1500),

anti-Claudin-4 pAb (Thermo Fisher Scientific-Invitrogen cat-

alog no. 36e4800) or anti-b-actin mAb (SigmaeAldrich catalog
no. A2228) as primary antibodies all at 1/500 dilution. Chem-

iluminescence was detected by the Chemidoc-IT Imaging

System (UVP, LLC) and immunoreactive bands were analyzed

with ImageJ software (National Institutes of Health).

For the determination of lipid content, it was performed an

extraction from skin with methanol containing deuterium-

labeled internal standards. Each sample was diluted with

water to yield a finalmethanol concentration of 20%, and then

loaded on Oasis HLB cartridges (Waters). The column was

subsequently washed with petroleum ether and water con-

taining 0.1% formic acid. The samples were eluted with 200 ml

of methanol containing 0.1% formic acid. Eicosanoids in each

sample were quantified by LC-MS/MS using a Shimadzu liquid

chromatography system and tandem-connected a TSQ

Quantum Ultra triple quadrupole mass spectrometer equip-

ped with an electrospray ionization system (Thermo Fisher

Scientific). Each sample was injected into the trap column, an

Opti-Guard Mini C18 and concentrated sample was analyzed

with an analytical column, a Capcell Pak C18 MGS3 (Shiseido,

Tokyo, Japan). Separation of lipids was achieved by a step

gradient with 0.1% formic acid in water and 0.1% formic acid

in acetonitrile. The LC column eluent was introduced directly

into a TSQ Quantum Ultra. All compounds were analyzed in a

negative ion polarity mode.

Results are presented as mean ± SEM. Statistical analyses

were performed using ANOVA. Post hoc tests were also per-

formed. Statistical significance was set at p < 0.05. All statis-

tics were calculated using Prism GraphPad (GraphPad

Software, Inc., La Jolla, CA, USA).
Results

Mice fed with HF diet showed a higher weight gain (p < 0.001)

from the second week onwards. The animals pretreated with

STZ (Type 2 diabetes (T2D) mice) exhibited an early weight

loss followed to a normalization towards values similar to

control [Fig. 1A]. The HF diet induced higher glucose basal

levels, effect that was enhanced by the STZ from the third

week [Fig. 1B]. Moreover, the STZ treatment did not altered the

triglycerides and insulin basal levels (p ¼ 0.1), parameters

affected by the HF diet [Fig. 1C and D; respectively].

The skin from diabetic mice exhibited lower TEER

(p < 0.05) than control, effect that is potentiated by STZ

(**p < 0.01) [Fig. 1E, grey bar and black bar; respectively].

However, the levels of TBARSwere significantly higher only in

the skin from the HF þ STZ animals (p < 0.05) [Fig. 1F, black

bar]. The macroscopic view showed severe spontaneous skin

lesions on animals pretreated with STZ and histological sec-

tions suggested an atrophic epidermis without signs of in-

flammatory cell infiltration or vasculitis with a reduction of

hair follicles [Fig. 1G]. Consistent with the observations, the

skin from mice under HF and STZ showed lower adhesion

protein levels of ZO-1, E-Cadherin, Occludin and Claudin-4

[Fig. 1H].

In addition, the skin from STZ-HF mice showed lower

levels of lipid mediators docosahexaenoic acid (DHA), eico-

sapentaenoic acid (EPA), 12-hydroxyheptadecatrenoic acid
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Fig. 1 Diabetes induced by STZ-HF diet generates several skin alterations on mice. (A) Weekly weight measurements in non-

sedated animals for 5 weeks, (B) weekly basal glucose levels in non-sedated animals after 6 h starving for 5 weeks, (C) basal

blood triglycerides and (D) blood insulin levels in non-sedated animals after 6 h starving at 5th week of treatment. (E) Ex vivo

TEER and (F) TBARS in skin from animals after 5 weeks of treatment. (G) Representative images of the animals after the protocol

and microphotographs of skin MT stains at 20x magnification. (H) Representative western blots and densitometric

quantification of adhesion proteins relative to total b-actin. Data expressed as mean ± SEM, n ¼ 6 per group *p < 0.05 ** or

##p < 0.01, ***p < 0.001, One or 2-Way ANOVA, Tukey's post hoc test.
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(HHT), leukotriene C4 (LTC4), protectin D1 (PD1), thromboxane

B2 (TXB2), 6-keto-PGF1a, 5-oxoeicosatetraenoic acid (KETE),

12-KETE and 8,9 epoxyeicosatrienoic acids (EET) and higher

amount of PGD2, PGE2, 9-hydroxyoctadecadienoic acid

(HODE), 13-HODE and 7-hydroxydocosahexaenoic acid

(HDoHE), compared to HF and control skin [Table 1].
Discussion

Skin changes result from an impaired skin barrier that is

caused by either diabetes-induced skin metabolism abnor-

malities or diabetic complications, such as foot ulcer [6].

Previous results using the HF diet model have described

mild skin alterations associated with reduction on TEER,

epidermis thickness and increased inflammatory markers [7].

Using a STZ type 1 diabetic rat model it was described in skin

an increase on inflammatory cells infiltration and oxidative

stress [8]. Moreover, increased TBARS have been reported in

the skin of T2D patients [9] and in STZ diabetic rats [10,11].

Furthermore, it was recently described in a type 1 diabetic

mice model a disruption on the skin barrier accompanied by

disorganization on the tight junctions characterized by a
change on ZO-1 protein localization [12]. In agreement with

the previously mentioned observations, we show a dramatic

reduction in the levels of ZO-1, E-Cadherin, Occludin and

Claudin-4 in the STZ-HF T2D model, a condition that may be

associated with the reduction on TEER. It is important to

highlight that our model would represent T2D in a sever and

uncontrolled glycaemia state, as the main trigger of the con-

ditions presented in this study. The severity of the phenotype

could be attributed to the synergic effect to the glucose level,

that has the high fat diet after the b cells ablation.

Interestingly, the reduction on skin DHA and EPA has been

associated with alteration in the epidermal barrier [13], the

decrease in PD1, PGF1, KETE and EET with inflammation

[3,14,15], TXB2 indicating lesions [15] and 12-HHT through

BLT2 receptor, has been described as a pro regenerative lipid

mediator [16]. On the other hand, the local increase of PGD2,

PGE2, and HODEs has been associated with hair loss, inflam-

mation and oxidative stress [17e19].

We identify as weakness of our study the lack of in vivo

wound healing studies, however the data shown in this study

describes a highly used animal model that would serve as

evidence for future research in the dermatoendocrinology

field.
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Table 1 Lipidomics analysis of the skin.

(pg/mg tissue) Control High Fat High Fat þ STZ

AA 10,380 ± 210 8730 ± 150 9650 ± 140

DHA 22,980 ± 660 19,370 ± 360 10,130 ± 180*

EPA 1410 ± 30 1380 ± 20 660 ± 10*

12-HHT 15.22 ± 6.1 6.73 ± 2.3 4.81 ± 1.2*

LTB4 0.07 ± 0.01 0.05 ± 0.02 0.06 ± 0.02

LTC4 2.11 ± 0.9 0.38 ± 0.1** 0.41 ± 0.1*

PD1 19.09 ± 3.2 13.29 ± 3.1 3.67 ± 1.1**

TXB2 2.85 ± 1.2 1.03 ± 0.2* 0.88 ± 0.1*

PGD2 0.05 ± 0.01 0.03 ± 0.01 0.24 ± 0.06**

PGE2 51.68 ± 11.5 82.62 ± 26.2 104.0 ± 13.2*

6-keto-PGF1a 5.51 ± 1 3.42 ± 1 2.65 ± 0.4*

PGF2a 2.42 ± 0.5 3.87 ± 2.3 4.59 ± 1.3

5-HEPE 0.13 ± 0.07 0.11 ± 0.07 0.12 ± 0.1

8-HEPE 0.47 ± 0.1 0.53 ± 0.2 0.3 ± 0.1

12-HEPE 0.92 ± 0.2 1 ± 0.3 1.43 ± 0.3

15-HEPE 0.76 ± 0.3 0.6 ± 0.1 0.76 ± 0.2

18-HEPE 0.16 ± 0.02 0.19 ± 0.06 0.4 ± 0.2

9-HODE 340 ± 100 370 ± 100 1040 ± 200**

13-HODE 60 ± 0.5 130 ± 1 410 ± 0.7**

5-HEPE 1.4 ± 0.3 1.3 ± 0.2 1.5 ± 0.5

8-HEPE 10 ± 0.3 10 ± 0.4 4.2 ± 1

11-HEPE 1 ± 0.4 2 ± 0.9 2 ± 0.6

12-HEPE 60 ± 10 40 ± 20 80 ± 20

15-HEPE 20 ± 7 20 ± 8 20 ± 9

7-HDoHE 1.81 ± 0.12 3.74 ± 0.85* 3.34 ± 0.5*

14-HDoHE 0.02 ± 0.01 0.01 ± 0.002 0.02 ± 0.005

17-HDoHE 0.05 ± 0.02 0.04 ± 0.01 0.03 ± 0.01

5-KETE 1.57 ± 0.42 0.48 ± 0.09** 0.25 ± 0.15**

12-KETE 0.54 ± 0.25 0.23 ± 0.12 0.21 ± 0.06*

5, 6 EET 0.09 ± 0.04 0.04 ± 0.02 0.06 ± 0.03

8, 9 EET 0.33 ± 0.08 0.11 ± 0.03 0.03 ± 0.01*

Lipid mediator levels in skin after 5 weeks of controlled diet with or

without STZ (average ± SEM), n ¼ 6 per group, *p < 0.05, **p < 0.01

non parametric one-way ANOVA with Tukey's post hoc test.

Abbreviations: AA: Arachidonic acid; LTB4; Leukotriene B4; HEPE:

Hydroxyeicosatetraenoic acid;
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Conclusion

Animals treated with STZ-high fat diet exhibit skin injuries

without significant metabolic alterations, compared to the

control. The skin from these animals presents higher levels of

oxidative stress, lower levels of adhesion proteins and alter-

ations in lipid mediators, effects that are not produced by the

high fat diet itself.

Based on the findings presented in this study and our

previous report [7] we suggest that the severe hyperglycemia

and no the insulin, in the STZ-high fat diet model, leads to an

outburst of pro-inflammatory cytokines and oxidative stress

on the keratinocyte, that activates LOX/COX dependent

pathways causing changes on local lipid mediators associated

with loose on the epidermal integrity that might cause the

spontaneous skin injuries observed [20].

The relevance of understanding and characterizing the

diverse diabetic animal models represent an important

contribution to emulate the pathological condition. The

studies on the field are relevant to counteract this important

public health issue; and for this reason, the use of proper

animal models and more work on this topic is required.
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