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Introduction
Five species of Plasmodium parasite cause malaria, and there is 
growing awareness of the importance of each to global health 
(World Health Organization, 2010). The majority of mortality 
and morbidity attributed to malaria are caused by Plasmodium  
falciparum (Snow et al., 2005); however, Plasmodium vivax 
also causes a significant burden of disease (Guerra et al., 
2010). Infection by all Plasmodium spp. begins with the bite 
of an infected female Anopheles mosquito (Fig. 1). After 
a silent infectious phase, primarily in the liver hepatocyte  
(Prudêncio et al., 2011), exoerythrocytic merozoite forms are 
passed into the blood stream as membrane-bound merosomes 
that rupture, allowing parasites access to circulating erythro-
cytes (Fig. 1; Sturm et al., 2006; Prudêncio et al., 2011). The 
merozoites rapidly invade erythrocytes, and as they grow and 
replicate, the intracellular parasite dramatically remodels the 
host red blood cell, giving rise to a rigid and poorly deformable 
cell with a propensity to adhere to a variety of cell types.  

These changes play a pivotal role in severe complications 
of P. falciparum malaria, with symptoms including fever,  
anemia (though not necessarily resulting from loss of blood cells;  
Evans et al., 2006), lactic acidosis, and in some cases coma 
and death (for review see Miller et al., 2002).

Clinical immunity to malaria is slow to develop and 
short lived. One reason for this is the extensive diversity found 
in Plasmodium antigens, which facilitate parasite escape from 
host immune detection. This antigenic diversity in P. falciparum 
arises by two main mechanisms. Classical antigenic variation  
allows a clonal lineage of P. falciparum to express successive  
alternate forms of a variant antigen on the surface of the  
infected-erythrocyte (for review see Kirkman and Deitsch, 
2012). There is also a large amount of antigenic diversity  
created by allelic polymorphisms, most of which likely arose from  
host immune selection. The merozoite also displays a form 
of phenotypic variation in which different strains express a 
variant combination of functional ligands that bind to specific 
receptors on the erythrocyte (Duraisingh et al., 2003; Stubbs 
et al., 2005). This provides a mechanism to escape host immune 
detection and to counteract the polymorphic nature of the 
erythrocyte surface, much of which has been driven by para-
site evolutionary pressure. An example is the preponderance 
of Duffy antigen/chemokine receptor (DARC) negativity in 
West African populations. P. vivax is generally unable to in-
vade Duffy-negative erythrocytes, and this variant therefore 
protects the population from this species (Miller et al., 1976). 
Recent work has, however, identified P. vivax parasites in 
Madagascar that invade Duffy-negative erythrocytes, which 
suggests that DARC-independent host cell invasion is possible 
(Ménard et al., 2010). The mechanisms of antigenic and phe-
notypic diversity developed by the malaria parasite and the 
genetic polymorphisms in the human population linked to 
protection against this disease are an indication of a long-running 
genetic war between pathogen and host.

A case can be made for a vaccine targeting each stage 
of parasite development (Fig. 1); however, the blood stage spe-
cifically has been a longstanding focus for vaccine efforts. 

Malaria is a major disease of humans caused by pro-
tozoan parasites from the genus Plasmodium. It has a 
complex life cycle; however, asexual parasite infection 
within the blood stream is responsible for all disease pa-
thology. This stage is initiated when merozoites, the free 
invasive blood-stage form, invade circulating erythro-
cytes. Although invasion is rapid, it is the only time of the 
life cycle when the parasite is directly exposed to the host 
immune system. Significant effort has, therefore, focused 
on identifying the proteins involved and understanding 
the underlying mechanisms behind merozoite invasion 
into the protected niche inside the human erythrocyte.
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(associated with parasite egress; Singh et al., 2007). As  
the molecular definition of these and other compartments  
expands, refinement of the identity and naming of organelles 
will be required.

A cellular overview of invasion
The cellular steps of invasion have been studied by mi-
croscopy in both P. falciparum and Plasmodium knowlesi 
(Dvorak et al., 1975; Glushakova et al., 2005; Gilson and 
Crabb, 2009). Initially, the mature merozoites are propelled 
from the bursting schizont (the mature blood stage form) at 
egress (Glushakova et al., 2005; Abkarian et al., 2011), after 
which they associate with erythrocytes (Figs. 2 and 3). Initial 
interaction involves dramatic movement of the merozoite and 
deformation of the erythrocyte surface followed by a seem-
ingly active process of reorientation that places the parasite 
apex abutting the host cell membrane. After a brief pause 
and major buckling of the erythrocyte surface, possibly as a 
result of parasite-induced reorganization of the erythrocyte 
cytoskeleton (Zuccala and Baum, 2011), the parasite enters 
the erythrocyte (Fig. 2 B). Sealing at the posterior of inva-
sion is followed by a brief period of echinocytosis of the red 
cell (a morphological spiking of the cell stimulated by efflux 
of potassium and chloride ions), with the erythrocyte return-
ing to its normal shape within 10 min (Gilson and Crabb, 2009). 
The internalized parasite, now referred to as a ring, under-
goes rapid and dramatic changes in shape after this process 
(Grüring et al., 2011).

Much of the invasion process itself is organized around 
a key interface that forms between the two cells called the 
tight or moving junction, an area of electron density (by 
electron microscopy) and close apposition between the two 
cells (Fig. 2 B; Aikawa et al., 1978). This structure appears to  
coordinate distinct stages after egress and attachment, fa-
cilitating invasion and postinvasion sealing of the parasite 
within the erythrocyte (Fig. 3). However, although each step of  

Underlying this rationale, in addition to its central role in 
disease pathology, is strong evidence that merozoite antigens 
are targets of protective immunity (Cohen and Butcher, 1970; 
Persson et al., 2008) and of the ability of antibodies target-
ing these proteins to block erythrocyte invasion (Wåhlin et al., 
1984; Blackman et al., 1994; Lopaticki et al., 2011). How-
ever, to date, efforts to generate an effective blood stage vac-
cine have not met with much success primarily because of 
antigenic diversity and a poor understanding of protective 
host immune responses (for review see Anders et al., 2010). 
In recent years, developments in genomics and systems ap-
proaches have increased understanding of merozoite pro-
teins involved in host cell invasion as well as host immune 
responses (Cowman and Crabb, 2006; for review see Anders 
et al., 2010), which lies at the core of recent strategies to 
develop blood stage vaccines to aid future efforts to control 
this global disease.

Merozoite biology
The blood stage merozoite is the smallest cell within the 
Plasmodium lifecycle. Indeed, it is one of the smallest eukary-
otic cells known (1–2 µm) and is exquisitely adapted for 
invasion of erythrocytes (Bannister et al., 1986). The mero-
zoite has the conventional organelle repertoire of eukaryotic 
cells with the overall cytoskeletal architecture of an apicom-
plexan cell (Morrissette and Sibley, 2002), the phylum to which 
malaria parasites belong (Fig. 2 A). This includes an apical 
complex of secretory organelles (micronemes, rhoptries, and 
dense granules), mitochondrion, nucleus, and relict plastid 
(apicoplast; McFadden et al., 1996; Roos et al., 1999; Bannister  
et al., 2000b). Underlying the plasma membrane is a membra-
nous network of flattened vesicles called the inner membrane 
complex (IMC), which is subtended by two to three subpel-
licular microtubules (for review see Bannister et al., 2000a). 
In recent years, definition of the apical secretory organelles has 
blurred with the identification of dense granule-like exonemes  

Figure 1. The life cycle of P. falciparum. The Anopheles 
mosquito bites a human and injects sporozoite forms. These 
move to the liver and invade hepatocytes, in which they 
develop to produce exoerythrocytic merozoite forms that are 
released into the blood stream. Merozoites invade eryth-
rocytes and grow into trophozoites and mature schizonts. 
Merozoites are released that reinvade new erythrocytes. 
Gametocytes, formed from the asexual blood stage, are 
taken up by a feeding mosquito into the gut where they  
mature to form male and female gametes. The fertilized 
zygote develops to an ookinete and an oocyst and finally 
sporozoites that migrate to the salivary glands.
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Molecules involved in initial  
erythrocyte contact
Proteins located on the merozoite surface have been of inter-
est over the years because they are considered prime vaccine 
candidates, being directly exposed to host immune responses 
on merozoite release (Egan et al., 1996). These are divided 
into proteins anchored to the merozoite plasma membrane via 
a glycosylphosphatidylinositol (GPI) anchor and others associ-
ated by interaction with surface proteins (Fig. 2 A). These pro-
teins are not evenly spread over the merozoite and some have 
apical concentrations, which is consistent with a direct role in 

invasion has been described in detail by microscopy, they 
are incompletely understood at the molecular level and only 
recently described in cellular detail for P. falciparum merozo-
ites (unpublished data). Availability of the genome sequence 
from P. falciparum and other Plasmodium spp. together with 
proteomic and transcriptional information has, however, greatly 
assisted in the identification of proteins associated with the 
merozoite. This includes many located on the surface or within 
micronemes and rhoptries, likely to be some of the critical 
proteins that mediate the molecular basis of invasion (Table 1 
and Fig. 2 A).

Figure 2. Three-dimensional diagram of a merozoite and its core secretory organelles. (A) The sectioned cell highlights the major cellular architecture and 
organelle repertoire of the invasive merozoite, with dissected organelles listing core molecular constituents of these key invasion-related compartments. Of 
note, though definition of secretory organelles is limited to dense granules, micronemes, and rhoptries, there is mounting evidence that subpopulations of 
organelles and subcompartmentalization within organelles (specifically the rhoptries) certainly exist. The rhoptries are divided into three segments, with 
PfRh1, -2a, -2b, -4, and -5 in the most distal segment and RON2-5 in the next segment. This organization is predicted based on functionality and early 
release of the PfRh proteins onto the merozoite surface during invasion as opposed to the release of the RON protein complex, but it has not yet been 
demonstrated definitively (Riglar et al., 2011). The dense granules are released very soon after invasion and include components of a putative protein 
translocon that is inserted into the parasitophorous vacuole membrane. Ring-infected erythrocyte surface antigen (RESA) is released from dense granules 
and exported to the infected red blood cell. The body of the rhoptry bulb contains lipids and other proteins involved in forming the parasitophorous vacuole, 
including RAP1-3 and RAMA. (B) A P. falciparum merozoite in the process of invading a human red blood cell (image courtesy of S. Ralph, University of 
Melbourne, Melbourne, Australia). Bar, 200 nm.

Figure 3. A time course of merozoite invasion of the erythrocyte from egress through postinvasion. (A) A cellular overview is given with associated tim-
ing of organelle secretion and key mechanistic or signaling steps listed below. After apical reorientation, the merozoite establishes a tight junction that is 
marked by RON4 and AMA1. The tight junction is ultimately connected to the actomyosin motor, although the exact nature of this has yet to be established. 
As the tight junction moves across the merozoite surface, proteins are shed into the supernatant through the activity of proteases such as ROM4, ROM1, 
SUB1, and SUB2. The parasitophorous vacuole and membrane are formed primarily from the rhoptries, although some red cell membrane components are 
included, which expel their contents, forming the space into which the parasite can move under the action of the actomyosin motor. Once the tight junction 
reaches the posterior end of the parasite, the membranes seal by an as yet unknown mechanism.
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Table 1. The invasion-related proteins of the P. falciparum merozoite

Name PlasmoDB accession 
number

Genetic 
knockout

Localization in merozoite  
before/during invasion

Potential function Feature/structure

GPI-anchored 
MSPs

MSP-1 PF3D7_0930300 N Surface/complex shed during 
invasion with MSP1/19 EGF 
C-terminal domain retained in 

PV of ring stage

Putative Band 3 ligand; C-terminal 
double EGF domain redundant  

for divergent molecules:  
processed SUB1 and -2

Two C-terminal EGF domains:  
compact side by side arrangement

MSP-2 PF3D7_0206800 N Surface Highly polymorphic; likely  
structural role as surface coat

Unordered repetitive structure

MSP-5 PF3D7_0207000 N Surface Not known C-terminal EGF domain
MSP-4 PF3D7_0206900.1 Y Surface Not known C-terminal EGF domain
MSP-10 PF3D7_0620400 N Surface Not known C-terminal EGF domain
Pf12 PF3D7_0612700 Y Surface/shed Potential adhesive protein 6-Cys domains
Pf38 PF3D7_0508000 Y Surface/shed Potential adhesive protein 6-Cys domains
Pf92 PF3D7_1364100 Y Surface/shed Not known Cys-rich protein
Peripheral sur-

face proteins
Pf113 PF3D7_1420700 N Surface/shed Not known No data
MSP-9 (ABRA) PF3D7_1228600 Y Surface/shed Putative protease No data
S-antigen PF3D7_1035200 N Secreted into PV of schizont  

and released on egress
Not known; potential  

immunomodulatory role
Highly repetitive and diverse 

protein
GLURP PF3D7_1035300 Y Secreted into PV of schizont  

and released on egress
Not known Repetitive Glutamate-rich

MSP-3 PF3D7_1035400 Y Surface/shed Not known; binds to MSP-1 Repetitive and Glutamate-rich
MSP-6 PF3D7_1035500 Y Surface/shed Not known; binds to MSP-1 Leucine zipper-like C-terminal 

domain
H101 (MSP-11) PF3D7_1035600 Y Surface/shed Not known MSP-3 family, leucine zipper-like 

C-terminal domain
H103 PF3D7_1035900 Y Surface/shed Not known MSP-3 family, leucine zipper-like 

C-terminal domain
MSP-7 PF3D7_1335100 Y Surface/shed Associates with MSP-1, gene 

knockout in P. berghei shows 
important in invasion of mature 

erythrocytes

No data

MSP-7-like (MSRP2) PF3D7_1334800 Y Surface/shed Not known; may associate  
with MSP-1

MSP-7 family

MSPDBL-1 PF3D7_1036300 Y Surface/shed Binds to unknown receptor  
on red cell

Member of EBL family, DBL  
and leucine zipper-like domains

MSPDBL-2 PF3D7_1035700 Y Surface/shed Binds to unknown receptor  
on red cell

Member of EBL family, DBL  
and leucine zipper-like domains

SERA3 PF3D7_0207800 Y Secreted into PV of schizont  
and released on egress

Cysteine protease domain  
with active site serine

Cysteine protease domain

SERA4 PF3D7_0207700 N Most secreted into PV of schiz-
ont and released on egress

Cysteine protease domain  
with active site serine

Cysteine protease domain

SERA5 PF3D7_0207600 N Secreted into PV of schizont  
and released on egress

Cysteine protease domain  
with active site serine

Cysteine protease domain

SERA6 PF3D7_0207500 N Most secreted into PV of schiz-
ont and released on egress

Cysteine protease domain  
with active site cysteine

Cysteine protease domain

Pf41 PF3D7_0404900 Y Surface/shed Potential adhesive protein;  
binds Pf12 on merozoite

6-Cys domains

Plasma  
membrane 
proteins

ROM1 PF3D7_1114100 Y Mononeme (proposed  
new apical organelle) or  

microneme/surface

Rhomboid protease; cleaves 
AMA1, MAEBL, EBLs, PfRh  

proteins; likely role after invasion 
in PV formation

Multipass transmembrane protein

ROM4 PF3D7_0506900 ND Surface/shed Rhomboid protease; cleaves 
AMA1, MTRAP, EBL, and PfRh  
proteins in transmembrane to  

allow shedding during invasion

Multipass transmembrane protein
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Table 1. (Continued)

Name PlasmoDB accession 
number

Genetic 
knockout

Localization in merozoite  
before/during invasion

Potential function Feature/structure

Microneme  
proteins

AMA 1 PF3D7_1133400 N Micronemes/surface and binds 
to RON2 that has been inserted 

into red cell membrane and 
tracks with tight junction

Released on merozoite surface; 
binds RON complex; potential 

ligand for McLeod antigen,  
phosphorylation of cytoplasmic 
tail essential, may be involved  

in signaling

PAN (plasminogen, apple,  
nematode) motifs

EBA-175 PF3D7_0731500 Ya Micronemes/surface and binds 
to glycophorin A

Binds to glycophorin A, likely 
signaling role for invasion

EBL family with DBL domains; 
“handshake” association between 
region II dimers creates groove for 

glycophorin A binding
EBA-181/JESEBL PF3D7_0102500 Y Micronemes/surface and  

binds to unknown receptor
Binds to unknown receptor on 

red cell
EBL family member with DBL  

domains
EBA-140/BAEBL PF3D7_1301600 Y Micronemes/surface and  

binds to glycophorin C
Binds to glycophorin C on red cell EBL family member with DBL  

domains
EBL-1 PF3D7_1371600 Y No data Binds to glycophorin B, nonfunc-

tional because of mutations  
causing truncated protein

EBL family member with DBL  
domains

PTRAMP PF3D7_1218000 ND Not known; cleaved by SUB2 on 
merozoite surface

Long extended structure

PfRipr PF3D7_0323400 N Micronemes/surface and  
binds to PfRh5

Binds to PfRh5 10 EGF domains, 87 cysteines

MTRAP PF3D7_1028700 N Micronemes/PV Potential motor-associated protein Thrombospondin-like domains
PTRAMP PF3D7_1218000 N Micronemes/surface Potential motor-associated protein Thrombospondin-like domains
SPATR PF3D7_0405900 ND Micronemes/surface Not known for blood stages Thrombospondin-like domains
GAMA PF3D7_0828800 ND Micronemes/surface Binds to red cells; has GPI anchor No data
SUB2 PF3D7_1136900 N Micronemes/PV Protease that processes MSP-1, 

MSP-6, MSP-7, AMA1, PTRAMP 
and other proteins to prime mero-

zoite for invasion

Subtilisin-like serine protease

Exoneme  
proteins

SUB1 PF3D7_0507500 N Exonemes/PV Protease that processes MSP-1, 
MSP-6, MSP-7, AMA1, RAP1, 
MSRP2 and SERAs to prime  

merozoite for invasion

Subtilisin-like serine protease

Rhoptry neck  
proteins

PfRh1 PF3D7_0402300 Ya Rhoptry neck/surface Binds to red cells via receptor Y PfRh family
PfRh2a PF3D7_1335400 Y Rhoptry neck/surface Binds to red cells via receptor Z PfRh family
PfRh2b PF3D7_1335300 Y Rhoptry neck/surface Binds to red cells via receptor Z PfRh family
PfRh4 PF3D7_0424200 Y Rhoptry neck/surface Binds to red cells via complement 

receptor 1
PfRh family

PfRh5 PF3D7_0424100 N Rhoptry neck/surface forms 
complex with Ripr

Binds to red cells via Basigin Classed as PfRh family but lacks 
homology and no transmembrane 

so likely functionally distinct
RON2 PF3D7_1452000 ND Rhoptry neck/into red cell 

membrane
Inserted in red cell membrane at 
invasion, forms complex at tight 
junction with RON proteins and 

AMA-1

Multipass transmembrane protein

RON3 PF3D7_1252100 ND Rhoptry neck/into red cell Likely also forms complex at tight 
junction with other RON proteins 

and AMA-1

No data

RON4 PF3D7_1116000 ND Rhoptry neck/into red cell Injected into red cell, binds to 
RON2 and forms a complex at 
tight junction with RON proteins 

and AMA-1

Binds to AMA1 via hydrophobic 
groove

RON5 PF3D7_0817700 ND Rhoptry neck/into red cell Forms complex at tight junction 
with RON proteins and AMA-1

No data

ASP PF3D7_0405900 ND Rhoptry neck/surface Not known; has putative GPI 
anchor

Sushi domains

N, knockout attempt unsuccessful; Y, knockout generated; ND, knockout not attempted; PV, parasitophorous vacuole; MSP, merozoite surface protein
aEBL and PfRh families show overlap in function and, while individually nonessential, overall are essential.
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as a multiprotein complex, facilitating the display of individ-
ual epitopes to the external environment (Kauth et al., 2003, 
2006). Of note, MSP-1 undergoes a complex series of highly 
regulated proteolytic cleavages by subtilisin 1 and 2 to form 
its macromolecular complex (Koussis et al., 2009), with pro-
cessing required for binding of proteins such as MSP-6 (Kauth  
et al., 2006). MSP-2 is also essential and has a strong tendency 
to self-associate to form fibrils, which suggests that it is respon-
sible for the dense surface coat present on the merozoite seen 
by electron microscopy (Low et al., 2007). MSPDBL1 and -2  
adhere specifically to the erythrocyte through their EBL do-
mains and are consequently likely to be involved in initial mer-
ozoite interaction with the red cell surface (Wickramarachchi  
et al., 2009; Hodder et al., 2012; Sakamoto et al., 2012). Less 
clear are the SERA proteases. Though they share a papain-
like protease domain, not all are predicted to have a functional  
active site (Hodder et al., 2003). Only SERA5 and -6 have 
proven refractory to genetic disruption (McCoubrie et al., 
2007), highlighting SERA6, which retains the functional cys-
teine residue in the active site, as a probable protease that may 
play an important role in invasion.

An intriguing question is why the parasite invests so heav-
ily in exposed macromolecular and antigenically diverse sur-
face proteins. It is likely that some modulate host responses  
to assist in merozoite survival after release from the infected 
erythrocyte (Oeuvray et al., 1994), such as via release of an  
immunological “smoke screen” or blocking activity of the com-
plement pathway. For example, a nonuniform geographical 
distribution of Knops blood group complement receptor 1 may 
be suggestive of selective pressures exerted by malaria to avoid 
complement-mediated detection (Moulds, 2002). Although there 
is no molecular evidence to support this (Tetteh-Quarcoo et al., 
2012), it is likely that Plasmodium spp. have developed mecha-
nisms to protect the merozoite against complement and other 
innate host responses, with extrinsic proteins being prime can-
didates for this function.

Molecules functioning directly in invasion
The dramatic and rapid process of committed red cell binding, 
reorientation to the parasite apical pole, and active invasion  
involve multiple P. falciparum proteins. These processes appear 
finely coordinated and dependent on step-wise release and pro-
cessing of proteins that, unlike their surface counterparts, are 
released just prior to or contiguous with invasion (Singh et al., 
2010; Riglar et al., 2011). The different subcellular localiza-
tions of each protein and subcompartmentalization within  
secretory organelles (rhoptries in particular; Richard et al., 
2009) likely play a critical coordinating role. Indeed, segrega-
tion of proteins allows each to be stored and released onto the 
invading parasite surface “just in time” to generate functional 
invasion complexes (Alexander et al., 2006; Besteiro et al., 
2009; Chen et al., 2011). This process is shared among several 
merozoite invasion proteins and may function so that essential 
complexes are exposed to potential immune detection for a 
minimum amount of time.

The proteins that govern merozoite invasion can be loosely 
divided into two classes: adhesins that function as ligands binding 

invasion (Sanders et al., 2005). Several include domains sug-
gesting that they are involved in protein–protein interactions. 
This includes Duffy binding–like (DBL) or erythrocyte bind-
ing–like (EBL) domains that are specific to Plasmodium spp. 
and present in many proteins of diverse function from invasion  
to postinvasion remodeling (Haynes et al., 1988; Adams et al., 
1992) and cytoadherence (Su et al., 1997). Others include 
EGF (Savage et al., 1972) and six-cysteine (6-Cys) domains 
again implicated in protein–protein interactions (Ishino et al., 
2005). The 6-Cys family is related to the surface antigen 
(SAG)-related sequence (SRS) superfamily found in coccidian 
members of the apicomplexan phylum (Gerloff et al., 2005; 
Arredondo et al., 2012).

Since the identification of the first merozoite surface  
protein 1 (MSP-1; Holder, 1988), a greatly expanded repertoire 
of surface proteins has been assembled (Table 1 and Fig. 2 A; 
Cowman and Crabb, 2006). MSP-1 is the most abundant and 
functionally conserved protein on the merozoite and is associ-
ated with the parasite membrane via a GPI anchor (Gerold et al., 
1996). Eight other surface-bound GPI-anchored proteins have 
been identified, some of which have EGF or 6-Cys domains 
(Table 1; Sanders et al., 2005). One of these is MSP-2, which 
lacks identifiable domains and is intrinsically unstructured, 
containing significant amounts of sequence polymorphism and 
amino acid repeats (Low et al., 2007).

Surface proteins that are indirectly associated with the 
merozoite surface can be divided into three groups that include 
MSP-3, MSP-7, and the serine repeat antigen (SERA) pro-
tease-like family (for review see Cowman and Crabb, 2006). 
The MSP-3 family consists of a group of proteins encoded 
by clustered genes, some of which share similar motifs and a  
leucine-rich zipper-like domain (Gardner et al., 2002; Pearce 
et al., 2005). MSP-3, MSP-6, and MSP-7 associate with the 
merozoite surface via binding to the major surface protein 
MSP-1 (Kauth et al., 2003, 2006). MSPDBL-1 and -2 are also 
related to MSP-3; however, they contain an additional EBL 
domain (Wickramarachchi et al., 2009; Hodder et al., 2012; 
Sakamoto et al., 2012). The MSP-7 family consists of MSP-7, 
which binds tightly to MSP-1 (Kauth et al., 2006), and there 
are also six related genes that could encode MSP-7–like pro-
teins called MSRPs, one of which is expressed on the mero-
zoite surface (MSRP2; Kadekoppala et al., 2010). The SERA 
proteins (of which there are nine members in P. falciparum) 
contain a papain-like protease domain but also have additional 
regions that are likely involved in protein–protein interactions 
with other GPI-anchored proteins such as MSP-1 (Aoki et al., 
2002; Hodder et al., 2003).

Despite this abundance of proteins on the surface, their 
functions are not fully known, although it is clear that some are 
required for the survival of the parasite, as the corresponding 
gene cannot be disrupted and specific antibodies can directly 
inhibit invasion (Blackman et al., 1994; O’Donnell et al., 2000). 
MSP-1, itself essential (O’Donnell et al., 2000), shows some 
evidence for binding directly to the erythrocyte surface Band 3 
(Goel et al., 2003); however, definitive proof of the mechanistic 
importance of this interaction is lacking. Increasing evidence 
suggests that proteins such as MSP-7 and -6 bind to MSP-1 
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The stages of invasion
Important steps required for merozoite invasion begin before 
egress from the host cell (either hepatocytes or erythrocytes), 
which entails a process of “priming” proteins for a new round 
of entry (Fig. 3). An essential subtilisin-like protease called 
PfSUB1 is discharged from discrete apical organelles termed 
exonemes into the parasitophorous vacuolar space (Yeoh et al., 
2007). PfSUB1 is responsible for proteolysis of the SERA 
proteins (Arastu-Kapur et al., 2008; Koussis et al., 2009; 
Silmon de Monerri et al., 2011). Along with a second sub-
tilisin (PfSUB2), PfSUB1 also mediates primary proteolytic 
processing of merozoite surface protein 1 (Barale et al., 1999; 
Koussis et al., 2009; Child et al., 2010), as well as several 
other merozoite surface proteins (Koussis et al., 2009). Although 
many of these proteolytic cleavage events appear to be es-
sential for invasion (Child et al., 2010), their exact function 
has yet to be established.

Once the merozoite is released from the infected eryth-
rocyte, it is exposed to low potassium levels. This triggers 
calcium release that activates secretion of adhesins and inva-
sins from micronemes onto the parasite surface (Treeck et al., 
2009; Singh et al., 2010; Srinivasan et al., 2011). When the 
protease-primed and activated merozoite encounters an eryth-
rocyte, low-affinity interactions occur with the erythrocyte 
membrane, most likely governed by members of the merozoite 
surface class of proteins (Dvorak et al., 1975; Hodder et al., 
2012). Among the likely candidates are MSPDBL1 and -2 and 
the 6-Cys protein family (Ishino et al., 2005; Sanders et al., 
2005; Wickramarachchi et al., 2009; Sakamoto et al., 2012). 
Initial interaction involves major movement of the merozoite 
and dramatic ruffling of the erythrocyte membrane (Gilson and 
Crabb, 2009). It is not known, however, if these are parasite-
specific processes or whether the merozoite signals change 
in the cytoskeleton of the erythrocyte, which is then responding  
to merozoite interaction (Zuccala and Baum, 2011). Long-
standing dogma has traditionally placed the role of the eryth-
rocyte as being passive in invasion; however, the dramatic 
physical deformations seen and recent implications from hepa-
tocyte invasion may suggest otherwise (Gonzalez et al., 2009).

After initial interaction, irreversible attachment to the 
erythrocyte occurs at the apical end of the merozoite, probably 
through attachment of EBL and PfRh proteins. These appear 
to mediate commitment to invasion and trigger subsequent 
events leading to entry (Singh et al., 2010; Riglar et al., 2011;  
Srinivasan et al., 2011). Further subcompartmentalization of 
the rhoptries (after initial PfRh protein release) facilitates the 
stepwise function of proteins, commencing with the RON com-
plex. This is both released and inserted into the erythrocyte, 
with RON2 acting as an anchor in the erythrocyte membrane 
for RON complex assembly, and as a likely traction point on 
which the merozoite bears for entry (Besteiro et al., 2011). 
This allows AMA1, which is present on the merozoite sur-
face after release from the micronemes at egress, to complex 
with RON2, thus forming a link between the erythrocyte and 
parasite (Riglar et al., 2011). Formation of the junction likely 
triggers the release of the rhoptry bulb, providing proteins and 
lipids required for the parasitophorous vacuole membrane and 

directly to specific receptors on the erythrocyte and invasins 
that function in the invasive process but do not necessarily 
bind directly to receptors on the host cell (Fig. 2 B and Table 1). 
Adhesins are located in both micronemes and rhoptries, and 
are in general Plasmodium-specific or provide cell specificity– 
restricting parasites (in the case of merozoite invasion) to the 
erythroid lineage (for reviews see Cowman and Crabb, 2006; 
Tham et al., 2012). Currently the main adhesins identified  
belong to two protein families that include the EBL and reticu-
locyte binding–like homologues (PfRh), localizing to the mi-
cronemes and neck of the rhoptries, respectively (Sim et al., 
1990; Orlandi et al., 1992; Rayner et al., 2000; Triglia et al., 
2001; Duraisingh et al., 2003). Different members of these 
adhesins bind to specific receptors, with EBA-175, Ebl1, and 
EBA-140 (also known as Baebl) binding to glycophorin A,  
B, and C, respectively (Sim et al., 1994; Lobo et al., 2003; 
Maier et al., 2003; Mayer et al., 2009). PfRh4 binds to com-
plement receptor 1 (Tham et al., 2010). The PfRh and EBL 
protein families play an important role in phenotypic varia-
tion that allows different strains of P. falciparum to invade 
using alternative host receptors (Sim et al., 1990; Orlandi  
et al., 1992; Rayner et al., 2000; Triglia et al., 2001; Duraisingh 
et al., 2003).

The protein PfRh5 has recently been defined as an adhe-
sin that binds erythrocyte surface CD147 or basigin (Crosnier 
et al., 2011). It is classified as a member of the PfRh family; 
however, it has no transmembrane region (present in all other 
PfRh family members), is broadly refractory to disruption, 
and shows little homology, suggesting that it may be function-
ally distinct (Hayton et al., 2008; Baum et al., 2009). Indeed,  
unlike other PfRhs, recent data has identified a conserved bind-
ing partner for PfRh5, the Rh5-interacting protein (PfRipr), 
which is localized in the micronemes and forms a complex 
with the rhoptry neck protein (Chen et al., 2011). Micronemal 
proteins from the thrombospondin-related anonymous protein 
(TRAP) family, including merozoite TRAP (MTRAP) and 
Plasmodium thrombospondin-related apical merozoite protein 
(PTRAMP), may provide a functional link to the internal para-
site actin-myosin motor, bridging a gap between adhesins and 
invasins (Thompson et al., 2004; Baum et al., 2006; Uchime 
et al., 2012).

All invasins identified to date appear to be essential for 
merozoite invasion. Apical membrane antigen-1 (AMA1) is 
the best known of these proteins and is considered to be an 
important vaccine candidate that has progressed to clinical 
trials (Thera et al., 2011). As a micronemal protein (Narum  
and Thomas, 1994), AMA1 shares the same subcellular local-
ization as the EBL family, although they are not present in 
the same individual organelles, which suggests the existence 
of micronemal subpopulations (Healer et al., 2002). AMA1 
interacts with a set of rhoptry neck proteins (the RON com-
plex) that comes together at the tight junction during invasion 
(Alexander et al., 2005, 2006; Besteiro et al., 2009; Richard  
et al., 2010; Lamarque et al., 2011; Tyler and Boothroyd, 
2011). This pairing of proteins from different compartments 
appears to be a common theme with invasins and other critical 
components of erythrocyte entry (Chen et al., 2011).
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Riglar et al., 2011). Despite this progress in understanding, 
there are gaps to be filled in our knowledge. The interaction 
of the merozoite with erythrocytes is dynamic, with parasite 
and host cell undergoing dramatic changes (Gilson and Crabb, 
2009). The identity of the parasite ligands and host receptors  
involved in this process are unknown, although there are potential 
culprits. Commitment to invasion by a merozoite occurs once 
the apical end interacts with the erythrocyte, and although EBL 
and PfRh proteins appear to be involved in this signaling, there 
are gaps in our understanding. Once the merozoite has activated 
invasion, it inserts the RON complex and potentially other pro-
teins under and into the erythrocyte membrane. Current evi-
dence would suggest that a hole in the erythrocyte membrane is 
not generated for injection of proteins (of note, no perforin-like 
membrane attack proteins are expressed in this lifecycle stage; 
Kaiser et al., 2004), and therefore may occur via some form of 
membrane fusion. The tight junction necessarily must link the 
host cell and parasite membrane to the actomyosin motor of the 
merozoite, with the only protein so far suggested to be involved 
in this linkage being MTRAP. The RON complex and AMA1 
also appear to play key roles at the junction, though the role of 
AMA1 as a link between erythrocyte and the parasite surface 
is now a matter for debate; however, there is no evidence sug-
gesting that these bind to the actomyosin motor either directly 
or indirectly (Angrisano et al., 2012). It is therefore likely that 
other proteins must be involved in the formation and structure 
of the tight junction. Finally, as the merozoite moves into the 
red cell, the erythrocyte membrane and the newly formed para-
sitophorous vacuole membrane must fuse to seal the invasion 
process. There is no information on how this membrane fusion 
process is initiated and controlled, and although it may involve 
dynamin-like proteins, none have been identified.

The case for a blood stage vaccine, and global need, is still 
profound. An increased understanding of merozoite biology 
and the intricacies involved in the exquisite process of invasion 
will certainly provide critical knowledge for future develop-
ment of novel and synergistic strategies to target erythrocyte 
entry as a vehicle for treating and controlling malaria.
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