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Abstract

We have been developing a method of plasma gene transfection that uses microdischarge

plasma (MDP) and is highly efficient, minimally invasive, and safe. Using this technique,

electrical factors (such as the electrical current and electric field created through processing

discharge plasma) and the chemical factors of active species and other substances focusing

on radicals are supplied to the cells and then collectively work to introduce nucleic acids in

the cell. In this paper, we focus on the electrical factors to identify whether the electric field

or electrical current is the major factor acting on the cells. More specifically, we built a spatial

distribution model that uses an electrical network to represent the buffer solution and cells

separately, as a substitute for the previously reported uniform medium model (based on the

finite element method), calculated the voltage and electrical current acting on cells, and

examined their intensity. Although equivalent circuit models of single cells are widely used,

this study was a novel attempt to build a model wherein adherent cells distributed in two

dimensions were represented as a group of equivalent cell circuits and analyzed as an elec-

trical network that included a buffer solution and a 96-well plate. Using this model, we could

demonstrate the feasibility of applying equivalent circuit network analysis to calculate electri-

cal factors using fewer components than those required for the finite element method, with

regard to electrical processing systems targeting organisms. The results obtained through

this equivalent circuit network analysis revealed for the first time that the distribution of volt-

age and current applied to a cellular membrane matched the spatial distribution of experi-

mentally determined gene transfection efficiency and that the electrical current is the major

factor contributing to introduction.

Introduction

Gene transfection is a technique used for introducing external nucleic acids into cells to

express their functionality. These techniques are necessary in a wide variety of fields, including
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regenerative medicine, drug discovery, and plant breeding [1–5]. Conventional methods of

gene transfection can be largely classified into one of three categories: physical methods, chem-

ical methods, and biological methods. In electroporation [6], which is a type of physical gene

transfection, electrical pulses are applied to the cell suspension to open small size (less than 20

nm [7]) holes in the cellular membrane and subsequently DNA is physically transferred into

the cell. This method requires a temporary but a large variable electric field to create temporary

holes on the cellular membrane, thereby resulting in a high rate of cellular death. Genetic dam-

age caused by this large electric field can also result in loss of cell functionality. Another issue

with this method is that it requires a certain number of cells and therefore cannot be used for

gene transfection with cells attached to a container. In lipofection, which is a common type of

chemical gene transfection, genes are enclosed in phospholipid bilayers called liposomes

before passing them through the cellular membrane [8]. Phospholipids carrying a positive

charge are used to increase affinity with the surfaces of the cellular membrane and improve

introduction efficiency. Although genes can be introduced with a high rate of efficiency in

cells that are growing, the efficiency of introduction is low for primary cultured cells that have

undergone some specialization and have low growth potential. Furthermore, reagents are

expensive, and this method is not suited for processing a large number of cells. In a viral vec-

tor, which is a type of biological gene transfection, a detoxified virus is used as the means (vec-

tor) for delivering genes into cells. The target gene is inserted into the viral genome that then

infects cells or tissue, thereby introducing the gene into the target cells [9]. However, because

this method involves handling viruses, all operations must be performed at a P2-level recombi-

nation experiment facility. It also carries the risk of pathogenic expression and cancerization

[10]. Conventional methods of gene transfection have thus presented a range of issues, result-

ing in the need for a new method of gene transfection that is highly efficient, minimally inva-

sive, and safe.

In 2002, a method of gene transfection using a completely novel concept was discovered

wherein cells are exposed to discharge plasma in order to promote gene transfection [11, 12].

This method allows for efficient gene transfection to be performed without inducing cytotoxic-

ity and can even be safely used for gene therapy and other medical uses. In response, research-

ers began reporting on techniques using various plasma sources and plasma exposure methods

to introduce genes and molecules into a range of target cells and substances [13–26]. We dis-

covered the effectiveness of microdischarge plasma (MDP) by utilizing extremely thin elec-

trodes for reliably introducing plasmid DNA with a high molecular weight and demonstrated

that this method could provide excellent introduction efficiency as well as a high cell survival

rate [27–31]. The electrical factors (such as electric fields and electrical current) and the chemi-

cal factors of active species and other substances focusing on radicals produced by plasma act

on cells caused endocytosis through the combined effect of both types of factors, resulting in

introduction—without introduction occurring even if either factor is activated independently

[31]. Focusing on the actions of each factor, Sasaki et al. reported that for small particles such

as calcium ions, the activation of TRP channels via short-lived active species promotes flux

into the cell [22]. We employed endocytosis-inhibiting reagents such as MβCD (Sigma-

Aldrich) to analyze the introduction mechanism for several sizes of molecules. Although intro-

duction was performed without any impact from endocytosis inhibitors for middle molecules

(such as in YOYO-1) and even smaller introduction substances, we observed that endocytosis

inhibition had a significant impact on introduction for macromolecules such as plasmid DNA;

that is, introduction for large molecules is performed through endocytosis, but another mecha-

nism is utilized for introduction in small and middle molecules. This revealed the need to clar-

ify and differentiate the size of introduction substances when discussing the mechanisms

behind plasma molecule introduction phenomena [29–32]. The important issue now is to
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clarify the effects that the electrical and chemical factors have during introduction with regard

to introduction for macromolecules such as plasmid DNA. We herein focus on electrical fac-

tors in an attempt to identify the major electrical factor that contributes to gene transfection.

Previously, we had modeled a buffer solution in a 96-well plate as a uniform medium, calcu-

lated the electric field distribution in the solution using the finite element method and con-

firmed that the distribution profiles in the radial direction match for both electric field intensity

and introduction efficiency [31]. Providing an electric field with conductivity will help attain

electrical current density; thus, the electrical current distribution will have the same profile as

the electric field distribution. Therefore, to determine whether electrical current or the electric

field is the primary factor in the introduction, we must calculate the electrical current flowing

through cells and the voltage applied to cells. This can be achieved using a model that takes the

spatial distribution of cells and buffer solution into consideration (rather than a uniform

medium) and then discusses not only the distribution profile but also its absolute values.

During our research, we used an electrical network to represent a plasma gene transfection

experimental system (comprising electrodes, cells, buffer solution, and a 96-well plate), calcu-

late the electrical current density and electric field, and conduct an analysis. Using an equiva-

lent circuit to create a model (rather than using the finite element method) allows for

calculations to be made with few components for both steady analysis and transient analysis.

An additional benefit of using an equivalent circuit for analysis is that replacing the system

with a simple electrical circuit model makes it easier to initiate phenomena that occur in equiv-

alent parts of the system based on the behavior of the circuit elements. There are existing

methods for modeling single cells using electrical circuits in general use [33, 34]. However, to

date, there have been no examples of using an electrical network to analyze the spatial distribu-

tion of a system with the entire system represented as an equivalent circuit network. In this

paper, we calculate the voltage applied and the electrical current flowing through cellular

membranes and cytoplasm during electrical network analysis; then, we compare the introduc-

tion rate with the spatial distribution of voltage and electrical current and subsequently esti-

mate the major components. We also analyze the absolute values of voltage and electrical

current and demonstrate that the major electrical factor behind the mechanism of plasma gene

transfection is not the electric field but the electrical current.

Materials and methods

Experiment

The details of the experimental method used for plasma gene transfection utilizing MDP are

provided in Reference 31. Fig 1 shows the structure of the plasma exposure area. The 96-well

plate is placed on top of a GND copper plate and a thin high-voltage electrode (diameter:

70 μm) is placed above the center of each well with a vertical gap of 1 mm. Mouse-derived

fibroblast L-929 (RCB1422: Riken BRC, Tsukuba, Japan) was cultivated adhering to the bot-

tom surface of each well with 100 μL culture medium for more than 24 h so that it would

become confluent. During incubation, the ambient temperature and a CO2 concentration

were maintained at 37˚C and 5% respectively. Before exposing the cells to plasma, the culture

medium was extracted; then, 6 μg of plasmids (pAcGFP1-N1: Clontech, Mountain View, CA)

were distributed into 6 μL of a TE/PBS buffer solution (adjusted to a conductivity of 0.376 S/

m) that was then dripped over the cells. A sinusoidal voltage with an amplitude of 15 kV (peak

to peak) and a frequency of 20 kHz was then applied to generate microplasma on the tips of

the high-voltage electrodes. Each well was subjected to MDP irradiation for 5 ms. Average

input power was (2.9 ± 0.1) W, which means the input energy for 5-ms exposure was

(14.7 ± 0.5) mJ.
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After a 5-ms exposure to the TE/PBS buffer solution, 100-μL culture medium was added to

each well. The sample was left to cultivate for 48 h and then observed with an imaging cytome-

ter (Cytell: GE Healthcare UK, Little Chalfont, UK). Green fluorescent protein was created by

introducing plasmids. The number of cells exhibiting green fluorescent light was then counted.

For easy evaluation of gene transfection efficiency, the ratio of green pixels to all pixels in a

fluorescence image taken with the imaging cytometer was defined as normalized gene trans-

fection efficiency. We employed this protocol because the cultured cells were confluent and

uniform. The distribution of plasmid introduction efficiency was then calculated in the radial

direction.

Modeling and calculation

Fig 2 shows an equivalent circuit comprising a single cell, its surrounding TE/PBS buffer solu-

tion, and a 96-well plate. The cell comprises a cellular membrane and cytoplasm, expressed as

capacitance Cm and resistance Rc. Cells are cultured adhered to the bottom surface of the

96-well plate (capacitor Cw) and exposed to plasma after dripping TE/PBS buffer solution

(resistor Rbr, Rbz) on them. The equivalent circuit network that simulates the distribution of

voltage and electrical current inside the well is therefore completed when the number of cells

in the circuit (shown in Fig 2) covers the bottom surface of the well in a net-like fashion. In

reality, some cells stack on other cells so that local multilayers can be present in some area.

However, the multilayers are localized in small areas. Thus, the monolayer model is employed

in this study.

However, the number of cells in a well would number in the thousands under the cultiva-

tion conditions described previously, and it would not be realistic to calculate such a high

number. We therefore apply two methods to simplify the equivalent circuit network. First, we

assume that the distribution of voltage and electrical current in the well has axial symmetry.

This allows us to return to a one-dimensional circuit network model wherein circuit

Fig 1. Plasma exposure area of a gene transfection device using microdischarge plasma.

https://doi.org/10.1371/journal.pone.0245654.g001
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components are connected only in the radial direction. Next, we gather multiple cells into a

single circuit element. As shown in Fig 3A, if the wavelengths of the voltage and electrical cur-

rent signals that transmit a distributed constant line parallel to the GND electrode are suffi-

ciently longer than the spatial size of the circuit, a ladder-shaped circuit can be used for

calculation as shown in Fig 3B. Here, _ZðxÞ and _Y ðxÞ denote the impedance (serial component)

and admittance _Y (parallel component) per unit transmission length at position x. Δx denotes

the length of a single component when the transmission line is split into narrow segments;

thus, the impedance (serial portion) and admittance (parallel portion) of a single component

are expressed as _ZDx and _YDx, respectively, while the impedance or admittance of a single

component is the impedance or admittance per unit length multiplied by the step size Δx.

The equivalent circuit network obtained through making the above simplifications is

shown in Fig 4. It has a three-layer structure comprising a 96-well plate layer, cell layer, and

TE/PBS buffer solution layer (in order from the lowest to the highest layer), with the cell layer

comprising a cellular membrane and cytoplasm. The height of each layer was set as follows.

The 96-well plate layer was set as Hw = 1.5mm from the actual size; the cell layer was set as Hc

= 50 μm from the diameter of the fibroblasts used during the experiment, while the TE/PBS

buffer solution layer was set as Hb = 50 mm (the value was determined by dividing the amount

of solution by the area of the bottom surface of the well). The cellular membrane layer had a

height of Hm = 0.5 μm, which is 1/100 times the height of the cell layer. There are 16 segments

in the radial direction, with each component laid out at a position

rn ¼ n �
1

2

� �

Dr ðn ¼ 1; 2; � � � ; 16Þ ð1Þ

from the center. The length of a single component in the radial direction is Δr = 0.2 mm. Fig

5A is a schematic of the nth cell layer. As shown in Fig 5B, there are multiple cells inside this

ring distributed in the horizontal direction. Together, these are modeled as a single component

in the equivalent circuit shown in Fig 4. The dimension in the radial direction is determined as

shown in Fig 5C to maintain the dimensional ratio Hc:Hm of the cell layer and cellular

Fig 2. Equivalent circuit comprising a single cell, its surrounding TE/PBS buffer solution, and a 96-well plate.

https://doi.org/10.1371/journal.pone.0245654.g002
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membrane layer. Therefore, the impedance and admittance of the component shown in Fig 5

are determined by multiplying the impedance and admittance per unit length given by the per-

mittivity of the cellular membrane and the conductivity of the cytoplasm multiplied by the

step size Δr.
The values of the element in the equivalent circuit network shown in Fig 4 are therefore

determined as follows. The resistance of the TE/PBS layer was

Rn
0
¼

1

sb

Hb

2prnDr
; ðvertical directionÞ ð2Þ

Rn
1
¼

1

sb

Dr
2prnHb

: ðradial directionÞ ð3Þ

A conductivity of σb = 0.376 S/m was used according to the conditions of the experiment. The

capacitance of the cellular membrane layer is

Cn
zi ¼ Cn

zo ¼ εm
2prnDr
Hm

; ðvertical directionÞ ð4Þ

Cn
ri ¼ Cn

ro ¼ εm
2prnHc

Dr=Hc � Hm
: ðradial directionÞ ð5Þ

Fig 3. (a) Distribution of voltage/electrical current propagating along a distributed constant line parallel to the GND

electrode, and (b) the associated ladder-shaped circuit simulating this.

https://doi.org/10.1371/journal.pone.0245654.g003
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Fig 4. Equivalent circuit network modeling buffer solution, cells, and a 96-well plate for plasma gene transfection.

https://doi.org/10.1371/journal.pone.0245654.g004

Fig 5. (a) Diagram showing the nth component from the cell layer in the equivalent circuit network. (b) Multiple cells are

included in a single component. (c) The dimension in the radial direction was determined such that it maintains the ratio

of the heights of the cell layer (Hc) and cellular membrane layer (Hm).

https://doi.org/10.1371/journal.pone.0245654.g005
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The resistance of the cytoplasm layer is

Rn
zi ¼ Rn

zo ¼
1

sc

ðHc � 2HmÞ=2

2prn � Dr=Hc � ðHc � 2HmÞ
; ðvertical directionÞ ð6Þ

Rn
ri ¼ Rn

ro ¼
1

sc

Dr=Hc � ðHc � 2HmÞ=2

2prn ðHc � 2HmÞ
: ðradial directionÞ ð7Þ

The cellular membrane permittivity εm and cytoplasm conductivity σc were each set to εm =

30ε0 and σc = 1 S/m, respectively, with reference to the values in Reference 34. ε0 is the permit-

tivity in vacuum. Based on the polystyrene capacitance εw = 2.4ε0, the capacitance of the

96-well plate layer was set to

Cn
0
¼ εw

2prnDr
Hw

: ð8Þ

The plasma approximates a conductor of with zero resistance, and a sinusoidal voltage source

with an amplitude of 15 kV (peak to peak) and frequency of 20 kHz was connected directly to

the n = 1st component in the TE/PBS buffer solution layer.

Using this model, we calculated the voltage and electrical current of each element using

LTspice and then calculated the distribution in the radial direction of the electric field intensity

and the electrical current density divided by the length or cross-sectional area of the compo-

nent corresponding to each element.

Results

Fig 6 shows the results of calculating the distribution in the radial direction of the effective val-

ues of the electric field and electrical current density. The dotted lines and dashed–dotted lines

indicate the values calculated from the elements connected in the vertical direction (Rn
0
, Cn

zi,

Cn
zo, Rn

zi, R
n
zo) and the radial direction (Rn

1
, Cn

ri, C
n
ro, R

n
ri, R

n
ro), respectively, in Fig 4. The solid lines

indicate the average values of the two portions. If we take the electrical current density of the

cellular membrane as an example, these values have the following meaning in a physical sense.

If the effective value of the electrical current density vector on the cellular membrane sur-

face S is Jc, the value of the electrical current density passing through the cellular membrane

and averaged spatially can be determined as follows:

Jc ¼
1

S

I

S

jJc � dSj: ð9Þ

However, S is the surface area of the cellular membrane, and dS is the surface component vec-

tor on the cellular membrane surface S. If we assume the shape of the cell to be a sphere of

diameter Hc, Eq 9 can be written as follows.

Jc ¼
2S0Jcr þ 2S0Jcz

S
¼

Jcr þ Jcz
2

: ð10Þ

Jcr and Jcz denote the r and z portions of Jc, respectively, and the surface area is therefore

S ¼ pH2
c . S0 ¼ pH2

c=4 is the surface of the planar projections of the cell (assumed to be a sphere

with the diameter Hc) in the r and z directions. Therefore, the electrical current density passing

through the cellular membrane is expressed as the average value of both the r and z portions.

Similarly, the average values of both the r and z portions are denoted with solid lines for the

electric field outside the cellular membrane.
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If we next consider the admittance in the unit length and unit cross-sectional area (hereafter

simply referred to as “admittance”), the TE/PBS buffer solution (σb = 0.376 S/m) is significantly

larger than the cellular membrane (ωεm = 33.4 μS/m), and a considerable portion of the electri-

cal current supplied by the plasma will flow into the TE/PBS buffer solution with some portion

branching in the vertical direction and flowing into the cell (Fig 6B). The amount of electrical

current density branched in the vertical direction will be approximately the same regardless of

the distance from the center, as shown below. If we next consider the impedance of elements

along the vertical route in Fig 4, the impedance of the 96-well plate (1/(ωεw) = 374 kOm) is sig-

nificantly larger in comparison; consequently, the majority of the voltage is applied by dividing

it to the 96-well plate. The distribution of the vertical components of the electrical current den-

sity and electric field in the radial direction will therefore be approximately uniform.

To verify that electrical factors contribute during the gene transfection process, we plotted

the distribution of the normalized gene transfection efficiency in the radial direction for the

electrical current density (the average values in both the vertical and radial directions) over-

lapped on the graphs shown in Fig 7. The electrical current density in cell (Jc) and in buffer solu-

tion (Jb) are shown in Fig 7A and 7B, respectively. For comparison, the electrical current

density in buffer solution calculated by finite element method is also shown in Fig 7C; that was

derived from the electric field shown in Ref. 31 multiplying conductivity of the buffer solution

(σb = 0.376 S/m). Although the vertical axis spans for the current density in Fig 7A–7C are same

(200 times), each vertical axis range is adjusted so that the current density and the transfection

efficiency overlap in wide range; they overlap in range of r< 1.6 mm for (a), 0.2 mm< r< 0.5

mm for (b), and 0.4< r< 1.6 mm for (c). The normalized transfection efficiencies (η) in Fig

Fig 6. Distribution in the radial direction of the effective values of (a) the electric field and (b) electrical current density.

https://doi.org/10.1371/journal.pone.0245654.g006
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Fig 7. Distribution in the radial direction of the effective values of the electrical current density for (a) the cell (Jc) and

(b) the TE/PBS buffer solution (Jb), and normalized gene transfection efficiency (η) [31]. The electrical current density

in the TE/PBS buffer solution derived from finite element method [31] is also shown in Fig 7C.

https://doi.org/10.1371/journal.pone.0245654.g007
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7A–7C are identical and were taken from Ref. 31. Note that the electrical current density J and

electric field E are expressed as J = σE (TE/PBS buffer solution or cytoplasm) or J = ωεE (cellular

membrane); thus, the distribution profiles in the radial direction match for both the electrical

current density and the electric field. Fig 7A and 7B show that although the distribution profiles

of the electrical current density flowing into (or the electric field applied to) the cell match the

introduction rate distribution profile within the range of r< 1.6 mm, the density of the electri-

cal current flowing into the TE/PBS buffer solution shows a different distribution profile than

that of the introduction rate. In the range of r< 0.4 mm, the current density derived from finite

element method (Fig 7C) shows different behavior compared with that derived from the circuit

network model (Fig 7A and 7B). This is due to the plasma attaching to this region, which is con-

sidered as a conductor (σ = 1 S/m). The discharge current is uniformly supplied to the top sur-

face of the buffer solution in this region, whereas in the circuit network model, it is supplied to

the first circuit unit (n = 1 in Fig 4), which covers the region of r< 0.2 mm.

Discussion

Within the range of r< 1.6 mm, the distribution profiles in the radial direction for the den-

sity of the electrical current flowing to the cell or the electric field applied to the cell are the

same as the distribution profile in the radial direction for the introduction rate. The results

therefore suggest that the electrical factors on the cell contribute toward gene transfection.

The electrical current densities in the TE/PBS buffer derived from two models show differ-

ent distribution (Fig 7B and 7C). Furthermore, the differing distribution profiles for the

electrical current density for the cell and TE/PBS buffer solution clearly demonstrate that

conducting an analysis using a spatial distribution model representing the TE/PBS buffer

solution separated from the cell, instead of using the uniform medium model demonstrated

in Reference 31, is important.

Plasmids are introduced in the cell through the cellular membrane; therefore, we next com-

pare the voltage and electrical current values during cellular membrane transport, which are

generally known, with the values calculated using this model. An electrical current of the order

of approximately 1 nA flows during membrane transport for basic ions such as potassium and

sodium that have passed through the ion channel, thereby creating a membrane potential of

around 0.01–0.1 V. Applying a voltage exceeding approximately 0.5–1 V to the cellular mem-

brane will cause irreversible damage to it and bring about cellular death [35–43]. We next take

the electric field of the cellular membrane shown in Fig 6 and convert it into voltage by multi-

plying the cellular membrane width by Hm (shown in Fig 8A); next, we convert the surface

area pH2
c assuming a spherical cell into electrical current by multiplying it by the electrical cur-

rent density (shown in Fig 8B). The blue shaded regions in the figure indicate the action poten-

tial (approximately 0.1 V or lower) induced through normal cell activity and the electrical

current value (of the order of 1 nA) caused by membrane transport through the ion channel.

The red shaded region indicates the voltage (approximately 0.5 V or higher) at which the cellu-

lar membrane would be damaged. If we exclude the area around the center, a voltage less than

that which would cause membrane damage (0.5–1 V) is applied to most regions, with a voltage

around the same order as that during ion membrane transport applied to the cellular mem-

brane. We now consider electrical current. The plasma supplies an electrical current that is

two digits larger than that during ion membrane transport. This shows that electrical current

density is the major acting factor among the electrical factors applied during the plasma gene

transfection process.

However, the distribution profiles for the introduction rate and electrical current density

do not match within the range of the area around the well (r> 1.6 mm). Both electrical and
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chemical factors are required during the plasma gene transfection process, and it is through

the combined effect of these that introduction occurs [31]. In contrast with how the electrical

factors (electrical current density or the electric field) are consecutively distributed up to the

edge of the well, the distribution of the introduction rate decreases drastically around r = 1.6

mm and drops to nearly zero outside that. This suggests that, although there are sufficient

chemical factors in the region where r< 1.6 mm and the introduction rate is determined here

via the electrical current, the active species required to express the combined effect are not

transported to the region where r> 1.6 mm. Our next challenge will be to create a model that

includes the transportation of active species.

Conclusion

In this paper, we analyzed the electrical factors that work together with chemical factors in the

plasma gene transfection method using MDP. We built a spatial distribution model that uses

an electrical network to represent the buffer solution and cells separately, as a substitute for the

uniform medium model (based on the finite element method) demonstrated previously; subse-

quently, we calculated the voltage and electrical current acting on the cells. Using this model,

we could calculate electrical factors using fewer components than those required for the finite

element method. We also revealed that the distribution of voltage and current applied to a cel-

lular membrane matched the spatial distribution of the experimentally determined gene trans-

fection efficiency and that electrical current is the major factor contributing to the

introduction of nucleic acids in the cells.

Fig 8. Distribution of effective values in the radial direction for (a) the voltage applied to the cellular membrane and (b) the electrical

current flowing to the cell. The blue shaded regions in (a) and (b) indicate the action potential (approximately 0.1 V or lower) induced

through normal cell activity and the electrical current value (of the order of 1 nA) caused by membrane transport through the ion

channel, respectively. The red shaded region indicates the voltage (approximately 0.5 V or higher) wherein the cellular membrane

would be damaged.

https://doi.org/10.1371/journal.pone.0245654.g008
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