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Toxoplasma gondii chronically infects the brain as latent cysts containing bradyzoites and
causes various effects in the host. Recently, the molecular mechanisms of cyst formation
in the mouse brain have been elucidated, but those in the human brain remain largely
unknown. Here, we show that abnormal glutamine metabolism caused by both interferon-g
(IFN-g) stimulation and T. gondii infection induce cyst formation in human neuroblastoma
cells regardless of the anti-T. gondii host factor nitric oxide (NO) level or Indoleamine 2,3-
dioxygenase-1 (IDO1) expression. IFN-g stimulation promoted intracellular glutamine
degradation in human neuronal cells. Additionally, T. gondii infection inhibited the
mRNA expression of the host glutamine transporters SLC38A1 and SLC38A2. These
dual effects led to glutamine starvation and triggered T. gondii stage conversion in human
neuronal cells. Furthermore, these mechanisms are conserved in human iPSC-derived
glutamatergic neurons. Taken together, our data suggest that glutamine starvation in host
cells is an important trigger of T. gondii stage conversion in human neurons.

Keywords: bradyzoite, IFN-g, iPSC-derived glutamatergic neurons, Toxoplasma gondii, human
INTRODUCTION

Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect the nucleated cells
of all warm-blooded animals (Boothroyd, 2009; Dubey, 2010); it is estimated that one-third of the
world’s population has already been infected (El-On and Peiser, 2003). Once T. gondii parasites
enter the host, they spread the infection throughout the entire body through the bloodstream by
hijacking host immune cells such as macrophages (intracellular parasites) (Bierly et al., 2008;
Coombes et al., 2013) or free tachyzoites (extracellular parasites) (Unno et al., 2008). T. gondii in
many types of tissues grow as tachyzoites, which is the rapidly multiplying form in the acute phase
of infection (Dubey, 2009); however, parasite infection in specific organs such as the brain or muscle
tissues leads to parasite stage conversion into bradyzoites, which is the slowly multiplying form in
the chronic phase of infection that remains throughout the host’s life (Robert-Gangneux and Darde,
2012; Watts et al., 2015). Although anti-T. gondii drugs such as pyrimethamine, sulfadiazine, and
atovaquone effectively inhibit the number of tachyzoites, they carry the potential risk of inducing
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parasite stage conversion to the chronic phase of infection
(Ferguson et al., 1994; Gormley et al., 1998; Alday and
Doggett, 2017). Additionally, there are no curative drugs that
can eliminate bradyzoites. Infected immunocompromised people
and fetuses are particularly susceptible to serious symptoms,
such as toxoplasmosis, hydrocephalus, and chorioretinitis
(Frenkel and Remington, 1980; Montoya and Remington,
2008). T. gondii-infected healthy people are generally
asymptomatic; however, recently it has been revealed that
chronic infection with T. gondii is a potential cause of various
diseases such as depression (Sutterland et al., 2015; Cheng et al.,
2020). Therefore, it is important to gain an understanding of the
mechanism of T. gondii stage conversion to chronic infection.

T. gondii bradyzoite differentiation or cyst formation induction
models using artificial stress stimulation such as high or low pH
and heat shock have been established (Weiss et al., 1995; Lyons
et al., 2002), and many kinds of parasite genes related to stage
conversion and the molecular mechanisms involved have been
clarified (Radke et al., 2013;Waldman et al., 2020). For example, T.
gondii surface antigen 1 (SAG1), a major surface protein of
tachyzoites, is involved in cell adhesion and invasion. SAG1 is a
tachyzoite-specific marker because its expression is not detected in
bradyzoites (Kasper, 1989). T. gondii bradyzoite antigen 1 (BAG1)
is a bradyzoite-specific marker (Tomavo et al., 1991), and cyst wall
markers [e.g., bradyzoite-specific cyst-wall protein 1 (CST1)],
which are markers of bradyzoite differentiation, have also been
identified (Zhang and Smith, 1995). Thus, various stage-specific
markers have been revealed, and used to confirm parasite
differentiation (Mayoral et al., 2020).

Because T. gondii stage conversion is a cell-type-specific
event, it has been suggested that some host factors play an
important role in its induction (Lüder and Rahman, 2017).
Mice have been used to reveal the physiological stimulations
that play an important role in the induction of bradyzoite
differentiation or cyst formation; these studies identified some
key host factors that induce parasite stage conversion. For
example, treatment with mitochondrial inhibitors such as
oligomycin and antimycin A induced bradyzoite differentiation
in murine bone marrow-derived macrophages (BMDMs) (Bohne
et al., 1994). Cell division autoantigen 1 (CDA-1), which is
involved in cell cycle progression, has been shown to trigger
bradyzoite differentiation and cyst formation in murine skeletal
muscle tissue and human fibroblasts (Radke et al., 2006; Swierzy
and Lüder, 2015). Inflammatory cytokines, such as interferon-g
(IFN-g) and tumor necrosis factor-a (TNF-a), have been shown
to be important for the induction of parasite stage conversion in
mice (Yap et al., 1998; Tobin et al., 2010). For instance, IFN-g-
dependent nitric oxide (NO) production led to stress, including
arginine starvation, which induced parasite stage conversion
(Bohne et al., 1994; Fox et al., 2004). However, these
mechanisms are not common to all cell types or host types; for
example, IFN-g-dependent induction of bradyzoite formation in
human monocytes and human foreskin fibroblasts (HFFs) has
not been observed (Bohne et al., 1993; Soête et al., 1994). Thus,
the key host factors involved in inducing bradyzoite formation in
human cells remain largely unknown.
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In the present study, we found that IFN-g stimulation induced
bradyzoite formation in human neuronal cells. We further found
that the effects of both IFN-g-dependent intracellular glutamine
degradation by glutaminase and T. gondii infection-dependent
inhibition of glutamine transporter activation led to glutamine
starvation in IFN-g-stimulated, T. gondii-infected human
neuroblastoma cells and human iPSC-derived glutamatergic
neurons. Taken together, our data demonstrate that glutamine
starvation is a key host factor for inducing T. gondii stage
conversion in human neuronal cells.
MATERIALS AND METHODS

Cell Lines and Parasites
T. gondii strains ME49 and Prugniaud were maintained in Vero
cells in RPMI (Nacalai Tesque) supplemented with 2% heat-
inactivated fetal bovine serum (FBS; JRH Bioscience), 100 U/mL
penicillin, and 0.1 mg/mL streptomycin (Nacalai Tesque), as
previously described (Ma et al., 2014). HFFs were maintained in
RPMI (Nacalai Tesque) supplemented with 2% heat-inactivated
FBS (JRH Bioscience), 100 U/mL penicillin, and 0.1 mg/mL
streptomycin (Nacalai Tesque). IMR-32 cells were maintained in
MEM (Nacalai Tesque) containing 10% heat-inactivated FBS, 1%
non-essential amino acids (Nacalai Tesque), 100 U/mL
penicillin, and 0.1 mg/mL streptomycin. A172 cells were
maintained in DMEM (Nacalai Tesque) containing 10% heat-
inactivated FBS, 100 U/mL penicillin, and 0.1 mg/mL
streptomycin. U251-MG cells were maintained in EMEM
(Nacalai Tesque) containing 10% heat-inactivated FBS, 100 U/
mL penicillin, and 0.1 mg/mL streptomycin.

iPSC-Derived Glutamatergic Neurons
To prepare iPSC-der i ved g lu tamate rg i c neurons ,
ioGlutamatergic neurons were obtained from Abcam
(ab259259). ioGlutamatergic neurons (5.7 × 104) were plated
in a 24-well plate containing PDL-Geltrex-coated glass
coverslips. On days 0–4, the neurons were cultured in
complete glutamatergic neuron medium (CGNM) containing 1
mg/mL doxycycline (Sigma–Aldrich). The CGNM comprised 200
mL of Neurobasal medium (Thermo Fisher), 2 mL of GlutaMAX
(100×) (Thermo Fisher), 25 mM 2-mercaptoethanol (Thermo
Fisher), 4 mL of B27 (Thermo Fisher), 10 ng/mL NT3 (R&D),
and 5 ng/mL BDNF (R&D). On days 5–14 days, the neurons
were cultured in CGNM without doxycycline. The medium was
changed every 48 h. After 12 days in culture, differentiation of
iPSC-derived glutamatergic neurons was confirmed by
morphology and gene expression of neuron or glutamatergic
neuron-specific markers by use of microscopy and an
immunofluorescence assay, respectively.

Reagents
Antibodies against TUBB3 (66375-1-lg), KGA (20170-1-AP), and
VGLUT1 (55491-1-AP) were obtained from Proteintech. Salmon
E monoclonal antibody for CST1 staining has been described
previously (Tomita et al., 2013). The anti-GAP45 antibody was
January 2022 | Volume 11 | Article 788303
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kindly gifted by Dr. Dominique Soldati-Favre (University of
Geneva, Switzerland). Recombinant human IFN-g (300-02) was
obtained from Peprotech. Aminoguanidine hydrochloride
(396494) was obtained from Sigma–Aldrich. 1-Methyl-DL-
tryptophan (sc-224746) and KGA siRNA (sc-105592) were
obtained from Santa Cruz Biotechnology, Inc. CB-839 (Cay-
22038) was obtained from Cayman Chemical.

Bradyzoite Differentiation
Bradyzoite differentiation was confirmed by the gene expression
pattern of SAG1 and BAG1, and by staining of the cyst wall
protein CST1. HFFs, IMR-32, A172, U-251 MG cells, or iPSC-
derived glutamatergic neurons were cultured and infected with
T. gondii [multiplicity of infection (MOI) = 0.5]. For alkaline
induction, the culture medium was changed to non-induction
medium (pH 7.2) or induction medium (pH 8.2) at 2 h post-
infection. For IFN-g induction, the cells were stimulated with or
without IFN-g (10 ng/ml) at 2 h post-infection. Infected host cells
were incubated for 24–72 h under low CO2 conditions. The cyst
wall was stained by using an anti-CST1 antibody, and CST1-
positive vacuoles were defined as bradyzoite differentiated
parasitophorous vacuoles. Quantitative measurements of the
cyst wall-positive vacuole rates were performed by counting at
least 100 vacuoles per sample.

Quantitative RT-PCR
Total RNA from cells or parasites was extracted by using an RNA
basic kit (Nippon genetics), and cDNA was synthesized by using
Verso Reverse transcription (Thermo Fisher). Quantitative RT-
PCR was performed with a Thermal Cycler Dice Real Time PCR
System (Takara) using the Go-Taq Real-Time PCR system
(Promega). The values were normalized to glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) for human cells or Tubulin
or Actin for T. gondii in each sample. The primer sequences are
listed in S1 Table.
Ion Chromatography (IC)
IMR-32 cells or A172 cells were plated in a 6-well plate, and then
infected or non-infected cells were incubated for 48 h. The
culture supernatants were then collected and filtrated through
a 0.4-mm filter membrane before being analyzed. The
concentrations of 11 major ions (F−,  Cl−,  Br−,  NO−

2 ,   PO
3−
4 ,   SO2−

4 ,
NA+,  NH+

4 ,  K
+,  Mg2+,  Ca2+) were measured by using the HIC-

20A SUPER ion chromatography system (Shimazu).
Measurement of Kynurenine
The kynurenine concentration in the culture medium was
measured by using the Ehrlich reagent method (Braun et al.,
2005). Briefly, 70 mL of culture supernatant was mixed with 35
mL of 30% trichloroacetic acid, and centrifuged at 8,000 × g for 5
min. Then, 75 mL of the supernatant was added to an equal
volume of Ehrlich reagent (0.8% p-dimethylaminobenzaldehyde
in acetic acid) in a 96-well plate, and the absorbance was read at
490 nm. The values were determined by using a standard curve
with defined concentrations of kynurenine (Sigma–Aldrich).
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Measurement of Glutamine
IMR-32 cells or iPSC-derived glutamatergic neurons were plated
in a 96-well plate, and then infected and non-infected cells were
incubated for 24 or 48 h. The concentration of extracellular and
intracellular glutamine was measured by using the Glutamine/
Glutamate-Glo™ Assay (Promega) and a GloMax Navigator
Microplate Luminometer (Promega) according to the
manufacturer’s instructions.

Immunofluorescence Assays
HFFs, IMR-32, A172, and U-251 MG cells, or iPSC-derived
glutamatergic neurons were cultured on glass coverslips and
infected with T. gondii (MOI = 0.5) for the indicated time. The
cells were then fixed in PBS containing 4% paraformaldehyde for
15 min at room temperature. Cells were permeabilized with PBS
containing 0.1% Triton X-100 for 5 min, and then blocked with 2%
FBS in PBS for 1 h at room temperature. Next, the cells were
incubated with the indicated primary antibodies for 1 h at 37°C,
followed by incubation with Alexa 488- or Alexa 594-conjugated
secondary antibodies (Molecular Probes) and DAPI for 1 h at 37°C
in the dark. Finally, coverslips were mounted onto glass slides with
ProLong Glass Antifade Mountant (Invitrogen) and analyzed by
using a BZ-X810 All-in-one Fluorescence Microscope (Keyence).

Inhibitor Treatment
IMR-32 cells were pre-treated with Nw-Propyl-L-Arginine
hydrochloride (2 mM) or 1-methyl-DL-tryptophan (1 mM) for
3 h, and then infected with the parasite. The culture medium was
changed 2 h post-infection, and fresh medium containing 50 ng/
mL IFN-g and Nw-Propyl-L-Arginine hydrochloride (2 mM) or
1-Methyl-DL-tryptophan (1 mM) was added for 24–72 h.

Plaque Assay
HFF cells were pre-treated with CB-839 (2 mM) for 3 h, and then
infected with the parasite. The culture medium was changed 2 h
post-infection, and fresh medium containing 50 ng/mL IFN-gwith
or without CB-839 (2 mM) was added for 5 days. Cells were fixed
with 4% paraformaldehyde for 30 min at room temperature, then
washed with PBS and stained with 0.1% crystal violet (CV) for 10
min. Images were analyzed by using Image J.

Western Blot Analyses
Cells were lysed in a lysis buffer (0.5% Nonidet P-40, 150 mM
NaCl, and 20 mM Tris-HCl, pH 7.5) containing a protease
inhibitor cocktail (Roche). The cell lysates were separated by
SDS-PAGE and transferred to polyvinylidene difluoride
membranes (Immobilon-P, Millipore) and subjected to Western
blot analyses as described previously (Bando et al., 2019).

siRNA Transfection and Parasite Infection
ioGlutamatergic neurons (5.7 × 104) were plated in a 24-well
plate and developed to iPSC-derived glutamatergic neurons. Ten
days after development, KGA siRNA was transfected by using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to the
manufacturer’s instructions. At 24 h post-lipofection, the wells
were washed and then incubated for an additional 24 h. KGA
siRNA-transfected, iPSC-derived glutamatergic neurons were
January 2022 | Volume 11 | Article 788303
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infected with T. gondii (MOI = 0.5) for 2 h, and then stimulated
with or without IFN-g (10 ng/ml). Infected host cells were
incubated for 24–72 h under low CO2 conditions.

Statistical Analyses
All statistical analyses were performed by using Excel (Microsoft)
or Prism 8 (GraphPad). All experimental points and n values
represent an average of three biological replicates (three
independent experiments). The statistical significance of
differences in mean values was analyzed by using an unpaired
two-tailed Student ’s t-test. p < 0.05 was considered
statistically significant.
RESULTS

IFN-g Stimulation Induces Stage
Conversion in Type II Strains of T. gondii
in Human Neuroblastoma Cells
The physiological conditions that induce T. gondii stage
conversion in human brain cells are unclear. Therefore, we
tested the effect of IFN-g on the expression of the bradyzoite-
specific gene BAG1 or the tachyzoite-specific gene SAG1 by using
the T. gondii Type II ME49 strain in the following human brain
cell lines: astrocytoma cell line (A172), glioblastoma cell line (U-
251 MG), and neuroblastoma cell line (IMR-32) (Figures 1A, B).
Although alkaline stress (pH 8.2) induced BAG1 gene expression
in all cell lines tested (Figure S1A), IFN-g-dependent
upregulation of BAG1 gene expression was observed in IMR-
32 cells, but not in A172 or U-251 MG cells (Figure 1A). In
addition, we found that SAG1 gene expression was
downregulated in IMR-32 cells (Figure 1B). T. gondii cyst wall
CST1 formation around bradyzoites in IMR-32 cells was found
only in IFN-g-stimulated cells (Figures 1C, D). These
phenomena were also observed with the Type II T. gondii
Prugniaud strain (Figures S1B, C). These results indicate that
Type II T. gondii differentiate into bradyzoites and form a cyst
wal l in response to IFN-g s t imula t ion in human
neuroblastoma cells.

IFN-g-Dependent Bradyzoite
Differentiation in Human Neuroblastoma
Cells Does Not Rely on NO Production
IFN-g-induced bradyzoite differentiation in murine BMDMs
depends on NO production (Bohne et al., 1994). In our study,
an IFN-g-dependent increase in NO production was detected in
IMR-32 cells, but not in A172 or U251-MG cells (Figure 2A).
Humans have three isoforms of nitric oxide synthase (NOS):
inducible NOS (iNOS), epithelial NOS (eNOS), and neuronal
NOS (nNOS) (Umar and van der Laarse, 2010). We therefore
tested which NOS isoform is important for NO production in
IFN-g-stimulated IMR-32 cells (Figure 2B). We detected nNOS
gene expression in IMR-32 cells but not in A172 cells in an IFN-
g-dependent manner (Figure 2B and Figure S2A). Then, we
tested the effect of IFN-g-dependent NO production on
bradyzoite differentiation in IMR-32 cells by using Nw-propyl-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
L-arginine (L-NPA), a highly selective nNOS inhibitor
(Figures 2C, D). Although L-NPA inhibited NO production in
IFN-g-stimulated IMR-32 cells (Figure 2C), there was no
difference in BAG1 or SAG1 gene expression in the presence or
absence of L-NPA (Figure 2D). These results suggest that NO
production does not play a key role in the induction of
bradyzoite differentiation in IFN-g-stimulated human
neuroblastoma cells.

Indoleamine 2,3-Dioxygenase-1
(IDO1)-Dependent Tryptophan Starvation
Does Not Influence IFN-g-Induced
Bradyzoite Differentiation in Human
Neuroblastoma Cells
IFN-g stimulation induces IDO1-dependent tryptophan
starvation in various human cells (Bando et al., 2018a).
Therefore, we tested the effect of IFN-g stimulation on IDO1
expression in IMR-32 cells (Figures 3A, B). IDO1 gene
expression was induced in IFN-g-stimulated IMR-32 cells
(Figure 3A). Furthermore, kynurenine, which is a metabolite
in the IDO pathway, was detected in the culture medium of IFN-
g-stimulated IMR-32 cells (Figure 3B). Then, we examined the
effect of IDO1 gene expression on bradyzoite differentiation in
IMR-32 cells treated with 1-methyl-DL-tryptophan (1-DL-MT),
which is an IDO1 inhibitor (Figures 3C, D). Although 1-DL-MT
treatment inhibited IDO1 activity (Figure 3C), there was no
difference in the BAG1 or SAG1 gene expression pattern
(Figure 3D). These results suggest that IDO1-dependent
tryptophan starvation stress does not affect bradyzoite
differentiation in IFN-g-stimulated human neuroblastoma cells.

The Concentration of the Metabolic
Product NH4 in the Culture Medium Is
Increased by IFN-g Stimulation in
Human Neuroblastoma Cells
IFN-g stimulation induced bradyzoite differentiation only in
neuroblastoma cells (Figure 1A). Therefore, to elucidate the
neuronal cell-specific response to IFN-g stimulation, we
compared the IFN-g-inducible gene expression pattern of
predicted-anti-T. gondii response genes in A172 and IMR-32
cells (Figures S2A, B). We did not find an IMR-32 cell-specific
gene expression pattern other than that of nNOS (Figures S2A, B).
Next, we compared the metabolic profiles by using ion
chromatography (Figures S3A, B). We found that NO−

2 and N
H+

4 were specifically high in the culture medium of IFN-g-
stimulated IMR-32 cells (Figures S3A, B). This IFN-g-dependent
nNOS gene expression and NO production confirmed our previous
results (Figures 2A, B). Therefore, we focused on NH+

4 as a host
factor candidate involved in the induction of bradyzoite
differentiation and cyst formation.

The Intracellular Glutamine Concentration
Is Limited in IFN-g-Stimulated Human
Neuroblastoma Cells by T. gondii Infection
NH4 accumulation is toxic to many cell types and activates several
stress responses (Braissant et al., 2013; Wang et al., 2018).
January 2022 | Volume 11 | Article 788303
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Hence, we examined the effect of a high concentration of NH4 in
the culture medium on BAG1 or SAG1 gene expression in IMR-32
cells (Figure 4A). There was no difference in either gene
expression pattern in IMR-32 cells cultured with or without a
high concentration of NH4 (Figure 4A). It has been reported that
most of the NH4 produced in the brain is derived from glutamine
metabolism, which includes glutamine influx and glutaminase
degradation (Bak et al., 2006). Therefore, we next examined the
IFN-g-dependent expression of the main glutamine transporters:
solute carrier family 38 members A1 and A2 (SLC38A1 and
SLC38A2) (Varoqui et al., 2000; González-González et al., 2005),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
in IMR-32 cells (Figure 4B). Although IFN-g induced SLC38A1
and SLC38A2 gene expression in non-infected cells, this
expression was inhibited in T. gondii-infected cells (Figure 4B),
suggesting that T. gondii infection suppressed IFN-g-dependent
glutamine influx in IMR-32 cells. We next examined the
glutamine dynamics in the culture medium (extracellular)
(Figures 4C, D) and in the IMR-32 cells (intracellular)
(Figure 4E). The extracellular glutamine concentration in the
culture medium of IFN-g-stimulated, T. gondii-infected IMR-32
cells was higher than that of IFN-g-stimulated, non-infected IMR-
32 cells (Figure 4C). Furthermore, the IFN-g-induced NH4
A

B

DC

FIGURE 1 | IFN-g stimulation induces T. gondii stage conversion in human neuroblastoma cells. (A, B) HFFs, A172, U-251 MG, and IMR-32 cells infected with T.
gondii ME49 were untreated or treated with IFN-g and incubated for 0 or 48 h. Then, the BAG1 (A) or SAG1 (B) mRNA level was analyzed by use of quantitative RT-
PCR. (C, D) IMR-32 cells infected with T. gondii strain ME49 were untreated or treated with IFN-g. Cyst wall formation was assessed by IFA at 72 hours post-
infection. (C) The percentage of CST1-positive vacuoles was determined. (D) Representative IFA images of T. gondii GAP45 (red) and CST1 (green); nuclei were
stained with DAPI (blue). Scale bars correspond to 5 mm. Data are representative of three independent experiments. Indicated values are means ± SD (three
biological replicates per group from three independent experiments) (A–C). **p < 0.01; N.S., not significant; n.d., not detected; Student’s t-test.
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increase in the culture mediumwas inhibited by T. gondii infection
(Figure 4D). In contrast, the intracellular glutamine concentration
in IFN-g-stimulated, T. gondii-infected IMR-32 cells was
significantly reduced compared with that in IFN-g-stimulated,
non-infected IMR-32 cells (Figure 4E). These results suggest that
T. gondii infection leads to intracellular glutamine starvation via
suppression of glutamine transporter activity in human
neuroblastoma cells.

Glutaminase Activity Directly Affects IFN-g-
Dependent T. gondii Stage Conversion
in Human Neuroblastoma Cells
Glutamine serves as a bioenergetic substrate for T. gondii growth
(Blume et al., 2009), suggesting the possibility that glutamine
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
starvation triggers T. gondii stage conversion. We showed that
bradyzoite differentiation is not induced in unstimulated IMR-32
cells (Figure 1); therefore, we hypothesized that pharmacological
inhibition of IFN-g-dependent glutamine degradation may
prevent glutamine starvation and thereby suppress IFN-g-
dependent T. gondii stage conversion in IMR-32 cells. To test
this hypothesis, we examined the effect of CB-839, a selective
glutaminase inhibitor (Xu et al., 2019), on the intracellular
glutamine concentration (Figure 5A). We found that CB-839
treatment restored the intracellular glutamine concentration in
IFN-g-stimulated, T. gondii-infected IMR-32 cells (Figure 5A).
Next, we examined the effect of CB-839 treatment on the parasite
by using a plaque assay, and found that CB-839 treatment had no
effect on the parasite plaque size or number (Figures 5B, C).
A

B

D

C

FIGURE 2 | NO concentration plays no role in the IFN-g-dependent T. gondii stage conversion in human neuroblastoma cells. (A) A172, U-251 MG, and IMR-32
cells were untreated or treated with IFN-g and incubated for 0 or 48 h. The level of NO2 released into the culture supernatant was measured by IC. (B) IMR-32 cells
were untreated or treated with IFN-g and incubated for 24 h. The iNOS, eNOS, and nNOS mRNA levels were analyzed by use of quantitative RT-PCR. (C) IMR-32
cells were untreated or treated with IFN-g and/or aminoguanidine and incubated for 48 h. The level of NO2 released into the culture supernatant was measured by
IC. (D) IMR-32 cells infected with T. gondii ME49 were untreated or treated with IFN-g and/or aminoguanidine and incubated for 48 h. Then, the BAG1 or SAG1
mRNA level were analyzed by use of quantitative RT-PCR. Values are means ± SD (three biological replicates per group from three independent experiments) (A–D).
*p < 0.05, **p < 0.01, ***p < 0.001; N.S., not significant; Student’s t-test. n.d., not detected.
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Then, we examined the effect of CB-839 treatment on IFN-g-
dependent bradyzoite differentiation (Figures 5D, E). We found
that IFN-g-induced BAG1 gene expression was suppressed in
IFN-g-stimulated IMR-32 cells treated with CB-839 (Figure 5D).
Importantly, pretreating T. gondii with CB-839 did not affect the
IFN-g-induced BAG1 gene expression (Figure 5E), suggesting
that the effect of CB-839 treatment was the result of the
inhibition of the host glutaminase activity. Furthermore, we
examined the effect of CB-839 on T. gondii cyst wall CST1
formation (Figures 5F, G). We found that CB-839 treatment
inhibited IFN-g-induced cyst wall CST1 formation (Figures 5F, G).
These results suggest that IFN-g-induced intracellular glutamine
starvation triggers T. gondii stage conversion in human
neuroblastoma cells.
T. gondii Stage Conversion Is Induced in
Human iPSC-Derived Glutamatergic
Neurons by IFN-g-Dependent
Intracellular Glutamine Starvation
Glutamatergic neurons produce glutamate, which is one of the
most common excitatory neurotransmitters in the CNS (Zeng
and Sanes, 2017). To confirm the glutamine starvation-induced
T. gondii stage conversion in glutamatergic neurons,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
we differentiated glutamatergic neurons from human induced
pluripotent stem cells (iPSCs) (Figures S4A, B). Axon
elongation was evident in a healthy neuronal culture of
iPSC-derived neurons 12 days after differentiation induction
(Figure S4A). In addition, the neuronal marker tubulin beta 3
class III (TUBB3) (Ferreira and Caceres, 1992) and the specific
biochemical marker of glutamatergic neurons and glutamatergic
synapses vesicular glutamate transporter 1 (VGLUT1) (El
Mestikawy et al., 2011) were detected in the iPSC-derived
neurons (Figure S4B), suggesting that most of the iPSC-
derived neurons differentiated into glutamatergic neurons. To
confirm the effect of IFN-g stimulation on T. gondii stage
conversion, we examined the mRNA expression of the
glutamine transporters SLC38A1 and SLC38A2 in iPSC-derived
glutamatergic neurons (Figure 6A). The expression levels of
SLC38A1 and SLC38A2 were upregulated by IFN-g stimulation;
however, they were inhibited by T. gondii infection in iPSC-
derived glutamatergic neurons (Figure 6A). We next examined
the effect of parasite infection on intracellular glutamine
concentration in iPSC-derived glutamatergic neurons (Figure 6B).
The intracellular glutamine concentration in IFN-g-stimulated,
T. gondii-infected iPSC-derived glutamatergic neurons was
significantly reduced compared with that in IFN-g-stimulated,
non-infected iPSC-derived glutamatergic neurons (Figure 6B).
A B

D

C

FIGURE 3 | Tryptophan degradation plays no role in the IFN-g-dependent T. gondii stage conversion in human neuroblastoma cells. (A) IMR-32 cells were
untreated or treated with IFN-g and incubated for 24 h. The IDO1 mRNA level was analyzed by use of quantitative RT-PCR. (B) IMR-32 cells were untreated or
treated with IFN-g and incubated for 48 h. The level of kynurenine released into the culture supernatant was measured by ELISA. (C) IMR-32 cells were untreated or
treated with IFN-g and/or 1-DL-MT and incubated for 48 h. The level of kynurenine released into the culture supernatant was measured by ELISA. (D) IMR-32 cells
infected with T. gondii ME49 were untreated or treated with IFN-g and/or 1-DL-MT and incubated for 0 or 48 h. Then, the BAG1 or SAG1 mRNA level was analyzed
by use of quantitative RT-PCR. Values are means ± SD (three biological replicates per group from three independent experiments) (A–D). *p < 0.05, **p < 0.01,
***p < 0.001; N.S., not significant; Student’s t-test.
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Then, we examined the effect of CB-839 on the intracellular
glutamine concentration and BAG1 and SAG1 gene expression
in iPSC-derived glutamatergic neurons (Figures 6C, D). We
found that CB-839 treatment restored the intracellular
glutamine concentration in IFN-g-stimulated, T. gondii-infected
iPSC-derived glutamatergic neurons (Figure 6C). In addition,
downregulation of BAG1 or upregulation of SAG1 gene
expression were observed in response to CB-839 treatment
compared to non-treatment in IFN-g-stimulated, T. gondii-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
infected iPSC-derived glutamatergic neurons (Figure 6D).
Finally, we examined the effect of CB-839 on T. gondii cyst wall
CST1 formation in iPSC-derived glutamatergic neurons
(Figures 6E, F). We found that CB-839 treatment inhibited
IFN-g-induced cyst wall CST1 formation (Figures 6E, F).
Furthermore, inhibition of IFN-g-induced T. gondii stage
conversion was also observed in glutaminase knockdown iPSC-
derived glutamatergic neurons (Figure S5). These results indicate
that disruption of glutamine metabolism by both T. gondii
A

B

D E

C

FIGURE 4 | The intracellular glutamine concentration decreases in an IFN-g-stimulated, T. gondii-infected human neuroblastoma cells. (A) IMR-32 cells infected with
T. gondii ME49 were untreated or treated with IFN-g and/or NH+

4 and incubated for 0 or 48 h. The BAG1 or SAG1 mRNA level was analyzed by use of quantitative
RT-PCR. (B) IMR-32 cells uninfected or infected with T. gondii ME49 were untreated or treated with IFN-g and incubated for 0 or 48 h. The SLC38A1 and SLC38A2
mRNA levels were analyzed by use of quantitative RT-PCR. (C) IMR-32 cells uninfected or infected with T. gondii ME49 were untreated or treated with IFN-g. The
glutamine level in the culture supernatant at 0, 24, and 48 h after parasite infection was measured by ELISA. (D) IMR-32 cells uninfected or infected with T. gondii
ME49 were untreated or treated with IFN-g and incubated for 0 or 48 h. The amount of NH+

4 released into the culture supernatant was measured by IC. (E) IMR-32
cells uninfected or infected with T. gondii ME49 were untreated or treated with IFN-g. The level of intracellular glutamine at 48 h after parasite infection was measured
by ELISA. Values are means ± SD (three biological replicates per group from three independent experiments) (A–E). *p < 0.05, **p < 0.01, ***p < 0.001; N.S., not
significant; Student’s t-test.
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infection and IFN-g stimulation lead to glutamine starvation,
triggering T. gondii stage conversion in human neuronal cells,
including glutamatergic neurons (Figure 7).
DISCUSSION

In the present study, we demonstrated that IFN-g induces T.
gondii stage conversion in human neuronal cells and that the
mechanism involves glutamine starvation caused by IFN-g-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
dependent activation of glutamine metabolism and T. gondii
infection-induced inhibition of glutamine transporter activation
in host cells.

Although IFN-g is essential for the anti-T. gondii host
immune response, its molecular mechanism is somewhat
different in mice and humans (Ohshima et al., 2014; Bando
et al., 2018a). For example, IFN-g-inducible GTPase-dependent
destruction of parasitophorous vacuoles plays an important role
in the IFN-g-dependent anti-T. gondii activity in mice
(Yamamoto et al., 2012). However, IFN-g-induced, IDO1-
dependent tryptophan degradation has been shown to be
A B

D E
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C

FIGURE 5 | IFN-g-dependent T. gondii stage conversion is suppressed by treatment with a glutaminase inhibitor in human neuroblastoma cells. (A) IMR-32 cells
infected with T. gondii ME49 were untreated or treated with IFN-g and/or CB-839. The level of intracellular glutamine at 48 h after parasite infection was measured by
ELISA. (B, C) HFF cells infected with T. gondii ME49 were treated with IFN-g and/or CB-839. Plaques were stained at 4 days post-infection. (B) Plaque sizes were
measured by using the Image J software. (C) Plaque numbers of individual strains were counted. (D) IMR-32 cells infected with T. gondii ME49 were untreated or
treated with IFN-g and/or CB-839 and incubated for 0 or 48 h. The BAG1 or SAG1 mRNA level at 48 h after parasite infection was analyzed by use of quantitative
RT-PCR. (E) IMR-32 cells or T. gondii ME49 were pretreated with CB-839 for 3 h, and then washed before infection. CB-839-pretreated or untreated IMR-32 cells
were infected with pre-treated or untreated T. gondii ME49. The BAG1 mRNA levels at 48 h after parasite infection were analyzed by use of quantitative RT-PCR.
(F, G) IMR-32 cells infected with T. gondii ME49 were treated with IFN-g and/or CB-839. Cyst wall formation was assessed by IFA at 72 h post-infection. (F) The
percentage of CST1-positive vacuoles was determined. (G) Representative IFA images of T. gondii GAP45 (red) and CST1 (green); nuclei were stained with DAPI
(blue). Scale bars correspond to 5 mm. Data are representative of three independent experiments. Values are means ± SD (three biological replicates per group from
three independent experiments) (A–F). *p < 0.01, **p < 0.01, ***p < 0.001; N.S., not significant; n.d., not detected; Student’s t-test.
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important in the anti-T. gondii response in humans (Pfefferkorn
et al., 1986; Bando et al., 2018a). These findings suggest that
stress responses induced by parasites and caused by IFN-g also
differ between mice and humans. Previous reports have shown
that the differences in T. gondii stress responses are connected to
stage conversion induced by IFN-g stimulation (Bohne et al.,
1994; Tobin et al., 2010); however, the role of IFN-g in T. gondii
stage conversion in humans is unknown. In this study, we found
that IFN-g-dependent induction of stage conversion of Type II T.
gondii occurred in neuroblastoma cells and human iPSC-derived
glutamatergic neurons. Although previous studies report
spontaneous cyst formation of T. gondii in human primary
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
neurons and murine skeletal muscle cells (Halonen et al., 1996;
Ferreira-Da-Silva Mda et al., 2009), we found that spontaneous
stage conversion occurred in iPSC-derived glutamatergic
neurons but not in IMR-32 cells, which is consistent with
previous studies. However, the stage conversion rate was
enhanced by IFN-g stimulation in iPSC-derived glutamatergic
neurons, suggesting that IFN-g has a role in accelerating stage
conversion in iPSC-derived glutamatergic neurons. Investigating
the differences between iPSC-derived glutamatergic neurons and
IMR-32 cells may be important for determining the cell-type
specificity of T. gondii stage conversion or the mechanisms of
spontaneous stage conversion.
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FIGURE 6 | T. gondii stage conversion is accelerated by IFN-g-dependent glutamine starvation in human iPSC-derived glutamatergic neurons. (A) Human iPSC-
derived glutamatergic neurons uninfected or infected with T. gondii ME49 were untreated or treated with IFN-g and incubated for 24 h. The SLC38A1 or SLC38A2
mRNA level was analyzed by use of quantitative RT-PCR. (B) Human iPSC-derived glutamatergic neurons uninfected or infected with T. gondii ME49 were untreated
or treated with IFN-g. The level of intracellular glutamine at 48 h after parasite infection was measured by ELISA. (C) Human iPSC-derived glutamatergic neurons
infected with T. gondii ME49 were untreated or treated with IFN-g and/or CB-839. The level of intracellular glutamine at 48 h after parasite infection was measured by
ELISA. (D) Human iPSC-derived glutamatergic neurons infected with T. gondii ME49 were untreated or treated with IFN-g and/or CB-839. The BAG1 or SAG1
mRNA level at 48 h after parasite infection was analyzed by use of quantitative RT-PCR. (E, F) Human iPSC-derived glutamatergic neurons infected with T. gondii
ME49 were treated with IFN-g. Cyst wall formation in the cell bodies or axons was assessed by IFA at 72 h post-infection. (E) The percentage of CST1-positive
vacuoles was determined. (F) Representative IFA images of T. gondii GAP45 (red) and CST1 (green); the nuclei were stained with DAPI (blue). Scale bars correspond
to 10 mm. Data are representative of three independent experiments. Values are means ± SD (three biological replicates per group from three independent
experiments) (A–E). *p < 0.05, **p < 0.01, N.S., not significant; Student’s t-test.
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In previous reports, NO-dependent arginine starvation was
shown to be important for bradyzoite formation in mouse
BMDMs (Fox et al., 2004). In contrast, in the present study,
we found that IFN-g-dependent T. gondii stage conversion in
neuronal cells was independent of NO production. The reason
for this contradiction may be that the IFN-g-dependent NO
production levels are different between mouse cells and human
cells. The NO concentration in response to IFN-g stimulation of
mouse cells has been reported to reach 100 mM (Gomez-Marin,
2000), whereas that in human cells is less than 10 mM according
to a previous study (Bando et al., 2018b) and this study.
Therefore, it is likely that NO is produced in human neuronal
cells upon IFN-g stimulation, but not to a sufficient extent to
induce T. gondii stage conversion. We also found that IDO1-
dependent tryptophan degradation was not associated with the
induction of IFN-g-dependent T. gondii stage conversion in
human neuronal cells. Although we showed that tryptophan
degradation by IDO1 occurs in neuronal cells upon IFN-g
stimulation before T. gondii infection (pre-treatment
conditions), we have previously shown that T. gondii inhibits
IDO1 activity via the parasite virulence factor TgIST upon IFN-g
stimulation after T. gondii infection (post-treatment conditions)
(Bando et al., 2018a). T. gondii must inhibit IFN-g-dependent
anti-T. gondii immune responses to survival, but it also must
activate the IFN-g-dependent host metabolism to change its life-
stage. Therefore, the counterbalance of TgIST-dependent
inhibition of IFN-g responses might have importance for stage
conversion in neuronal cells. In the future, we plan to examine
the relationship between TgIST and stage conversion in
neuronal cells.

Glutamate is a major neurotransmitter; hence, brain neurons
have unique glutamine metabolism (Erecińska and Silver, 1990).
Glutamate and NH+

4 are frequently produced by glutamine
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
degradation in neurons. These metabolites are transported into
astrocytes for glutamine synthesis by glutamine synthetase, to
resupply neurons with glutamine through glutamine
transporters. This process is called the glutamine-glutamate
cycle (Bak et al., 2006). Previous reports have suggested a
relationship between the disruption of the glutamine-glutamate
cycle and T. gondii stage conversion. Indeed, it has been reported
that the glutamine transporter function in astrocytes is inhibited
by T. gondii infection (Lee et al., 2014), and that glutamate levels
are elevated in the brain of mice with T. gondii chronic infection
(David et al., 2016). However, the effects of T. gondii infection on
neurons and glutamine metabolism are not well understood. In
the present study, we showed that T. gondii infection impairs the
intracellular glutamine concentration in neurons by suppressing
the activation of glutamine transporters. Further investigations
are needed to identify the exact virulence molecules and
mechanisms involved in this phenomenon.

There are various types of neurons, including glutamatergic,
GABAergic, and dopaminergic neurons; glutamatergic neurons
are one of the major neurons responsible for fast excitatory
transmission in the CNS (Baude et al., 2009; Langel et al., 2018).
Previous studies have reported a relationship between
GABAergic neurons and T. gondii infection (Brooks et al.,
2015; Li et al., 2019), and have also reported the interaction
between human neuronal-like cells and T. gondii bradyzoite
formations (Tanaka et al., 2016; Passeri et al., 2016); however,
few studies have focused on glutamatergic neurons. In the
present study, we showed that T. gondii stage conversion is
efficiently induced by IFN-g stimulation in human iPSC-derived
glutamatergic neurons, and that the mechanism involves
glutamine starvation caused by glutaminase activation. Because
iPSC-derived glutamatergic neurons have similar characteristics
to their in vivo counterparts, our results suggest that glutamine
FIGURE 7 | Simplified scheme of T. gondii stage conversion in human neuronal cells. The dual effect of T. gondii infection-dependent inhibition of glutamine
transporter activation and IFN-g-dependent glutamine degradation cause glutamine starvation, which triggers IFN-g-dependent T. gondii stage conversion in human
neuronal cells. As shown, CB-839 treatment can prevent IFN-g-dependent T. gondii stage conversion.
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starvation-induced T. gondii stage conversion occurs in vivo in
humans. A previous report found that T. gondii mostly infects
neurons and not astrocytes throughout the acute and chronic in
vivo infection of mouse brain, and that cyst formation occurs not
only in cell bodies but also in axons (Cabral et al., 2016). Our
results are consistent with this previous report using mice.
Together, these findings may suggest that the infection and
pathology mechanisms in the brain are conserved between
mice and humans even though the induction mechanisms of
T. gondii stage conversion are different. The findings also
demonstrate the importance of using model organisms and
target hosts. In addition, we found that treatment with the
glutaminase inhibitor CB-839 or glutaminase knockdown led
to the inhibition of IFN-g-dependent T. gondii stage conversion.
These results support the idea that IFN-g-dependent glutamine
starvation caused by glutaminase-dependent glutamine
degradation is essential for the induction of T. gondii stage
conversion in human neuronal cells.

In summary, here we found a novel T. gondii stage conversion
mechanism that involves IFN-g-induced glutamine-dependent
bradyzoite differentiation and cyst formation in human neuronal
cells. We revealed that these effects were suppressed by treatment
with a glutaminase inhibitor. Further elucidation of these effects
may contribute to the development of advanced therapeutic
strategies for the prevention of chronic infection of the
human brain.
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Supplementary Figure 1 | Induction of T. gondii stage conversion under various
experimental conditions. (A) HFFs, A172, U-251 MG, and IMR-32 cells infected with
T. gondiiME49 were cultured in medium at a pH of 7.2 or 8.2. The BAG1mRNA level
at 48 h after parasite infection was analyzed by use of quantitative RT-PCR. (B, C)
IMR-32 cells infected with T. gondii strain Prugniaud were untreated or treated with
IFN-g. Cyst wall formation was assessed by IFA at 72 hours post-infection. (B) The
percentage of CST1-positive vacuoles was determined. (C) Representative IFA
images of T. gondii GAP45 (red) and CST1 (green); nuclei were stained with DAPI
(blue). Scale bars correspond to 5 mm. Data are representative of three independent
experiments. Indicated values are means ± SD (three biological replicates per group
from three independent experiments) (A, B). **p < 0.01; ***p < 0.001; N.S., not
significant; n.d., not detected; Student’s t-test.

Supplementary Figure 2 | IFN-g-induced gene expression pattern of predicted
anti-T. gondii immune responses related to host factors in A172 and IMR-32 cells.
(A, B) A172 and IMR-32 cells were untreated or treated with IFN-g and incubated
for 24 h. (A) Quantitative RT-PCR analysis of the indicated mRNA level was
performed. (B) Heatmap of log-fold change (LFC) comparisons of differential gene
expression in untreated and IFN-g-treated A172 and IMR-32 cells. A relative
decrease in LFC is indicated in blue and a relative increase is indicated in red. Values
are means ± SD (three biological replicates per group from three independent
experiments) (A). *p < 0.05, ***p < 0.001; N.S., not significant; n.d., not detected;
Student’s t-test.

Supplementary Figure 3 | IFN-g-induced metabolic profiles of T. gondii-infected
A172 and IMR-32 cells. (A, B) A172 and IMR-32 cells were untreated or treated
with IFN-g and incubated for 48 h. (A) The levels of the indicated ions in the culture
supernatant were measured by IC. (B) Heatmap of log-fold change (LFC)
comparisons of differential ion concentrations in untreated and IFN-g-treated A172
and IMR-32 cells. A relative decrease in LFC is indicated in blue, and an increase is
indicated in red. Values are means ± SD (three biological replicates per group from
three independent experiments) (A). *p < 0.05, **p < 0.01; N.S., not significant;
Student’s t-test.

Supplementary Figure 4 | Confirmation of differentiation of human iPSC-derived
glutamatergic neurons. (A, B) iPSCs were differentiated for 12 days. (A)
Morphology of neurons and complex neural networks via axons. Scale bars, 100
mm. (B) The expression of the neuronal marker TUBB3 and the glutamatergic
neuron marker VGLUT1 were assessed. Representative IFA images of TUBB3 (red)
or VGLUT1 (green) in iPSC-derived glutamatergic neurons; nuclei were stained with
DAPI (blue). Scale bars correspond to 50 mm.

Supplementary Figure 5 | The effect of glutaminase knockdown on IFN-g-
induced T. gondii stage conversion in human iPSC-derived glutamatergic neurons.
(A) KGA siRNA was transfected into human iPSC-derived glutamatergic neurons.
After 48 hours, the expression of KGA in human iPSC-derived glutamatergic neuron
lysates was detected by Western blotting. (B, C) KGA siRNA was transfected into
human iPSC-derived glutamatergic neurons, which were then infected with T.
gondii ME49, and then left untreated or treated with IFN-g. (B) The BAG1 or SAG1
mRNA level at 48 h after parasite infection was analyzed by use of quantitative RT-
PCR. (C) The percentage of CST1-positive vacuoles in the cell bodies or axons was
determined by IFA at 72 h post-infection. Values are means ± SD (three biological
replicates per group from three independent experiments) (B, C). *p < 0.05, ***p <
0.001; N.S., not significant; Student’s t-test.
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