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Abstract: Genomic structural variants comprise a significant fraction of somatic mutations driv-
ing cancer onset and progression. However, such variants are not readily revealed by standard
next-generation sequencing. Optical genome mapping (OGM) surpasses short-read sequencing in
detecting large (>500 bp) and complex structural variants (SVs) but requires isolation of ultra-high-
molecular-weight DNA from the tissue of interest. We have successfully applied a protocol involving
a paramagnetic nanobind disc to a wide range of solid tumors. Using as little as 6.5 mg of input
tumor tissue, we show successful extraction of high-molecular-weight genomic DNA that provides a
high genomic map rate and effective coverage by optical mapping. We demonstrate the system’s
utility in identifying somatic SVs affecting functional and cancer-related genes for each sample.
Duplicate/triplicate analysis of select samples shows intra-sample reliability but also intra-sample
heterogeneity. We also demonstrate that simply filtering SVs based on a GRCh38 human control
database provides high positive and negative predictive values for true somatic variants. Our results
indicate that the solid tissue DNA extraction protocol, OGM and SV analysis can be applied to a
wide variety of solid tumors to capture SVs across the entire genome with functional importance in
cancer prognosis and treatment.

Keywords: optical genome mapping; solid tumors; cancer genomics

1. Introduction

One of the hallmarks of cancer is genomic instability, which often affects genes control-
ling cell division and genome integrity. The resulting alterations include single-nucleotide
variant (SNV) point mutations as well as structural variants (SVs), in which larger DNA
segments undergo chromosomal perturbations such as deletions, insertions, duplications,
inversions, and translocations. For instance, recurrent translocations, such as the Philadelphia
chromosome, can activate oncogenes but at the same time reveal avenues for implementing
or developing effective targeted drug therapies [1–4]. Likewise, SV identification plays an
increasingly important role in cancer diagnosis and prognosis [5,6], and SVs have been shown
to play a crucial role in intra-tumoral genetic heterogeneity [7]. Therefore, SV identification
and analysis are important to understanding oncogenesis and tumorbehavior.
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Short-read sequencing can readily detect many SNVs, but is less successful in detect-
ing SVs, by either alignment-based or assembly-based methods [8]. Since alignment-based
approaches rely on mapping reads to unique positions, repetitive and low-complexity
genomic regions can lead to misalignment and false-positive SV calls. Additionally, homol-
ogous alleles may be incorrectly combined, leading to haploid assembly only representing
a single allele or chimeric assemblies mixing alleles. Whole-genome and cytogenetic
approaches such as whole-genome sequencing (WGS), karyotyping, fluorescent in situ
hybridization (FISH) and CNV microarrays also contain significant limitations. Karyotyp-
ing provides a comprehensive view of the entire genome but carries limited resolution of
~5 Mb and in most cases requires culturing cells before preparing chromosomes. FISH has
a higher resolution but requires prior knowledge as to which loci to test and has limited
throughput. CNV microarrays offer a resolution down to multiple Kb but are insensitive to
balanced chromosomal aberrations such as translocations and inversions, are unable to
detect low-frequency allelic changes, and cannot distinguish tandem duplications from in-
sertions in trans. Finally, WGS has difficulty with de novo genome assembly and resolving
duplications and repeated sequences [8–10]. Therefore, alternative methods are required to
preserve long-range genomic structural information.

Optical genome mapping (OGM) has emerged as a viable option for analyzing
large genomes for SVs. OGM preserves long-range information by imaging entire in-
tact molecules of DNA in their native state and, as a result, has contributed to con-
structing reference genome assemblies, including those for maize, mouse, goat, and
humans [11–28]. OGM can detect large (>500 bp) and complex SVs, such as chromothrypsis,
that are difficult to detect using traditional short-read sequencing alone. OGM preparation
and analysis workflow has been successfully applied to liquid-phase tumor and cell cul-
ture SV analyses. For instance, investigators have analyzed primary leukemic cells with
OGM to identify previously unrecognized SVs implicated in oncogenesis and patients’
survival and have combined OGM with chromosome conformation capture to demonstrate
enhancer highjacking resulting from SVs [5,29,30]. Similarly, investigators used OGM to
visualize complex gene fusions and novel somatic SVs in liposarcoma, melanoma and other
well-studied cancer cell lines [31,32].

Despite its success in visualizing SVs in liquid tumors and cell lines, OGM has not
yet seen widespread application in solid tissue tumors, due primarily to the difficulty of
obtaining high-quality, high-molecular-weight DNA from solid tumor samples. Nonethe-
less, previous work has shown the feasibility of high-quality high-molecular-weight DNA
isolation and analysis using earlier workflow iterations [33], and recent feasibility studies
have shown the importance of OGM application to solid tumor analysis [7,34,35]. Peng et al.
demonstrated large SVs not detected by WGS implicated in metastatic lung squamous cell
carcinoma [7], and Jaratlerdiri et al. and Crumbaker et al. similarly found SVs impacting
oncogenic and tumor-suppressing genes not identified by NGS or WGS alone in prostate
cancer [34,35]. However, these previous methods for extracting gDNA from solid tissue
were either prohibitively expensive or yielded low quantities of DNA [36]. We demonstrate
here the successful implementation of a workflow to generate ultra-high-molecular-weight
gDNA and subsequent SV analysis for 20 solid tumor samples comprising a wide variety
of solid tissue organ systems.

2. Materials and Methods
2.1. Tumor Samples

Solid tissue was collected following surgical resection for 10 tumors: four squamous
cell carcinomas of the tongue, three anaplastic carcinomas of the thyroid, one liver hepa-
tocellular carcinoma, one lung pleomorphic carcinoma, and one bladder tumor. Patients
consented under protocols approved by the Penn State Health Institution Review Board
and tissue was flash frozen and stored at −80 ◦C in the Penn State Institute for Person-
alized Medicine (IPM). Ten additional fresh frozen solid tumor samples were acquired
from BioIVT for the following tumor types: lung adenosquamous carcinoma, liver hepato-
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cellular carcinoma, bladder papillary urothelial carcinoma, kidney renal cell carcinoma,
breast ductal carcinoma in situ, prostate invasive adenocarcinoma, brain anaplastic astrocy-
toma, ovarian serous carcinoma, colon adenocarcinoma, and papillary thyroid carcinoma.
For some of the samples, two or three separate sections of the tumor were excised and
processed independently to provide duplicate or triplicate biological replicates.

2.2. Bionano Optical Genome Mapping

Ultra-High-Molecular-Weight gDNA Isolation from Solid Tissue. The following protocol
is diagrammed in Figure 1 and described in greater detail in a support document from
Bionano Genomics (https://bionanogenomics.com/support-page/sp-tissue-and-tumor-
dna-isolation-kit/). Briefly, tissue sections with a target mass of 10 mg were sliced from a
frozen parent piece on a sterilized aluminum block over dry ice. The tissues were minced
briefly and placed into a 15 mL conical tube on ice containing homogenization buffer (HB)
for subsequent blending with a Tissueruptor II (Qiagen). Following tissue disruption,
samples were washed in additional HB, poured through a 40 µm filter, and centrifuged to
pellets, from which the supernatants were decanted.

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 4 of 21 
 

 

 

Figure 1. Workflow for isolation of high-molecular-weight DNA from solid tumors. 

Pellets were resuspended in Wash Buffer A (Bionano, San Diego, CA, USA) and 

transferred to microcentrifuge tubes for additional washing. Supernatants were then de-

canted, and pellets resuspended in residual volume. Proteinase K (Bionano Genomics, San 

Diego, CA, USA) was added to samples, followed by Lysis and Binding Buffer (LBB, Bi-

onano Genomics, San Diego, CA, USA) and mixed to produce a lysate containing high-

molecular-weight DNA. Phenylmethylsulfonyl Fluoride Solution (PMSF, Millipore 

Sigma) was added to inactivate Proteinase K, followed by Salting Buffer (SB, Bionano Ge-

nomics, San Diego, CA, USA). 

A single paramagnetic Nanobind Disc (Bionano Genomics, San Diego, CA, USA) was 

added to the lysate with 100% isopropanol, to facilitate binding and washing of gDNA 

strands. With gDNA captured on the disc, the supernatants were carefully removed and 

discs were washed with rounds of ethanol-based wash buffer. Discs were then transferred 

to clean tubes, where gDNA was eluted in buffer and homogenized at room temperature.  

Ultra-High-Molecular-Weight gDNA Isolation from Blood. Previously frozen EDTA-sta-

bilized blood aliquots were thawed, inverted to mix, and measured for white blood cell 

counts (HemoCue, Brea, CA USA, WBC). Blood volumes corresponding to 1.5 x 106 cells 

Figure 1. Workflow for isolation of high-molecular-weight DNA from solid tumors.

https://bionanogenomics.com/support-page/sp-tissue-and-tumor-dna-isolation-kit/
https://bionanogenomics.com/support-page/sp-tissue-and-tumor-dna-isolation-kit/


J. Pers. Med. 2021, 11, 142 4 of 18

Pellets were resuspended in Wash Buffer A (Bionano, San Diego, CA, USA) and
transferred to microcentrifuge tubes for additional washing. Supernatants were then
decanted, and pellets resuspended in residual volume. Proteinase K (Bionano Genomics,
San Diego, CA, USA) was added to samples, followed by Lysis and Binding Buffer (LBB,
Bionano Genomics, San Diego, CA, USA) and mixed to produce a lysate containing high-
molecular-weight DNA. Phenylmethylsulfonyl Fluoride Solution (PMSF, Millipore Sigma)
was added to inactivate Proteinase K, followed by Salting Buffer (SB, Bionano Genomics,
San Diego, CA, USA).

A single paramagnetic Nanobind Disc (Bionano Genomics, San Diego, CA, USA) was
added to the lysate with 100% isopropanol, to facilitate binding and washing of gDNA
strands. With gDNA captured on the disc, the supernatants were carefully removed and
discs were washed with rounds of ethanol-based wash buffer. Discs were then transferred
to clean tubes, where gDNA was eluted in buffer and homogenized at room temperature.

Ultra-High-Molecular-Weight gDNA Isolation from Blood. Previously frozen EDTA-
stabilized blood aliquots were thawed, inverted to mix, and measured for white blood cell
counts (HemoCue, Brea, CA USA, WBC). Blood volumes corresponding to 1.5 × 106 cells
were transferred to a microcentrifuge tubes, then spun to obtain cell pellets. After removing
supernatants, pellets were resuspended in 40 µL Stabilizing Buffer and 50 µL Proteinase
K (Bionano Genomics, San Diego, CA, USA). Lysis and Binding Buffer (LBB, Bionano
Genomics, San Diego, CA, USA) was then added and mixed to produce a lysate, after
which isolation of DNA was performed essentially as described above for tumor tissue.

Direct Label and Staining (DLS). For both tumor- and blood-derived samples, gDNA was
labeled in Direct Label and Stain reactions, in which fluorescent labels are enzymatically
conjugated to a six-base pair recognition sequence followed by DNA counterstaining.
Briefly, 750 ng gDNA was diluted and mixed with a labeling master mix containing DLE-1
Enzyme and DL-Green (Bionano Genomics, San Diego, CA, USA). Reactions were shielded
from light and incubated at 37 ◦C for 2 h. A Proteinase K solution then inactivated the
enzyme, and successive membrane adsorption steps were used for cleanup. A portion
of each sample was then carried forward into a staining master mix addition, slowly
homogenized, and incubated overnight at room temperature.

The DNA concentration of each labeled sample was confirmed within 4–12 ng/µL
by High-Sensitivity dsDNA Qubit Assay and then loaded onto a Bionano Saphyr® Chip
(Bionano Genomics, San Diego, CA, USA, Part#20366) and run on the Bionano Saphyr®

instrument, targeting approximately 300× human genome coverage.

2.3. Bionano Access and Solve Pipeline

Genome analysis was performed using Rare Variant Analysis in Bionano Access 1.6
and Bionano Solve 3.6, which captures somatic SVs occurring at low allelic fractions. Briefly,
molecules of a given sample dataset were first aligned against the public Genome Reference
Consortium GRCh38 human assembly. SVs were identified based on discrepant alignment
between sample molecules and GRCh38, with no assumptions about ploidy. Consensus
genome maps (*.cmaps) were then assembled from clustered sets of at least three molecules
that identify the same variant. Finally, the genome maps were realigned to GRCh38, with
SV data confirmed by consensus forming final SV calls. SVs were then annotated with
known canonical gene set present in GRCh38, as well as estimated population frequency
for each structural variant detected by comparing to a custom control database (n = 297)
from Bionano Genomics.

2.4. Data Comparison

Whole-genome imaging data were compared to the human reference genome GRCh38
(hg38) to retain only those SVs not present in the reference genome. SVs were further
filtered to eliminate any variant observed in any of the Bionano control samples or, if
available, patient-matched blood. Bionano Access-created csv files containing filtered SVs
were analyzed to compare SV content across samples. For tissue samples with associated
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blood samples, control database filtration efficacy was compared to blood-filtering effi-
cacy at identification of somatic mutations. For duplicate/triplicate samples, filtered SVs
were compared to determine intra-sample reliability. For identification of cancer-related
genes, the set of genes affected by SVs in each of the samples was compared to the list of
genes causally implicated in cancer available in the Cosmic Cancer Gene Census database
(v92) [37] (https://cancer.sanger.ac.uk/census).

3. Results

Patient Clinical Characteristics. Clinical data for the patients from whom tumor samples
were acquired are shown in Table 1. A total of 60% (12/20) patients were male, with a
mean age of 73.5 years at sample acquisition. A total of 45% (9/20) patients identified as
Caucasian, 40% (8/20) as Asian, and 5% (1/20) as Hispanic, with 10% (2/20) not identifying.
The majority of IPM-sourced tumor samples were obtained from Caucasian patients (7/10),
while the majority of the BioIVT-sourced tumor samples were obtained from patients
of Asian ethnicity (8/10). In terms of overall risk factors, 55% (11/20) of patients were
self-described current or former tobacco users and 45% (9/20) endorsed some history of
alcohol use.

Table 1. Patient demographics and tumor characteristics.

Study ID Cancer Type * Age † M/F Ethnicity Smoking History Alcohol History Pathologic
TNM ‡

Cancer
Stage

7528 Tongue (SCC) 25 M Caucasian None Rare T3N2bM0 IVa

7052 Tongue (SCC) 35 M Caucasian None None T2N3M0 IVb

7622 Tongue (SCC) 60 F Caucasian 50 pack years 1–2 drinks/week T3N0M0 III

7403 Tongue (SCC) 65 M Caucasian 45 pack years Rare T2N3bM0 IVb

7518 Thyroid (AP) 70 F Caucasian 20 pack years 2 drinks per day T4bN1bM1 IVc

7708 Thyroid (AP) 65 M Caucasian None None 4aN1bM1 IVc

3717 Thyroid (AP) 80 M Hispanic 25 pack years Rare T4aN1aM1 IV

14369
Lung

(pleomorphic
carcinoma)

60 M N/A 60 pack years None T2bN1M0 IIa

10974

Liver (metastic
adenocarcino-

ma of
colon)

65 F N/A Former None T3N2aM1 IVB

3096
Bladder

(urothelial
carcinoma)

55 M Caucasian 60 pack years None T2N0M0 II

73432
Lung (adeno-

squamous
carcinoma)

35 M Asian Former (5 pack
years)

Former (1 per
day, 10 years) T2aN1M0 IIA

94894
Liver

(hepato-cellular
carcinoma)

70 M Asian 7 pack years 1 per day, 35
years T1NxM0 I

101558

Bladder
(papillary
urothelial

carcinoma)

65 M Asian Former (5 pack
years)

1 per day, 20
years T2NxM0 II

69033 Kidney (renal
cell carcinoma) 60 F Asian None None T2bNxM0 II

https://cancer.sanger.ac.uk/census
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Table 1. Cont.

Study ID Cancer Type * Age † M/F Ethnicity Smoking History Alcohol History Pathologic
TNM ‡

Cancer
Stage

79379
Breast (ductal
carcinoma in

situ)
50 F Asian None None T3N0M0 IIB

102095
Prostate

(invasive adeno-
carcinoma)

60 M Caucasian 40 pack years None T3bN1M0 IV

80384 Brain (anaplastic
astrocytoma) 40 F Caucasian None None NA NA

81347 Ovarian (serous
carcinoma) 75 F Asian None None T1aN0M0 IA

119664
Colon Cancer
(adenocarci-

noma)
80 M Asian 2 pack years 1 per day, 40

years TXNXMX UNK

128019 Thyroid
(papillary) 35 F Asian None None T3bNxM0 I

* SCC: squamous cell carcinoma; AP: anaplastic.† ~Age (≥Age-3 and ≤Age+3) ‡. Pathologic Staging: Tumor, Node Metastasis (TNM)
staging is the internationally accepted system set forth by the American Joint Committee on Cancer (AJCC) used to determine cancer
disease stage and guide prognosis and treatment (https://www.cancerstaging.org) [38].

The tumor samples consisted of a variety of stages (Table 1). A total of 75% (3/4) of
tongue cancer samples and 100% (3/3) anaplastic thyroid cancers were stage IV cancers,
while 100% (2/2) lung and (2/2) bladder cancers were stage II. Limited tumor data were
available for the commercially available BioIVT-sourced tumor samples.

DNA Quality Metrics: All 20 solid tumors yielded high-molecular-weight gDNA
(Table 2). The average concentration across all samples following gDNA isolation was
120 ng/µL by Broad Range dsDNA Qubit Assay. All eluted gDNA were well above the
minimal concentration required for DLS labeling (35 ng/µL) and the average final DNA
yields for each tumor ranged from 1.2 to 16.4 µg/10 mg input tissue. Analysis on a Saphyr
instrument following DLS labeling revealed that samples achieved an average label density
of 14.4/100 Kbp, average filtered N50 (>20 Kbp) DNA size of 242 Kbp, average filtered N50
(>150 Kbp) DNA size of 315 Kbp, map rate of 82.62%, effective reference coverage of 320×
and average effective DNA throughput (≥150 Kbp) of 50 Gbp/scan. Rare Variant Pipeline
Analysis of the samples yielded an average of 82.4% of molecules aligning to the reference
genome. These values are all well above the acceptable range for obtaining high-quality
data and none of the samples failed any of these quality control metrics.

Identification of somatic structural variants. Rare Variant analysis of the samples revealed
a large numbers of variants in each sample, only a fraction of which were likely somatic.
The unfiltered analysis yielded an average of 1633 total SVs per sample (range 1241–2000),
which include both somatic and germline polymorphic variants (Figure 2, upper panel).
These consisted predominantly of insertions and deletions, with an average of 712 insertions
and 604 deletions, a fewer number of inversion (an average of 153) and duplications (an
average of 123), and relatively few translocations (an average of 41). Eliminating those SVs
found in Bionano’s control database of known polymorphic SVs reduced the number of
putative somatic structural mutations by 91% to an average of 124 total SVs per sample
(Figure 2, lower panel). Most of the variants eliminated were insertions and deletions, of
which on average 97% and 94%, respectively, were removed. On the other hand, less than
0.2% of the translocations were flagged as polymorphic, consistent with the fact that almost
no translocations persist in the population as polymorphisms.

https://www.cancerstaging.org
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Table 2. Single-molecule quality report metrics.

Tissue No. of
Duplicates Input (mg) DNA

(ng/µL)
DNA Yield

(µg/mg)
N50 Kbp

(>20 Kbp)
N50 Kbp

(>150 Kbp) Labels/100 kbp Map Rate
(%) Gbp/Scan Effective

Coverage

7528 (tongue) 1 17.5 37 0.12 211 317 12.3 58.8 53 237×
7052 (tongue) 1 17.1 81 0.28 179 287 15.2 82.4 37 345×
7622 (tongue) 1 18.7 160 0.51 315 361 13.4 75.8 64 317×
7403 (tongue) 1 18 79 0.26 148 272 14.8 72.8 33 304×
7518 (thyroid) 1 8.6 28 0.20 143 265 14.4 76.6 26 312×
7708 (thyroid) 1 10.6 85 0.47 269 356 13.1 61.2 35 253×
3717 (thyroid) 1 13.2 49 0.22 250 320 14.5 88.2 58 371×
14369 (lung) 1 11.4 87 0.45 268 323 14.0 89.6 36 372×
10974 (liver) 1 6.5 82 0.74 235 289 15.2 87.9 49 360×

3096 (bladder) 1 9.4 59 0.37 265 319 13.8 78.3 39 325×
73432 (lung) 3 9.6 128 0.86 248 304 15.0 90.4 51 339×
94894 (liver) 2 9.0 196 1.41 265 306 14.9 89.3 84 325×

101558 (bladder) 3 9.7 245 1.64 313 357 15.2 91.8 66 338×
69033 (kidney) 3 10 96 0.63 201 269 14.6 83.5 41 296×
79379 (breast) 3 13.3 183 1.04 317 395 14.2 84.1 77 288×

102095 (prostate) 3 10.3 113 0.72 273 361 14.8 85.1 62 295×
80384 (brain) 2 10.5 168 1.06 228 292 14.6 90.2 42 306×
81347 (ovary) 2 10.5 168 1.05 228 292 14.6 90.2 42 330×
119664 (colon) 2 11.3 231 1.33 263 330 14.9 88.6 42 274×

128019 (thyroid) 4 10 126 0.77 213 294 14.5 87.6 64 294×
Average 1.9 11.8 120. 0.71 241. 315. 14.4 82.6 50.0 314×

Average values are presented for samples with multiple replicates.
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Figure 2. Total and somatic structural variants present in tumor samples. Upper panel: SV counts as determined using
the Bionano Rare Variant pipeline, before control database filtration. SV counts are averages for duplicate and triplicate
samples. Lower panel: SV counts after filtering total SVs to remove known polymorphic SV found in Bionano’s GRCh38
control database. SV counts are averages for duplicate and triplicate samples, which are indicated by (*).
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To determine the efficacy of identifying somatic SVs by filtering against Bionano’s
database of known polymorphisms, we used as a gold standard the blood samples from
four patients from whom we had obtained tongue tumors. That is, we determined the
true somatic mutations in each of these four tumors by eliminating those SVs identified
in each of the tumors that were also present in the corresponding blood sample. We
could then compare those true somatic variants to the list of somatic variants predicted by
filtering against the database of polymorphisms. For these four tongue tumor samples, we
identified an average of 1474 total SVs per sample. Filtering these SVs using the Rare Variant
Analysis pipeline for SVs not found in the Bionano control database yielded an average
of 72 total SVs per sample, consisting of 11 insertions (range 9–15), 31 deletions (range
11–47), 3 inversions (range 1–6), 14 duplications (range 2–23), and 14 translocations (6–19)
(Figure 3, right upper panel). Filtering against the variants found in the corresponding
blood samples returned an average of 58 total SVs per sample, consisting of 10 insertions
(range 9–10), 20 deletions (range 7–35), 2 inversions (range 0–4), 13 duplications (range
4–24), and 14 translocations (range 6–19) (Figure 3, left upper panel). Comparing the
residual SV sets obtained by filtering against Bionano’s control database to the sets of true
somatic SVs for each sample demonstrated that the control database filtration exhibited
strong statistical accuracy (Figure 3, lower panel). Across the four separate samples,
the control database exhibited an average sensitivity of 92% (83–96%) and specificity of
98% (range 97–99%). That is, filtering with the control database retained most of the
true somatic mutations while eliminating almost all of the polymorphic SVs. Similarly,
the average negative predictive value of the filter was 99.6%, demonstrating that an SV
identified as germline was indeed a germline variant, while the positive predictive value
of 74% (range 60–81%) indicates that a majority, but not all, the variants identified as
somatic are in fact somatic. In other words, the results obtained by filtering SVs against
Bionano’s control database retained almost all the true somatic mutations. However,
several of the SVs identified as somatic were actually germline. Those SVs inaccurately
identified as somatic were rare germline variants, predominantly insertions or deletions,
essentially private to the patient’s genome. As above, we noted that the filtering process
did not affect all SV types equally: while most deletions and insertions were flagged as
polymorphic and eliminated from the list of somatic mutations, very few duplications
and essentially no translocations were identified as polymorphic. This is consistent with
observation that few translocations or duplications are stable through meiosis. Duplicate
Sample Analysis. We compared SV calls from separate isolates of the same sample to assess
consistency and reproducibility of the method, albeit without knowing the extent of tumor
heterogeneity of the individual samples. Six samples underwent triplicate analysis, and
four samples underwent duplicate analysis (Table 3). After identifying SVs using the Rare
Variant Analysis pipeline and filtering them against the Bionano control database of known
polymorphisms, we recovered an average of 116 somatic SVs shared among the separate
isolates of the same tumor. These comprised an average of 23 insertions, 29 deletions,
10 inversions, 11 duplications and 43 translocations (Table 3). As noted above, the number
of SVs identified in a tumor varied widely across the different tumors examined, with lung,
breast, brain and ovarian tumors showing a high level of somatic SVs while the others
containing a relative low number of SVs. Moreover, the percentage of SVs shared among
different isolates of the same tumor also varied among the different tumor types. However,
the percentage of shared SVs and the total number of SVs were uncorrelated. Assuming that
the higher values for shared SVs reflect the reproducibility of the method, then we might
postulate that the lower shared values represent both the reproducibility and the tumor
heterogeneity. That is, we would suggest that the reproducibility of the method across
multiple biological replicates is 85–95%, corresponding to the values obtained from those
samples with the least variability. Thus, we would suggest that the residual variability
in those samples with lower reproducibility (50–75%) reflects heterogeneity of SVs in
the tumors. This would suggest that these brain, liver, lung and prostate tumors had a
relatively high level of tumor heterogeneity.
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Figure 3. Efficacy of the somatic variant identification using a control database of known polymorphisms. Upper Panel:
Number and distribution of somatic structural variant in four tongue tumors as determined by filtering against SVs in
the patient’s genome from peripheral blood (left) or against Bionano’s control database of known polymorphisms. Lower
Panel: Values for sensitivity (SN), specificity (SP) and positive (PPV) and negative predictive values (NPV) for identification
of somatic structural variants obtained by filtering total identified SVs to remove those present in a control database of
know human polymorphisms. Data obtained by filtering against the control database were compared to those obtained by
filtering total SVs to remove those present in the genomes obtained from peripheral blood from the each of the patients
from whom the tumors were removed.
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Table 3. Duplicate Sample Analysis. Shown are the number of somatic structural variants shared among the multiple isolates of the
same sample and the percentage of those relative the total number of somatic variants found in all the isolates of the same sample.

Total % Insertion % Deletion % Inversion% Duplication% Translocation %

Brain * 134 70 5 63 21 78 9 69 13 72 86 69

Colon * 63 93 15 83 36 97 2 100 9 90 1 100

Liver * 45 70 14 74 21 81 1 17 4 67 5 71

Ovary ‡ 338 86 136 82 59 87 4 80 40 85 99 91

Bladder ‡ 30 88 11 79 18 100 1 100 0 100 0 0

Breast ‡ 221 92 9 82 33 85 23 88 14 88 142 95

Kidney ‡ 19 76 6 67 11 85 2 100 0 0 0 100

Lung ‡ 221 66 18 69 53 75 59 73 26 50 65 63

Prostate ‡ 69 48 8 47 22 61 3 38 1 25 35 44

Thyroid ‡ 19 86 7 88 10 91 0 100 2 100 0 0

Average (all) 116 78 23 73 28 84 10 76 11 68 43 63

Duplicate Average 145 80 43 75 34 86 4 66 17 78 48 83

Triplicate Average 97 76 10 72 25 83 15 83 7 60 40 50

* = duplicate sample, ‡ = triplicate sample. % = % of SV calls shared among duplicate/triplicate samples.

The number and types of somatic variants in a tumor varied substantially across
the collection of samples (Figure 4). Several tumor samples, including those from colon,
bladder, kidney and all four from thyroid, contained relatively few somatic SVs whereas
others, including those from prostate, ovaries, lung and brain, carried a large number of
somatic SVs. Since these samples for the most part serve as single representatives of each
tumor type, we cannot extrapolate to the tumor types as a whole the contribution of SVs
to cancer onset and development for each class of tumor. However, it is noteworthy that
the SNV mutational burden in thyroid cancers is among the lowest among all tumor types
and that measure of genome instability is mirrored in the low number of somatic SVs
in all four of the samples examined [39]. Similarly, the SNV mutational burden in lung
cancers is among the highest across all tumor types and both of the lung tumors examined
here also carry a high level of somatic SV. Finally, the extent of somatic SVs observed
in our collection of tumors does not correlate with either cancer stage nor with obvious
lifestyle characteristics (Table 1). For instance, neither smoking nor drinking history has a
stronger influence on SV mutation burden than does site of origin of the tumor. However,
further data examining the correlation of lifestyle characteristics and tumor stages with SV
mutational burden are warranted to assess the impact of these behaviors on SV formation
and persistence.

Identification of Cancer Gene Mutations. While, as noted above, we cannot generalize
regarding the role of structural variants in onset and progression of different tumor types,
our results indicate that we can extract from the structural variant list clinically relevant
data on individual tumors that might inform prognosis or treatment options. We examined
the somatic structural variants in each tumor sample for those that affected genes previously
associated with cancer. In particular, we annotated those genes altered by a structural
variant, either by disruption, duplication, deletion or fusion, and intersected that list with
the set of cancer-related genes in the Cosmic database (v92) [37]. The resultant list by
tumor type is provided in Table 4 and subdivided into oncogenes, tumor suppressor genes
and gene fusions. We included only those oncogenes that were potentially activated by
duplication or gene fusion and only those tumor suppressor genes that were potentially
inactivated by deletion, insertion or fusion. As evident, every tumor sample carried at least
one such cancer gene mutation and most contained multiple hits. Several of these genes
offer the opportunity for targeted therapies, focused either directly on the oncogene, as
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would be the case for CDK6 and ERBB2, or at the pathway downstream of the affected gene,
as would be the case for BRAF and CDKN2A. Other affected genes, such as MSH2, RAD51B,
RAD21 and RAD18, suggest the potential of therapy based on possible ensuing genome
instability, such as immunotherapy or PARP inhibitors. Many of these variants would
not be readily identified by targeted gene panels generally used for clinical assessment
of tumor genomes. Moreover, in many cases, the cancer genes altered by SVs were not
previously associated with the cancer type in which we observed it. For instance, we
observed a fusion of CDK6 in one of the tongue tumors while it has previously been
associated predominantly only with ALL. Similarly, LRP1B is often inactivated in CLL or
ovarian cancer, while we find it inactivated by deletion in one of the lung tumors. Thus, the
identification of somatic structural variants by OGM could provide useful clinical insights
not readily available through standard next-generation sequencing or targeted panels.J. Pers. Med. 2021, 11, x FOR PEER REVIEW 2 of 21 

 

 

 52 

Figure 4. Global view of structural variants in solid tumor samples. Diagrams of somatic structural variants in all the solid 53 

tumor genomes, filtered to remove known polymorphisms, showing translocations and inversions in the center, copy 54 

number on the inner ring and insertions (green), deletions (orange) inversions (light blue) and duplications (violet) on the 55 

next to most outer ring. Chromosomes are ordered sequentially in a clockwise orientation in the outer ring on which are 56 

indicated cytological banding patterns and the centromere (red bar). 57 

Table 4. Structural variants affecting cancer relevant genes. 58 

Sample Oncogene Tumor Suppressor Gene Fusion 

Prostate ERBB2 (Dup) PTEN (Del) PTEN-LINC01374 

 GATA2 (T) NF1 (Del) DHX30-GATA2 

 NUP98 (T)  CASC15-NUP98 

   PRKAR1A-FRMPD4 

   ERG-TMPRSS2 

   FREM1-MYH9 

Ovarian  NUMA1 (T) NBEA-ZFHX3 

  NF1 (I) HMGN2P46-BLOC1S6 

Figure 4. Global view of structural variants in solid tumor samples. Diagrams of somatic structural variants in all the
solid tumor genomes, filtered to remove known polymorphisms, showing translocations and inversions in the center, copy
number on the inner ring and insertions (green), deletions (orange) inversions (light blue) and duplications (violet) on the
next to most outer ring. Chromosomes are ordered sequentially in a clockwise orientation in the outer ring on which are
indicated cytological banding patterns and the centromere (red bar).
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Diagrams of somatic structural variants in all the solid tumor genomes, filtered to
remove known polymorphisms, showing translocations and inversions in the center, copy
number on the inner ring and insertions (green), deletions (orange) inversions (light
blue) and duplications (violet) on the next to most outer ring. Chromosomes are ordered
sequentially in a clockwise orientation in the outer ring on which are indicated cytological
banding patterns and the centromere (red bar).

In addition to identifying individual cancer-related genes in tumor types, our results
provide a panoramic view of the entire tumor genome and reveal large-scale genomic fea-
tures not readily available from standard sequencing techniques. As evident in the results
in Figure 4, our data provide a rapid snapshot of the extent of genomic instability in each of
the tumors. Such images present an integrated picture of the aneuploidies, translocations,
inversions, deletions and insertions, which offers a readily digestible impression of the
extent of genetic instability underlying a tumor. Moreover, several large-scale features are
evident in these data. For instance, chromothripsis is a massive cluster of chromosomal
rearrangements localized to a restricted region of a chromosome, which often results from
a single catastrophic event [40]. Figure 5 details a chromothripsis event on a portion of
chromosome 5 in one of the lung tumor samples. In fact, such events are readily evident in
four of the Circos plots in Figure 4, consistent with previous estimates of 2–3% prevalence
across all cancers, albeit with different frequency in different cancers [41]. The detection
and mapping of such a feature are difficult to achieve by short-read sequencing [41] but
can indicate poor prognosis and the corresponding need for aggressive therapy.

Table 4. Structural variants affecting cancer relevant genes.

Sample Oncogene Tumor Suppressor Gene Fusion

Prostate ERBB2 (Dup) PTEN (Del) PTEN-LINC01374

GATA2 (T) NF1 (Del) DHX30-GATA2

NUP98 (T) CASC15-NUP98

PRKAR1A-FRMPD4

ERG-TMPRSS2

FREM1-MYH9

Ovarian NUMA1 (T) NBEA-ZFHX3

NF1 (I) HMGN2P46-BLOC1S6

SMARCA4 (I) LPP-PIEZO1

Kidney PRKAR1A (T) CDKN2A (Del) PRKAR1A-FRMPD4

ERBB2 (Dup) ZFHX3 (Del)

Colon FHIT (Del)

Breast ERBB4 (Dup) USP8 (T) USP8-PRPSAP

ERBB2 (Dup) PRKAR1A (T) PRKAR1A-FRMPD4

RAD51B (Del) LINC01476-BRIP1

CDKN2A (Del) SYK-CFAP77

Brain SETBP1 (T) LARP4B (T) CCDC158-LARP4B

CSMD3 (T) CA13-CSMD3

LRP1B (Del) DPYD-SETBP1

RAD21 (Del) CNBD1-AC083836.1

Bladder DDX10 (Del)

Tongue BRAF (T) CDKN2A (Del) EPHB1-BRAF

CDK6 (T) PTPRD (Del) CDK6–AC091551.1

CCND2 (T) RAD51B (T) PCLO-RAD51B

CCND1 (Dup) LRP1B (Del)

CDKN1B (Del)
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Table 4. Cont.

Sample Oncogene Tumor Suppressor Gene Fusion

Thyroid YWHAE (T) ABR-YWHAE

PTPRD (Del) CDK12-CSF3

RAD18-SRGAP3

SHROOM3-AFF1

Liver VTI1A (T) RMI2 (T) VTI1A-NHLRC2

MAP3K13 (T) NCOR (T) C3orf70-MAP3K13

MACC1 (T) CBLC (T) AC005062.1-MACC1

NSD3 (T) MSH2 (T) NSD3-AC087623.2

RASGEF1B-VTI1A

RMI2-TOX3

NCOR1-LRRC75A

MSH2-CYP3A43

Lung CTNND2 (Del,T) PTPRD (Del) CTNND2-TRIO

IKBKB (T) RAD51B (T) DUSP10-CTNND2

FUS (T) IKBKB-FAM91A1

LRP1B (T) FUS-CNOT1

PDE6D-RAD51B

PRKCH-HIF1A

GAS7-LYRM9

EHBP1-LRP1B
T, translocation; Dup, duplication; I, insertion; Del, deletion.
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Figure 5. Chromothrypsis of chromosome 5p in a lung tumor. Shown is a truncated Circos plot of
the lung tumor, focused on the region of chromosome 5, highlighting the chromothrypsis event that
occurred on its p arm. The organization of the Circos plot is as indicated in the legend to Figure 4.
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4. Discussion

In this report, we described the application of optical genome mapping to solid tumors,
which we suggest can significantly augment the genomic analysis of such tumors obtained
by next-generation sequencing. Genomic analysis of tumors has stimulated major advances
in cancer diagnosis, prognosis and treatment, shifting the focus from morphological and
histochemical characterization to consideration of the landscape of driver mutations in the
tumor [42–44]. Somatic driver events in a tumor—point mutations and structural variants
(SVs) including insertions, deletions, inversions, translocations and copy number changes—
are currently identified in solid tumors by some combinations of RNA sequencing and
genome sequencing of either targeted gene panels, whole exomes or whole genomes. As
noted in this report, OGM can provide a pervasive view of the structural variants in a
tumor and the cancer-related genes on which they impinge, thus identifying affected genes
agnostically, without prior bias imposed by gene panels.

Some prior studies have begun to demonstrate the utility of Bionano DNA isolation
protocols in solid tissue tumor analysis. These include studies of lung squamous cell
carcinoma and metastatic prostate carcinoma [7,34,35]. This current report demonstrates
the utility of the DNA isolation protocol and SV analysis in a wide variety of solid tissue
types, and expands the feasibility of such analysis for previously unused human tissue
types. The high DNA yield, high effective coverage, map rate and other molecular quality
metrics shown across tumor types confirm how our extraction and analysis workflow can
be effectively applied to many solid tissue tumors.

This current DNA isolation protocol carries a number of advantages. Tissue handling
can be performed at room temperature. The current protocol showed successful DNA
isolation in solid tissue samples of <20 mg, and even as low as 6 mg. The low tissue
input requirement carries important applications for rare cancer samples, human tissue
biopsy testing and other low-quantity specimen acquisition. Additionally, utilizing the
novel paramagnetic Nanobind disks rather than prior agarose gel plugs greatly decreases
time needed to complete DNA isolation to only 5 h. The ability to isolate DNA from up
to eight simultaneous samples using the current protocol greatly amplifies throughput
and reduces tissue-to-data processing time, increasing both laboratory convenience as
well as expanding potential for clinical utility where rapid data turnaround is paramount.
Furthermore, the strong inter-sample SV correspondence shown by most tissue types in
duplicate/triplicate sample analysis demonstrates the reproducibility of this technique;
intra-sample heterogeneity of select samples may be attributed to non-tumor normal tissue
within some tissue fragments, or attributed to specific cancer subtype, and merits further
investigation. Although the isolation protocol described here affords many advantages,
there are some limitations to this protocol. While high-quality DNA isolation and OGM
SV analysis was obtained for a wide variety of tumor types that were tested, it may not
be generalizable to every additional untested solid tumor type. Future directions include
continuing to validate this protocol in additional tissue types, and assessing additional
tumor samples to assess broader trends in the role of specific OGM-identified SVs in
individual cancer subtypes.

In clinical evaluation of liquid tumors such as leukemia, genomic analysis is aug-
mented by karyotyping, which gives a panoramic, albeit low resolution, view of the entire
genome. Despite the low resolution, the genome wide view of the structural changes
afforded by karyotyping reveals diagnostic features of the tumor that have strong prog-
nostic value. Given the consistent correlation of clinical outcomes with specific mutation
classes, the World Health Organization (WHO), National Comprehensive Cancer Network
(NCCN) and European Leukemia Net (ELN) agencies developed recommendations for
diagnosis and management of acute myeloid leukemia in adults based on the spectrum of
somatic point mutations and SVs generally revealed by karyotyping [45]. SVs, particularly
translocations and inversions, are major considerations in this diagnosis. Since karyotyping
is a very challenging technique to apply to solid tumors, the clinician does not have access
to a comparable global view of a solid tumor’s genome and the role of SVs in prognosis
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has likely been underappreciated. Applying OGM broadly to cancer types and correlating
SVs revealed by that analysis with clinical outcomes could provide new genomic markers
for prognosis and treatment selection.

5. Conclusions

We demonstrate the utility of a DNA isolation protocol for high-molecular-weight DNA
extraction and OGM SV analysis of a wide variety of solid human tumor types on the Bionano
Saphyr system, including breast, colon, liver, brain, bladder, kidney, lung, ovary, prostate and
thyroid cancer tissue. The system can be used to accurately detect genetic mutation hallmarks
in cancer tissue samples, including rearrangements such as translocations, gene fusions and
copy number alterations. Somatic SVs can be determined by comparison filtering with the
Bionano control sample database, or against a matched pair sample. Importantly, Bionano
SV pipelines can detect SVs with complex breakpoint structures that are difficult to detect
with other technologies. Our results indicate that the solid tissue DNA extraction protocol
can be applied to a wide variety of solid tumors, and that the Saphyr system can capture, in a
streamlined workflow, a broad spectrum of SVs. These SVs have functional importance and
provide great utility in cancer prognosis and treatment.
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