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Sleep is a vital physiological state that has been broadly conserved across the evolution

of animal species. While the precise functions of sleep remain poorly understood, a

large body of research has examined the negative consequences of sleep loss on

neural and behavioral plasticity. While sleep disruption generally results in degraded

neural plasticity and cognitive function, the impact of sleep loss can vary widely with

age, between individuals, and across physiological contexts. Additionally, several recent

studies indicate that sleep loss differentially impacts distinct neuronal populations within

memory-encoding circuitry. These findings indicate that the negative consequences of

sleep loss are not universally shared, and that identifying conditions that influence the

resilience of an organism (or neuron type) to sleep loss might open future opportunities

to examine sleep’s core functions in the brain. Here, we discuss the functional roles for

sleep in adaptive plasticity and review factors that can contribute to individual variations

in sleep behavior and responses to sleep loss.
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INTRODUCTION

Sleep is a physiological state that has been conserved across evolution, even noted in invertebrates
lacking a centralized brain (Hendricks et al., 2000; Shaw et al., 2000; Zhdanova et al., 2001; Raizen
et al., 2008; Singh et al., 2014; Nath et al., 2017). Although sleep’s physiological functions remain
poorly understood, sleep loss has been associated with deleterious effects on health and cognition
(Rechtschaffen and Bergmann, 1995; Dinges et al., 1997; Durmer and Dinges, 2005; Spiegel et al.,
2005; Banks and Dinges, 2007; Knutson et al., 2007; Grandner et al., 2010). Sleep varies based on
previous waking experience (Ganguly-Fitzgerald et al., 2006; Huber et al., 2007; Hanlon et al., 2009;
Keene et al., 2010; Beckwith et al., 2017; Kirszenblat et al., 2019; Milinski et al., 2021) throughout
the lifespan (Roffwarg et al., 1966; Kales et al., 1967; Feinberg and Carlson, 1968; Cauter et al.,
2000; Backhaus et al., 2007; Dijk et al., 2010; Feinberg and Campbell, 2010; Carrier et al., 2011;
Vienne et al., 2016; Mander et al., 2017), and between species (Lyamin et al., 2008, 2017, 2018;
Siegel, 2008; Lesku et al., 2012), suggesting that sleep has multiple functions. However, because
sleep coincides with broad changes in neurophysiology and necessitates a loss of consciousness
with reduced responsiveness to external threats, it is likely that sleep evolved, at least in part, to
support brain function (Rasch and Born, 2013; Tononi and Cirelli, 2014). Notably, sleep is often
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elevated during periods of synaptic reorganization, including
early development (Roffwarg et al., 1966; Shaw et al., 2000;
Kayser et al., 2014), recovery from neural injury (Singh and
Donlea, 2020; Stanhope et al., 2020), and memory consolidation
(Walker et al., 2002; Ganguly-Fitzgerald et al., 2006). These
findings each suggest that sleep supports plastic remodeling in the
brain. Synaptic plasticity allows behavioral flexibility in response
to external stimuli, and enables the processing and storage of
information (Hughes, 1958; Zucker and Regehr, 2002; Cooke
and Bliss, 2006). However, the underlying cellular and molecular
mechanisms that support plasticity during sleep remain an area
of intense investigation.

The impacts of sleep loss, interestingly, vary widely depending
on age, environmental conditions, and genotype. While
organisms typically recover from acute sleep disruptions
relatively quickly, early-life sleep disruptions can prevent
developmental plasticity during critical periods and result in
long-lasting changes in circuit connectivity and behavior (Frank
et al., 2001; Seugnet et al., 2011; Kayser et al., 2014). Conversely,
some individuals withstand sleep loss with few consequences
depending on the physiological conditions or genetic factors
(Viola et al., 2007, 2012; Lyamin et al., 2008; Keene et al., 2010;
Thimgan et al., 2010; Donlea et al., 2012; Lesku et al., 2012).
In some cases, sleep disruption even provides an opportunity
to weaken maladaptive memories (Poe, 2017). Examining the
variables that can influence an individual’s sensitivity to sleep
loss could provide new insights into the core mechanisms
of sleep-dependent plasticity. In this review, we will discuss
roles for sleep in the maintenance of neural and behavioral
plasticity during development, and learning/memory. Finally,
we outline ethologically relevant conditions in which organisms
can maintain neural and behavioral plasticity in the face of
sleep loss.

DEVELOPMENT

Synaptic plasticity plays a crucial role in brain development,
especially in the refining of neural connectivity through the
process of pruning (Paolicelli et al., 2011). Defects in synaptic
pruning during development are thought to contribute to
atypical circuit function seen in neurodevelopmental disorders
(Paolicelli et al., 2011; Konopaske et al., 2014; Tang et al., 2014;
Cossío et al., 2017; Kim et al., 2017; Neniskyte and Gross,
2017). Daily sleep amounts peak in many species early in
development, when the brain is undergoing significant plastic
changes (Roffwarg et al., 1966; Jouvet-Mounier et al., 1970;
Shaw et al., 2000; Kayser et al., 2014). Studies in humans have
found that sleep disruption during development is associated
with severe and lasting consequences for behavior and cognition
(O’Brien et al., 2004; Halbower et al., 2006; Ednick et al.,
2009). While these human studies provide a correlational link
between impaired sleep and later cognition, several lines of
animal studies described below indicate conserved roles for
sleep in neurodevelopment of several species and begin to
identify possible mechanisms by which sleep might influence
brain development.

Rapid eye movement (REM) sleep is thought to play a
particularly important role in development. Infants spend as
much as 50% of their time asleep in REM, compared to 25%
in adults (Roffwarg et al., 1966; Jouvet-Mounier et al., 1970).
This period of increased REM sleep coincides with heightened
formation and elimination of synapses in the developing mouse
brain (Marks et al., 1995). Previous work found that REM
deprivation, but not non-REM (NREM) deprivation, prevents
the elimination of newly-formed dendritic spines in layer V
pyramidal neurons in the developing mouse motor cortex (Li
et al., 2017). Further, elimination of recent spines during REM
facilitates the development of new spines at nearby sites. While
most newly formed spines are eliminated, persistent spines
are strengthened by REM sleep. Notably, similar findings were
observed in the adult mouse brain following motor learning (Li
et al., 2017).

A unique feature of REM sleep is the occurrence of
myoclonic twitches, or spontaneous, discrete, spastic movements
of the limbs (Tiriac et al., 2012; Blumberg et al., 2013;
Sokoloff et al., 2020). These twitches occur throughout the
mammalian lifespan, but are particularly abundant in infancy
(Tiriac et al., 2012; Blumberg et al., 2013; Sokoloff et al., 2020,
2021). The development of myoclonic twitches depends on
sensory feedback; the spatiotemporal organization of twitches
is disrupted in newborn ErbB2 muscle-specific knockout mice
which lack muscle spindles and exhibit impaired proprioception
in adulthood (Blumberg et al., 2015). Muscle spindles are sensory
receptors that relay changes in the length of muscles to the central
nervous system and are necessary for intact proprioception
(Kröger andWatkins, 2021). These findings suggest that twitches
during sleep provide the developing brain with opportunities to
refine immature sensorimotor maps and better coordinate limb
movements. Twitching during early-life REM episodes, therefore,
could facilitate the transformation of uncoordinated movements
during infancy to the fine-tuned sensorimotor maps of an adult.
Sensory feedback from twitching limbs are thought to contribute
to motor learning and sensorimotor integration (Blumberg et al.,
2013, 2020; Sokoloff et al., 2015; Rio-Bermudez and Blumberg,
2018; Glanz et al., 2021), as reafference from myoclonic twitches
selectively activates brain regions such as the thalamus, cortex,
hippocampus, and cerebellum in infant rats (Khazipov et al.,
2004; Mohns and Blumberg, 2010; Tiriac et al., 2012; Sokoloff
et al., 2015). Because reafference signals from self-movement
are gated during waking, sleep disruptions that interfere
with twitching, and their corresponding neuronal activity may
disrupt sensorimotor maturation (Tiriac and Blumberg, 2016).
While these studies provide an important and promising
link between early-life sleep episodes and the development of
mature sensorimotor representations, the underlying synaptic
mechanisms and long-term consequences of myoclonic twitch
disruptions remain to be characterized in detail.

A vital role for sleep in early life plasticity is shared across
sensory circuits. The study of ocular dominance plasticity (ODP)
induced bymonocular deprivation (MD) in cats, for example, is a
canonical model of critical period plasticity during development
that is reliant upon sleep. During an early critical period for
visual development, occluding one eye leads to enhanced visual
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cortex responses to inputs from the non-deprived eye (Hubel
andWiesel, 1970). Sleep enhances ODP; NREM sleep deprivation
prevents enhancement of cortical plasticity, suggesting that sleep
is vital for consolidating experience-dependent changes in ocular
dominance following MD (Frank et al., 2001). More recent
work has found that REM deprivation disrupts cortical plasticity
after MD as well, perhaps by disrupting replay-like patterns of
activity in the visual cortex (Bridi et al., 2015). Additionally,
REM sleep following MD is sufficient to prevent reversal of ODP
following subsequent manipulations such as further SD (Bridi
et al., 2015), cortical inactivation (Jha et al., 2005), and inhibition
of NMDA receptors (Aton et al., 2009). The dependence of ODP
on REM sleep parallels studies of sensorimotor development
described above, suggesting a vital role for REM sleep in
permitting developmental refinement across sensory systems.
The consolidation of ODP is also reminiscent of hippocampal
memory consolidation during sleep (Diekelmann and Born,
2010; Rasch and Born, 2013). These studies suggest that sleep
during development is necessary for the consolidation of plastic
changes induced by waking experience, which likely guide
appropriate behavioral adaptations to a changing environment.
Since ODP (along with other forms of developmental plasticity)
occurs during a tightly restricted critical period of development,
sleep disruptions early in life could have long-lasting effects on
neurophysiology and behavior.

Ontogenetic changes in sleep are conserved; sleep amount
and intensity are increased early in life for invertebrates,
such as the fruit fly, just as they are in mammals (Jouvet-
Mounier et al., 1970; Shaw et al., 2000). In Drosophila,
24 h of sleep deprivation following eclosion leads to long-
term learning deficits, whereas adults recover from the same
duration of sleep loss after one night of recovery sleep
(Seugnet et al., 2011). These chronic learning impairments
are likely connected with altered dopamine signaling, and can
be dampened either by blocking D1 receptor activity during
early life sleep loss or by elevating dopamine signaling during
the days after developmental sleep deprivation (Seugnet et al.,
2011). Additionally, young sleep-deprived male flies, but not
mature flies, show deficits in courtship behavior as adults
(Seugnet et al., 2011; Kayser et al., 2014). These courtship
deficits are accompanied by decreased size of an olfactory
glomerulus associated with perception of social pheromones,
caused by impaired developmental growth (Kayser et al., 2014).
Similarly, 1 week of early life sleep disruption impairs later
social bonding in adult prairie voles (Jones et al., 2019). In this
study, sleep disruption occurred during the third and fourth
weeks of life, which likely falls during a critical period for
maturation of GABAergic circuits that contribute to sensory
integration (Gogolla et al., 2014). Notably, early life sleep
deprivation in prairie voles leads to an increase in parvalbumin
immunoreactivity in the primary sensory cortex, a brain region
relevant to social bonding (Jones et al., 2019). Chronic changes
in parvalbumin signaling could disrupt sensory processing and
social behavior by altering excitatory/inhibitory balance (Yizhar
et al., 2011). Together, these studies demonstrate that early
life sleep is vital for developmental growth of rapidly growing
brain regions across many species, and that disrupted sleep

during development can result in lasting effects on adult circuitry
and behavior.

While human studies have not yet revealed a mechanistic
understanding of how sleep promotes neural and cognitive
development, animal models indicate that sleep’s role in
neurodevelopment is evolutionarily ancient. Model system
studies, such as those in flies and mice discussed above, have
begun to examine how sleep modulates synaptic connectivity
in a variety of developing sensory circuits. Further studies in
these systems may reveal interventions that facilitate healthy
development during insufficient sleep (Seugnet et al., 2011;
Kayser et al., 2014; Jones et al., 2019).

LEARNING AND MEMORY

In a variety of species, sleep is required for several stages of
memory formation and processing (Walker et al., 2002; Graves
et al., 2003; McDermott et al., 2003; Ganguly-Fitzgerald et al.,
2006; Seugnet et al., 2008; Krishnan et al., 2016). Indeed, sleep
deprivation leads to impaired encoding (Walker et al., 2002;
Yoo et al., 2007; Seugnet et al., 2008), consolidation (Graves
et al., 2003; Diekelmann and Born, 2010), and retrieval (Gais
et al., 2007; Lo et al., 2016; Montes-Rodríguez et al., 2019;
Heckman et al., 2020) of recent associations. While even a brief
nap restores memory in some assays (Seugnet et al., 2008; Ong
et al., 2020), other learning and memory impairments persist
after days of recovery sleep (Havekes et al., 2016; Yamazaki et al.,
2020; Wu et al., 2021). While it is not clear why recovery from
sleep loss varies between these conditions, studies have detected
several types of longer-lasting cellular and molecular changes
that persist after recovery sleep, including altered gene expression
(Gaine et al., 2021), protein synthesis (Tudor et al., 2016;
Lamon et al., 2021), and circuit connectivity (Weiss and Donlea,
2021). Interestingly, some types of memories seem to be more
vulnerable to sleep loss than others. For example, procedural
memories andmemories acquired with a consciousmotivation or
reward benefit from sleep more than declarative or unmotivated
memories (Stickgold and Walker, 2007; Diekelmann and Born,
2010). In Drosophila, sleep deprivation disrupts consolidation of
appetitive sugar reward memories in fed flies, but in not starved
flies (Chouhan et al., 2021). Together, these studies indicate
that sleep deprivation likely does not have a universal effect
on learning and memory, but varies based on physiological,
environmental, and behavioral factors.

While the negative impacts of sleep loss onmemory formation
are typically detrimental, it is possible that targeted sleep
disruption could be used to prevent the consolidation of
maladaptive memories. Some studies, for instance, suggest that
sleep deprivation could be used following trauma to degrade
fear memories in patients with post-traumatic stress disorder
(PTSD). Studies by Vanderheyden et al. (2015) compared sleep
patterns of rats that were susceptible to developing PTSD-
like symptoms after trauma to those that were resilient. While
susceptible rats exhibited an increase in REM sleep in the
hours following the traumatic event, resilient rats slept little
during this period (Vanderheyden et al., 2015). Heightened
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REM sleep following trauma could lead to consolidation and
reactivation of the trauma memory, preventing fear extinction,
and resulting in generalization of the fear memory (Poe, 2017).
Traumatic events drive activation of the mammalian locus
coeruleus (LC) (Passerin et al., 2000; Naegeli et al., 2018),
a collection of noradrenergic cells that promote long-term
potentiation (LTP) (Izumi et al., 1992; Thomas et al., 1996;
Izumi and Zorumski, 1999) and are generally quiescent during
REM sleep (Foote et al., 1980). Elevated LC activity during REM
sleep following a traumatic event can contribute to enhancement
of recently formed emotional memories as seen in PTSD
(Wassing et al., 2019). Therefore, behavioral sleep deprivation or
pharmacological REM suppression following a traumatic event
could lead to interventions to prevent the development of PTSD
(Vanderheyden et al., 2014, 2015; Poe, 2017). Conversely, given
the importance of sleep in memory consolidation (Rasch and
Born, 2013) and emotional processing (Palmer and Alfano,
2017; Tempesta et al., 2018), sleep loss following a traumatic
event could prevent consolidation of fear extinction memory
in other conditions (Pace-Schott et al., 2015). Recent human
studies have producedmixed results (Porcheret et al., 2015; Kleim
et al., 2016; Cohen et al., 2017), indicating that the role for
sleep in consolidating and/or maintaining traumatic memories
varies with context or time elapsed since trauma. Further studies
will be required to examine the therapeutic potential of sleep
manipulations more clearly.

Synaptic Plasticity and Homeostasis
Although the primary function or functions of sleep are not
understood, evidence suggests a strong relationship between
sleep and plasticity (Frank et al., 2001; Tononi and Cirelli,
2014). Sleep loss leads to impairments in the plastic processes
of learning and memory (Diekelmann and Born, 2010; Rasch
and Born, 2013). One prominent hypothesis posits that
sleep’s function is the renormalization of synaptic strength
via downscaling of synapses that are potentiated during wake,
thereby constraining excitability and restoring signal-to-noise
ratios for neuronal firing (Tononi and Cirelli, 2014). Learning
about the environment during waking experience requires
strengthening of synapses (Clem and Barth, 2006; Gruart et al.,
2006; Tye et al., 2008). According to this synaptic homeostasis
hypothesis, sleep deprivation leads to cognitive deficits due to
saturation of synaptic connections (Tononi and Cirelli, 2014).
Evidence supporting the role of synaptic downscaling during
sleep exists in a variety of species (Gilestro et al., 2009; Vyazovskiy
et al., 2009; Bushey et al., 2011). At the molecular level,
synaptoneurosomes from the cortex and hippocampus of adult
rats display increased protein levels of GluA1-containing AMPA
receptors after spontaneous and forced wake than after sleep
(Vyazovskiy et al., 2008). Sleep has been found to promote
synaptic downscaling in the mouse forebrain by internalizing
AMPA receptors via the immediate early gene Homer1 (Diering
et al., 2017). In addition, the size of the axon-spine-interface,
an ultrastructural measure of synaptic strength, increases after
several hours of wake compared to sleep in several mouse
brain regions (Vivo et al., 2017, 2019; Spano et al., 2019). At
the electrophysiological level, amplitude and/or frequency of

miniature excitatory postsynaptic currents in several regions of
the rodent brain increase during wake and after sleep loss, and
decline following spontaneous sleep and recovery sleep (Liu et al.,
2010; Bjorness et al., 2020; Khlghatyan et al., 2020). Additionally,
firing rates of hippocampal and cortical neurons have been
shown to increase with wake and decrease with sleep (Lubenov
and Siapas, 2008; Vyazovskiy et al., 2008, 2009; Huber et al.,
2013; Norimoto et al., 2018). Studies in Drosophila have also
found increases in abundance of presynaptic and postsynaptic
markers following sleep loss, consistent with the hypothesis of
net potentiation during wake (Gilestro et al., 2009; Bushey et al.,
2011; Huang et al., 2020; Weiss and Donlea, 2021). Additional
work in the fruit fly has found that acute sleep induction is
sufficient to reduce abundance of transcripts (Dissel et al., 2015)
or protein (Weiss and Donlea, 2021) of synaptic components.

While evidence clearly suggests a role for sleep in synaptic
downscaling in some circumstances, other studies have reported
synaptic potentiation during sleep (Frank et al., 2001; Aton et al.,
2013, 2014). Short periods of sleep loss decrease the number
of dendritic spines in the CA1 region of the hippocampus
due to increased activity of the actin-binding protein cofilin
(Havekes et al., 2016). Suppressing cofilin activity in hippocampal
neurons prevents spine loss and cognitive deficits following sleep
deprivation, suggesting that disruption of synaptic potentiation
during sleep deprivation can lead to defects in memory
consolidation (Havekes et al., 2016). Similarly, sleep deprivation
leads to decreased spine density in the dentate gyrus (Raven
et al., 2019), and disrupts the formation of new spines following
learning (Yang et al., 2014). These data indicate that, although
evidence supports a general trend for synaptic downscaling
during sleep, it is likely that different classes of synapses undergo
different forms of plasticity during sleep or that sleep alters
synaptic organization differently depending on the organism’s
developmental state and recent experience.

Several recent studies have sought to understand whether
sleep loss differentially affects distinct classes of neurons within
a single circuit or brain region. The Drosophila mushroom body
(MB), which encodes olfactory associative memories, provides
an ideal opportunity to examine the local effects of sleep loss
on synapse organization. Heroic efforts have untangled the
organization of the fly MB with the development of genetic
drivers to label each cell type, often with single-cell resolution
(Aso et al., 2014a,b) and serial reconstruction of electron
micrographs have led to a detailed connectome of the MB
circuitry (Li et al., 2020; Scheffer et al., 2020). These studies show
that the Drosophila MB is an associative learning center that is
divided into 15 zones defined by non-overlapping arborization
of several cell types, including cholinergic Kenyon Cells (KCs),
reinforcing dopaminergic neurons (DANs), and mushroom body
output neurons (MBONs) which mediate behavioral valence
output (Aso et al., 2014a). Associative engrams can be localized
to individual zones of the MB lobes, where plasticity in the
connections between odor-encoding KCs and valence-driving
MBONs determines the fly’s behavioral response to odorant
stimuli (Aso et al., 2014b; Hige et al., 2015; Owald et al., 2015).
Since sleep loss prior to training can impair acquisition/short-
term memory and disrupting sleep after training prevents
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FIGURE 1 | Schematic of local plasticity in Drosophila mushroom body after sleep loss. (A) Schematic illustration of Drosophila mushroom body. The γ lobe (light

blue) contains the γ1 compartment, outlined in blue, and the γ2 compartment, outlined in red. Arrows represent changes in connectivity from Kenyon cells to

MBON-γ1pedc (left, blue) and MBON-γ2α’1 (right, red). Appetitive memory encoded at KC>MBON-γ1pedc synapses is resilient to sleep loss, but appetitive memory

encoded at KC>MBON-γ2α’1 synapses is impaired by sleep loss. (B) Schematic of connectivity between neuronal cell types in MB in rested (left) and sleep deprived

brains (right). KC axons innervate tiled zones that each receive input from distinct DANs and provide input to unique MBONs. After SD, KC>MBON-γ1pedc

connectivity is unchanged, but KC>MBON-γ2α’1 connectivity decreases. Based on findings from Weiss and Donlea (2021) and Chouhan et al. (2021).

memory consolidation (Ganguly-Fitzgerald et al., 2006; Seugnet
et al., 2008), it is likely that sleep deprivation alters either
synaptic connectivity or plasticity inMB circuits. Overnight sleep
deprivation selectively upscales synapses of cholinergic memory-
encoding KCs, but not other cell types in theMB, includingDANs
or large, inhibitory interneurons (Weiss and Donlea, 2021).
Further, not all types of KC output synapses are equally impacted
by sleep loss; output connections from KCs to different classes of
post-synaptic target neurons show wide variations in abundance
following sleep loss.

Interestingly, studies by Chouhan et al. (2021), found that
flies housed without food did not require sleep after appetitive
conditioning to form new memories, unlike fed flies. While
appetitive memory is encoded in the KC>MBON-γ2α’1 circuit
in fed flies and is sensitive to sleep loss, appetitive memory
is encoded in KC>MBON-γ1pedc circuitry in starved flies,
and remains intact with sleep loss (Chouhan et al., 2021).
Additionally, Weiss and Donlea (2021) found that sleep loss
led to decreased connectivity between KCs and MBON-
γ2α’1, necessary for sleep-dependent memory consolidation,
while KC>MBON-γ1pedc connections, dispensable for sleep-
dependent memory consolidation, were unaffected. Sleep loss
could therefore disrupt consolidation of recent appetitive
memories in fed flies by reducing overall connectivity between
KCs and MBON-γ2α’1 (see Figure 1). Because plasticity rules
can differ widely between MB sub-circuits (Hige et al., 2015),
environmental conditions during learning likely influence the
strength, retention, and/or decay time of a particular association.
These results suggest that different zones of the MB exhibit
distinct plasticity rules during sleep, likely based on learning
paradigm, internal state, and other previous experience.

Supporting the idea of region and circuit specific changes
in plasticity with SD, Puentes-Mestril et al. (2021) examined
the effects of sleep loss on ribosome-bound transcripts for
activity-dependent regulators of plasticity in excitatory pyramidal

neurons and inhibitory parvalbumin-expressing interneurons.
While both classes of neurons show increases in plasticity-
mediating transcripts in the cortex following sleep loss, SD has
little effect on abundance of these transcripts in both cell types
in the hippocampus (Puentes-Mestril et al., 2021). Additional
work suggests that certain cell types in the mouse hippocampus
likely have privileged roles in memory consolidation during sleep
(Delorme et al., 2021). Sleep deprivation leads to activation
of inhibitory somatostatin-expressing (Sst+) interneurons in
the hippocampus, likely due to inputs from increasingly active
cholinergic neurons (Delorme et al., 2021). Both pharmacological
activation of cholinergic neurons and chemogenetic activation
of Sst+ cells in the dorsal hippocampus in the absence of
SD leads to deficits in sleep-dependent memory consolidation
(Delorme et al., 2021). Notably, both Delorme et al. (2021)
and Weiss and Donlea (2021) found that sleep deprivation
enhances cholinergic signaling onto GABAergic interneurons
in learning/memory-related circuits, which likely increases
inhibition onto memory-encoding neurons (see Figure 2).
Enhanced hippocampal inhibition due to increased Sst+ activity
during SD correlates with impairment of memory consolidation
by disrupting LTP (Vecsey et al., 2009; Havekes et al., 2016),
the reactivation of memory-encoding cells (Stefanelli et al., 2016;
Clawson et al., 2021), or hippocampal oscillations (Puentes-
Mestril et al., 2019). Similarly, while some inhibition from
the Drosophila APL interneurons onto KCs is necessary to
maintain spatial and temporal sparseness of odor encoding (Lei
et al., 2013; Lin et al., 2014), excess inhibition would likely
prevent encoding of new odor associations and reactivation of
existing memory traces. Interestingly, GABAergic signaling from
dorsal paired medial (DPM) and anterior paired lateral (APL)
promotes sleep at night, suggesting that these interneurons may
be recruited by increased KC activity during SD to promote
sleep and sparsen KC representations (Haynes et al., 2015).
These studies in both mice and Drosophila suggest that increased
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FIGURE 2 | Cell type specific effects of sleep loss on memory-encoding circuits. (A) Schematic of connectivity between memory-encoding KCs and APL/DPM

interneurons in the Drosophila MB in rested (left) and sleep deprived (right) flies. Cholinergic KCs activate GABAergic interneurons, which provide feedback inhibition

onto KCs. KCs also synapse back onto other KCs. After SD (right), KC>APL connectivity strengthens, presumably increasing inhibition back onto KCs. KC>KC

synapses may also strengthen, further contributing to increased KC>APL connectivity. Increased inhibition from APL/DPM after SD could dampen KC>KC excitation

and promote recovery sleep. Based on findings from Weiss and Donlea (2021). (B) Schematic of hippocampal circuitry including cholinergic neurons in the medial

septum to the mouse hippocampus in rested (left) and sleep deprived (right) mice. Cholinergic neurons activate GABAergic SST+ interneurons in the hippocampus,

which inhibit memory-encoding pyramidal neurons/granule cells (principal neurons). After SD (right), enhanced cholinergic signaling increasingly activates SST+

interneurons, thereby heightening inhibition and reducing activity of hippocampal pyramidal neurons and granule cells. Based on findings from Delorme et al. (2021).

cholinergic signaling disrupts learning and memory after sleep
deprivation, and that inhibitory drive onto memory-encoding
neurons could be recruited to compensate. While these studies
find complementary effects of sleep loss in the fly and mouse,
these results use different approaches; Weiss and Donlea (2021)
measure synaptic active zone reporters in the fly MB while
Delorme et al. (2021) and Puentes-Mestril et al. (2021) quantify
hippocampal transcript levels of activity-dependent immediate
early genes. Additional studies will be required to directly test the
relationship between connectivity changes and cell-type specific
changes in activity. Ultimately, characterizing the subsets of
synapses, cell types, and circuits that are most sensitive to sleep
loss will help elucidate the mechanisms by which SD impairs
behaviors such as learning and memory.

Sleep not only balances synaptic connectivity, but also
influences neuronal firing patterns. In the rodent frontal cortex,
fast spiking pyramidal cells show decreased activity during
NREM sleep, while slow firing neurons increase their firing
rate (Watson et al., 2016). Similar findings were observed in
the mouse primary visual cortex, and these changes in firing
rates were disrupted by a period of brief sleep deprivation
(Clawson et al., 2018). Pyramidal neurons that are active
during sleep spindles, oscillatory activity that promotes plasticity
underlying memory formation (Schabus et al., 2006; Rasch
and Born, 2013; Cairney et al., 2018), are increasingly active
over the course of slow-wave sleep (SWS), whereas spindle-
inactive pyramidal neurons show decreased activity during

SWS (Niethard et al., 2021). These results indicate that sleep
can increase the signal-to-noise ratio of neuronal responses
by increasing the activity of sparsely firing neurons with the
highest selectivity while reducing noise by decreasing activity
of faster spiking, less selective neurons (Clawson et al., 2018).
Interestingly, sleep during early-life ODP inmice is vital for firing
rate homeostasis, indicating a potential life-long role for sleep in
normalizing neuronal activity (Hengen et al., 2016; Pacheco et al.,
2021).

RESILIENCE TO SLEEP LOSS

Ethological Context
While sleep contributes to many forms of experience-dependent
plasticity as described above, individuals can show a wide
variation in their responses to sleep loss. Sleep is homeostatically
regulated across many species, but both extrinsic and intrinsic
factors can influence the responses of an organism to specific
sleep challenges. Food-deprived Drosophila, for instance,
typically reduce their sleep, presumably to maximize foraging
opportunities (Keene et al., 2010; Thimgan et al., 2010;
Yurgel et al., 2019). While acute sleep-deprivation is typically
accompanied by impaired memory and a homeostatic increase
in sleep, flies that lose sleep overnight during food deprivation
can retain intact memory formation and show little, if any, sleep
rebound (Thimgan et al., 2010). Similarly, socially naïve male
flies will also forego sleep when paired overnight with a female
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TABLE 1 | Summary of experimental or ethologically-relevant conditions that reduce sleep in several species.

Species Manipulation Sleep response Behavioral response References

Drosophila melanogaster Sleep deprivation Decreased sleep, homeostatic rebound Impaired learning,

STM and LTM

Ganguly-Fitzgerald

et al., 2006; Seugnet

et al., 2008; Li et al.,

2009

Starvation Decreased sleep, no rebound Intact memory Keene et al., 2010;

Thimgan et al., 2010;

Yurgel et al., 2019

Stimulants Decreased sleep Not measured Hendricks et al., 2000;

Shaw et al., 2000;

Andretic et al., 2005

Courtship Decreased sleep, no rebound Not measured Beckwith et al., 2017;

Machado et al., 2017

Frigatebirds Migration Decreased sleep in flight, rebound on land Not measured Rattenborg et al., 2016

Sandpipers Mating season Decreased sleep Mating success

positively correlated

with amount of sleep

loss

Lesku et al., 2012

Cetaceans Postpartum Little to no sleep Not measured Lyamin et al., 2005,

2007

Fur seals In seawater Greatly reduced REM, no REM rebound Not measured Lyamin et al., 2018

fly (Beckwith et al., 2017; Machado et al., 2017). This effect can be
replicated by activating pheromone sensing neurons or courtship
control circuits and, like starvation-induced arousal, is not
followed by a sleep rebound. Similarly, the ability to temporarily
offset the need for sleep has also been found in vertebrate species.
Fur seals suppress REM sleep for days or weeks when foraging
in seawater, accompanied by little to no REM rebound (Lyamin
et al., 2018). Migratory frigate birds can reduce the time that
they spend asleep by over 90% for ∼10 days while continuously
in flight over the Pacific Ocean compared to their sleeping
patterns on land (Rattenborg et al., 2016). Similarly, Arctic male
sandpipers suppress sleep for a roughly 3 week period annually
while they compete for mating partners (Lesku et al., 2012).
During mating season, the sun never sets in the high Arctic,
allowing males to engage in unlimited visual courtship displays.
Because mating success is correlated with the amount of time that
male sandpipers spend awake, there is likely selective pressure
for genetic factors that can allow male sandpipers to withstand
prolonged sleep loss without accruing cognitive deficits or sleep
drive. Constant sunlight during this period likely interacts with
social and reproductive cues, enabling males to forego sleep for
an extended period. Social behaviors can also drive contexts
in which mammals can delay the need for sleep. Whales and
dolphins, for example, can nearly fully suppress sleep for up
to a month after giving birth with no recorded physiological
consequences (Lyamin et al., 2005). Importantly, vertebrate
sleep stages are characterized by electrophysiological signatures
measured with electroencephalography (EEG) (two process
model), whereas Drosophila sleep is defined by behavioral
criteria such as quiescence and increased arousal threshold
(Hendricks et al., 2000; Shaw et al., 2000). Recent work has begun
to investigate whether sleep inDrosophila is composed of distinct
stages (Yap et al., 2017; Raccuglia et al., 2019; Tainton-Heap

et al., 2021), which may account for variations in plasticity
and responses to sleep loss discussed above. While mechanistic
studies are not feasible in many of the species mentioned here,
the range of contexts in which sleep need can be temporarily
offset provides exciting opportunities to understand when sleep
is required for plasticity (see Table 1).

Intrinsic Factors
Resilience to sleep loss can also be influenced by intrinsic
factors that vary between individuals. Human subjects exhibit
reliable, stable responses to repeated episodes of sleep loss,
suggesting that sensitivity to sleep loss can be a durable trait over
time (Dennis et al., 2017; Yamazaki and Goel, 2019). Naturally
occurring genetic polymorphisms coincide with an individual’s
response to sleep loss in flies and humans (Viola et al., 2007,
2012; Donlea et al., 2012; Satterfield et al., 2015). In two of
these studies, the same genetic alleles correlated with reduced
cognitive impairments and dampened homeostatic sleep pressure
after prolonged waking, indicating that the identified loci could
contribute to protecting neural functions during sleep loss (Viola
et al., 2007; Donlea et al., 2012). Interestingly, the identified
human alleles in per3 and tnfα that protected individuals from
the consequences of sleep loss did not predominate in the
subject populations, consistent with the possibility that these
alleles are accompanied with susceptibility to other physiological
challenges. Brain structure can also influence sensitivity to sleep
loss; variation in functional connectivity between brain regions
and hippocampal structure can predict the cognitive impact of
sleep loss in human subjects (Yeo et al., 2015; Saletin et al., 2016).
While the neural and molecular mechanisms that connect these
variations with susceptibility to sleep are not yet known, studies
of model systems provide some insights into pathways that might
provide protection from insufficient sleep.Drosophila and mouse
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studies have identified genetic pathways, including circadian
rhythm (Mang et al., 2016; Ehlen et al., 2017), and metabolic
factors (Thimgan et al., 2010, 2015), that can be manipulated to
prevent rebound sleep following extended waking. It is important
to note that each of these interventions can temporarily delay
the accumulation of sleep debt, but it is unclear how long
their protection persists and whether other consequences build
as a result. Nonetheless, further examination of the external
contexts and internal factors that can confer resilience to sleep
loss may provide new insight into the neural functions of sleep
and identify controllable interventions to facilitate rapid recovery
from sleep loss.

CONCLUSION

In many contexts, sleep is vital for individuals to learn
and adapt their behavior to best fit their environmental
conditions. Sleep facilitates brain development and circuit
refinement, and early life disruptions in sleep can result in
long-lasting behavioral changes. Throughout the lifespan, sleep
also impacts whether new memories can be effectively acquired
and consolidated. While understanding the mechanisms that
contribute to sleep-dependent plasticity remain an area of
intense interest, many studies have already identified molecular
and synaptic connectivity changes that occur during sleep to
facilitate memory formation. More clearly identifying these

mechanisms and developing strategies to manipulate them could
open opportunities to support cognitive processing during sleep
loss. Finally, individuals exhibit varying responses to sleep loss
due to intrinsic and environmental factors. Understanding the
benefits and detriments of variations in sleep, as well as the
biological basis for inter-individual differences, will help resolve
the function(s) of sleep and elucidate how sleep patterns affect
future behavior.
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