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Here, we present the draft genome sequence for the violacein-producing Janthinobacterium sp. CG23_2 isolated from an Antarc-
tic supraglacial stream. The genome is ~7.85 Mb, with a G�C content of 63.5%. The genome includes 7,247 candidate protein
coding genes, which may provide insight into UV tolerance mechanisms.
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Organisms inhabiting Antarctic supraglacial environments are
subjected to a variety of environmental stresses. Ozone de-

pletion over Antarctica has altered the spectral composition of
solar radiation (1), and harmful UVC (100 to 280 nm) radiation is
present on ice surfaces (2). Inescapable to microorganisms
throughout the course of the austral summer, UV radiation dam-
ages biological macromolecules, including nucleic acids, lipids,
and proteins and may lead to cell death. In order for microorgan-
isms to inhabit environments with high UV radiation, efficient
protective mechanisms and DNA and protein repair mechanisms
are necessary. One mechanism for the protection from UV in-
duced biological damage is for cells to produce protective pig-
ments (3, 4).

The purple pigment violacein is produced by certain mem-
bers of the �-proteobacteria, including some Janthinobacte-
rium strains. Violacein has been investigated for its antimicro-
bial (5), antioxidant (6), and UV protection properties (4).
Although the exact mechanism of violacein protection against
UV damage is currently not well understood, evidence suggests
that violacein can detoxify free radicals induced by UV radia-
tion (4).

Janthinobacterium spp. are found in many different envi-
ronments, including lakes, soils, and glaciers (7–9). We re-
cently reported the genome sequence of a nonpigmented Jan-
thinobacterium sp. isolated from a supraglacial stream. Here we
present the genome sequence of a violacein producing strain
Janthinobacterium sp. CG23_2, isolated from the same system
in Antarctica. Genomic analyses of these strains will offer in-
sight into UV tolerance mechanisms from environmentally rel-
evant isolates.

Janthinobacterium sp. strain CG23_2 was isolated from the
Cotton Glacier in the Antarctic Dry Valleys (77° 07S, 161° 50E).
The organism was isolated on R2A agar medium incubated in the
dark at 4°C for 12 days. Janthinobacterium sp. strain CG23_2 is a
psychrotolerant, aerobic, violacein-pigmented, rod-shaped,
Gram-negative, catalase-positive organism. Genomic DNA was
isolated following standard cetryltrim-ethylammonium bromide
(CTAB) isolation protocols (http: //www.jgi.doe.gov).

Whole-genome DNA sequencing was performed using a Pa-
cific Biosciences (PacBio, Menlo Park, CA) RS II instrument
(10). A single molecule real-time (SMRT) cell library was con-
structed with 10 �g input DNA using the PacBio 20-kbps pro-
tocol. The library was then loaded onto one SMRT cell and
sequenced using P5 polymerase and C3 chemistry with 180-
min movie times. Sequencing yielded a total of 99,287 reads
with mean read length of 5.9 kbps, totaling 581,513,481 bps
(�85-fold coverage). De novo assembly was constructed using
the hierarchical genome assembly process (HGAP2) protocol
from SMRT Analysis v2.0, including consensus polishing with
Quiver (11, 12). The final assembly consists of four contigs with
a total genome size of �7.85 Mbps. Approximately 93% of the
genome is contained within two large contigs (4.2 and
3.1 Mbps). Remaining sequences were divided into two smaller
contigs ranging from 420 to 153 kbps. A total of 7,247 candi-
date protein-coding genes were predicted using RAST (13)
with a total G�C content of 63.5%. Upon comparison with
genomes available within the RAST the closest relative to Jan-
thinobacterium sp. CG23_2 was determined to be Janthinobac-
terium sp. Marseille (score 542).

Nucleotide sequence accession numbers. This genome se-
quence has been deposited in EMBL/GenBank under the acces-
sion number CYSS00000000. The version described in this paper
is the first version, CYSS00000000.1.
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