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Abstract

In the past, microarray studies have been criticized due to noise and the limited overlap between gene signatures. Prior
biological knowledge should therefore be incorporated as side information in models based on gene expression data to
improve the accuracy of diagnosis and prognosis in cancer. As prior knowledge, we investigated interaction and pathway
information from the human interactome on different aspects of biological systems. By exploiting the properties of kernel
methods, relations between genes with similar functions but active in alternative pathways could be incorporated in a
support vector machine classifier based on spectral graph theory. Using 10 microarray data sets, we first reduced the
number of data sources relevant for multiple cancer types and outcomes. Three sources on metabolic pathway information
(KEGG), protein-protein interactions (OPHID) and miRNA-gene targeting (microRNA.org) outperformed the other sources
with regard to the considered class of models. Both fixed and adaptive approaches were subsequently considered to
combine the three corresponding classifiers. Averaging the predictions of these classifiers performed best and was
significantly better than the model based on microarray data only. These results were confirmed on 6 validation microarray
sets, with a significantly improved performance in 4 of them. Integrating interactome data thus improves classification of
cancer outcome for the investigated microarray technologies and cancer types. Moreover, this strategy can be incorporated
in any kernel method or non-linear version of a non-kernel method.
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Introduction

Patients with similar clinical and pathological characteristics

such as age, tumor size, lymph node status and grade often differ

in clinical outcome and therapy response. Patients for who these

traditional diagnostic and prognostic tools fail can potentially be

discerned with microarray technology. This technology investi-

gates the transcriptomic make-up of a tumor in one experiment. A

decade ago, it was first used in cancer studies to classify tissues as

cancerous or non-cancerous [1–2] and has since emerged as a

popular tool to study different cancer types and outcomes [3–6].

Currently within the domain of cancer, microarray technology has

earned a prominent place for its capacity to characterize the

underlying tumor behavior in detail, leading to an improved

diagnostic and prognostic capability. The earliest and most

exhaustive efforts have been accomplished for breast cancer [7].

In this manuscript, we aim to improve the predictive power in

diagnosis and prognosis of cancer with gene expression data as

predictors, by incorporating side information about interactome

networks in kernel methods.

In the above mentioned studies, genes were treated as single

entities without regard to their neighbors in the interactome

network consisting of a wide variety of interaction pairs such as

protein-protein (PPI), domain-domain (DDI) and microRNA-

mRNA interactions. In Figure 1, a simplified visualization of the

mTOR pathway and its regulating pathways is depicted,

representing a typical network related to oncogenesis. Several

components of these pathways are deregulated in a broad

spectrum of human cancers. In this example, the mTOR pathway

is switched on either when expression of RAS is reduced due to a

mutation or when the tumor suppressor gene PTEN is inactive.

Ideally one wants a classifier that does not make a distinction

between both situations. Moreover, the importance of networks

instead of individual genes has already been demonstrated by the

low gene overlap between prognostic gene signatures in breast

cancer but high overlap in relevant pathways [8], with

proliferation being the most important common driving force

[9]. Genes with similar functions but active in alternative pathways

should be taken into account to improve classification perfor-

mance. Such complementary pathways in which a signal can be

propagated through two or more parallel paths have extensively

been shown to exist. A well known example shared between the

majority of cancer types is p53-mediated apoptosis [10]. A

multitude of mechanisms for apoptosis are triggered by the tumor
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suppressor gene p53, among them two distinct apoptotic signaling

pathways. Independent on the specific pathway that causes

inactivation of p53, cancer patients in which apoptosis takes place

should be marked as similar with regard to the expression of those

genes involved in p53-mediated apoptosis. As will be shown, our

method exploits such complementary relations between paths by

considering second order interactions between genes, available in

external databases.

Although gene expression profiles have shown to improve

standard tools on clinical and histopathological parameters, the

transcriptome is not the only omics layer that reflects the

molecular biology of a disease. Many omics layers such as

proteomics and metabolomics are interconnected and potentially

equally important. We previously presented a kernel-based

approach for clinical decision support in which many genome-

wide data sources can be combined [11]. Models based on

multiple omics layers outperformed the models that were based on

one single data set. In the majority of current studies, however,

only microarray data are available. In addition, microarray studies

have been subject to several criticisms and concerns. Microarray

data suffer from a low signal-to-noise ratio, the number of tumor

samples used for training and validation are often limited, and

gene signatures constructed for similar prediction tasks exhibit

very low overlap due to their instability and dependence on the

choice of the training samples [12–13]. It is therefore useful to

expand classification models with gene-related information.

There have been efforts in studying the combined use of gene

expression data with biological networks; however, almost all

within the gene space for the purpose of functional annotation.

Vert and Kanehisa [14] extracted active pathways from gene

expression data by using the metabolic network from the KEGG

database as prior knowledge. Both the metabolic network and the

microarray data were represented as a gene6gene kernel matrix.

They were combined in feature space with a generalized form of

canonical correlation analysis to learn a semantic representation

independent of the two views. Hanisch and colleagues [15]

proposed a variant of hierarchical clustering with an increased

stability and biological plausibility of the obtained clusters,

interpretable as co-regulated pathways. This was obtained by

combining a distance function derived from gene expression data

and one based on a biological network such as KEGG. Li and Li

[16] went one step further by incorporating a priori network

information into regression analysis for the identification of genes

and subnetworks related to diseases or other biological processes.

They considered the Laplacian matrix of the network as penalty

term in a general regression framework.

These methods all focus on genes, while the aim of our work is

to incorporate interactome information to improve classification

for cancer patients. Many databases on different aspects of the

interactome, of which an exhaustive overview is given in [17], are

made freely available to the research community. We will refer to

these databases as secondary data sources. It would be useful to expand

classification models with these sources in the form of the human

interactome. PPI networks have recently been introduced to

extract subnetworks of interacting proteins or to identify

deregulated molecular interactions, evolving from a pathway-

based to a protein-network-based approach [18–21]. Rapaport

and colleagues [22] applied similar ideas to differentiate irradiated

from non irradiated yeast strains, by including a priori pathway

knowledge in the analysis of gene expression data. The high-

frequency components in the data were removed with respect to

the topology of the gene network, after which the smoothed data

was used for classification. Their approach was based on the

assumption that low-frequency components in gene expression

data contain most biologically relevant information. We, however,

will not restrict our analysis to this hypothesis of similar gene

expression levels for neighboring genes on the network.

The previously described approaches only focused on one

protein-related source. A single source, however, is not necessarily

optimal for all cancer-related prediction challenges. In this

contribution, we will not limit our strategy solely to pathways or

PPIs. Multiple secondary data sources can be extracted from

databases, such as KEGG [23], REACTOME [24] and OPHID

[25] (for an overview see Table 1). These sources contain gene-

related information at other levels of biological regulation than

Figure 1. Complementary pathway information and its incor-
poration in the calculation of patients’ similarity. Patients with
the same phenotype can be genotypically different since alternative
trajectories in a pathway are activated or repressed. Ideally, one wants a
classifier that does not make a distinction between alternative
pathways. Suppose patients A and B both have breast cancer. However,
patient A is characterized by repression of RAS while PTEN is silenced in
patient B [72]. When building a model to distinguish breast cancer
patients from control samples, the calculated similarity between
patients A and B should be high. When calculating the pairwise
gene-product (that is, inner product) between these patients however,
they appear to be rather dissimilar with an empirical kernel value of
0.16 due to the different expression for the genes RAS and PTEN. A more
accurate similarity measure would be obtained by considering second
order interactions between genes. Genes that are known to interact are
assigned a larger weight in the calculation of patients’ similarity. Such
interactions are first identified based on, for example, shared pathway
membership obtained from the KEGG database. This is followed by an
exhaustive product between patients’ expression profiles that takes
gene links into account, weighted according to gene neighborhood in
graphs constructed from databases such as KEGG. This will empirically
increase the kernel value to 0.74.
doi:10.1371/journal.pone.0010225.g001
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measured with microarray technology. In order to improve

microarray-based cancer classification, we investigated how to

combine these sources with a patient-based kernel matrix and

present a method that is able to incorporate any type of

interactome data in the classification process. Where with kernel

methods similarity between patients is traditionally calculated with

a similarity measure based on the patients’ gene expression

profiles, interactome data from secondary data sources can be used

to improve the method how patient similarities are calculated. At

the same time, we hypothesize to improve classification perfor-

mance. This is motivated by the principle that in patients within

the same cancer-subgroup, different genes from the same pathway

can be expressed, making single-gene markers not ideal (see

Figure 1). Furthermore, because the relevance of the databases for

each specific problem is not known beforehand and irrelevant

databases may worsen the results, we present multiple well-

considered schemes for combining the information from second-

ary data sources.

Results

Kernel Methods, a powerful class of methods for pattern

analysis, have become a standard tool in data analysis,

computational statistics and machine learning applications due

to their reliability, accuracy and computational efficiency [26].

Although the idea of secondary data incorporation is applicable to

any kernel method or method that can be kernelized, we present

results for the weighted Least Squares Support Vector Machine

(LS-SVM), a method for supervised classification that takes the

typical unbalance in many two-class problems into account

[27–29].

The considered microarray data sets
For this contribution, we mainly focused on breast cancer

because it is one of the most extensively studied cancer types for

which many microarray data sets are publicly available. In

addition, data sets on ovarian cancer, prostate cancer and diffuse

large-B-cell lymphoma were included. Table 2 gives an overview

of the 16 studied data sets with information on outcome,

microarray platform and number of included samples and genes.

These studies cover a wide range of predictable, cancer-related

outcomes such as response, relapse, metastasis and survival. We

took into account the low signal-to-noise ratio of microarray data

and included the 5000 most varying genes (see materials and

methods section).

Interactome data as prior biological knowledge
The human interactome is the compendium of all stable,

transient, direct and indirect physical interactions between

proteins in molecular machines and pathways in an active cell.

Table 1. Secondary data sources.

secondary data source type of pathway resource definition gene pairs # gene pairs release reference

1 KEGG metabolic pathways genes of which the proteins
belong to the same pathway

609.269 49.0 [23]

2 HumanCyc metabolic pathways genes of which the proteins
belong to the same pathway

12.314 12.0 [39,40]

3 EHMN metabolic pathways genes of which the proteins
belong to the same pathway

198.876 / [38]

4 REACTOME metabolic pathways,
signaling pathways

genes involved in the same
reaction or complex

722.508 28 [24]

5 OPHID protein-protein interactions,
genetic interaction networks

genes of which the proteins
interact

221.674 1.71 [25]

6 BioGRID protein-protein interactions genes of which the proteins
interact

40.812 2.0.54 [42]

7 STRING protein-protein interactions experimentally determined gene
interactions

315.686 8.1 [48]

8 DOMINE domain-domain interactions genes with proteins interact-
ing via a domain-domain interaction

18.213.973 1.1 [49]

9 UniDomInt domain-domain interactions genes with proteins interact-
ing via a domain-domain interaction

20.506.327 Aug ’09 [50]

10 PROSITE protein families and domains genes with one or multiple
protein domains, families or
functional sites in common

6.267.453 20.0 [51]

11 Pfam protein families and domains genes with one or multiple
protein domains or families
in common

3.649.554 23.0 [52]

12 miRBase transcription factors, gene
regulatory networks

genes targeted by the same
miRNA

6.819.380 5 [53]

13 miRNAmap transcription factors, gene
regulatory networks

genes targeted by the same
miRNA

28.120.039 2 [54]

14 microRNA.org transcription factors, gene
regulatory networks

genes targeted by the same
miRNA

13.207.828 Sept ’08 [56]

15 TargetScan transcription factors, gene
regulatory networks

genes targeted by the same
miRNA

8.580.619 5.1 [57]

doi:10.1371/journal.pone.0010225.t001
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For cancer, much biological knowledge and pathway information

is available in databases on different aspects of biological systems

[17]. A distinction can be made between protein-protein

interactions (PPI), domain-domain interactions (DDI), metabolic

pathways, signaling pathways, transcription factors, gene regula-

tory networks and protein-compound interactions. Table 1 gives

an overview of the 15 considered secondary data sources, with the

type of pathway information contained in each of them, the

definition of links between genes, and the number of extracted

gene pairs. A more detailed description can be found in the

materials and methods section.

Representation of interactome data based on spectral
graph theory

To incorporate the previous described secondary data sources in

a kernel framework for microarray-based cancer classification

presented in Figure 2, the databases were converted into graphs

from which the corresponding Laplacian matrix can be derived

(step 1 in Figure 2). The pseudoinverse of the Laplacian [30], from

now on referred to as G-matrix, was used to represent similarity

between pairs of genes. With this graph-based approach, both

direct and indirect connections between genes, and thus their

neighborhood in the human interactome are taken into account.

Genes that do not belong to the same pathway but are connected

to a same subset of genes, for example, are assigned a positive

coefficient in the secondary G-matrix. These matrices were

incorporated in the calculation of patient similarity (step 2 in

Figure 2). This corresponds to replacing the standard inner

product by a quadratic form defined upon G21 (xT G{1x), and is

interpretable as a weighted version of the standard inner product.

An example is presented in Figure 1.

To get an idea about the extra information that is added by the

secondary data sources with respect to the standard inner product,

Table 3 shows the median (25th–75th percentile) number of second

order interactions included in each of the 15 secondary data

sources. These numbers slightly vary per source as the 5000 most

varying genes selected from each microarray data set differ. The

larger amount of second order interactions in the G-matrices with

respect to the Laplacian matrices shows that the network

neighborhood is captured by taking the pseudoinverse of the

Laplacian.

Selection of outstanding secondary data sources
To reduce the set of considered secondary data sources to the

ones that are relevant across multiple cancer types and usable for

multiple outcomes, 10 out of 16 microarray data sets were

randomly selected for training, indicated in Table 2. This

reduction in number of secondary data sources is represented in

Figure 2 as step 4. For the 10 training data sets, the data were

randomly split into 10 folds. Five folds were used for model

building based on each individual secondary data source, while 2

folds served for validation (the remaining 3 folds are used later for

the combination of multiple models). To obtain a good estimate

for the generalization error, this procedure was repeated 200

times. To objectively select those secondary data sources that

performed well for the training microarray data sets, models built

on an individual secondary data source with a better average

performance than the baseline model (without inclusion of

secondary data) were given a decreasing score starting from 15

for the best model. Models that performed worse than baseline

were given the score 0. Adding those scores for each secondary

data source over all training sets highlighted three outstanding

Table 2. Microarray data sets.

Data set cancer type Outcome Platform
# samples
(neg/pos) # genes

T1 Berchuck [5] OC Binary survival (short, =
3 yrs vs. long .7 yrs)

U133a 53 (29/24) 12633

V1 Bild [33] OC Binary survival (short, =
3 yrs vs. long .3 yrs)

U133a 133 (88/45) 11911

V2 Chin [6] BC Distant recurrence (no vs. yes) U133av2 129 (102/27) 12633

T2 Hess [73] BC Pathologic response (RD vs. CR) U133a 133 (99/34) 12633

V3 Huang 1 [4] BC Disease recurrence (no vs. yes) U95av2 52 (34/18) 8740

V4 Huang 2 [4] BC Relapse (no vs. yes) U95av2 80 (53/27) 8740

T3 Ivshina [74] BC Local, regional or distant
recurrence (no vs. yes)

U133a+b 249 (160/89) 18001

V5 Miller [75] BC Death from BC (no vs. yes) U133a+b 236 (181/55) 18001

T4 Pittman 1 [76] BC Relapse (no vs. yes) U95av2 158 (95/63) 8740

V6 Pittman 2 [76] BC Loco-regional recurrence (no vs. yes) U95av2 158 (132/26) 8740

T5 Pittman 3 [76] BC Distant metastasis (no vs. yes) U95av2 158 (108/50) 8740

T6 Rosenwald [34] DLBCL Overall survival (short,4 yrs vs.
long . = 4 yrs)

Lymphochip 220 (118/102) 6707

T7 Singh [3] PC Tumor status (normal vs. tumor) U95av2 102 (50/52) 8193

T8 Sotiriou 1 [77] BC Relapse (no vs. yes) U133a 187 (120/67) 12633

T9 Sotiriou 2 [77] BC Distant metastasis (no vs. yes) U133a 179 (139/40) 12633

T10 Wang [35] BC Metastasis within 5 yrs (no vs. yes) U133a 276 (183/93) 11911

T, training data set; V, validation data set.
BC, breast cancer; OC, ovarian cancer; DLBCL, diffuse large-B-cell lymphoma; PC, prostate cancer.
RD, residual disease; CR, complete response.
doi:10.1371/journal.pone.0010225.t002
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secondary data sources: KEGG, OPHID and microRNA.org (see

Table 4). Only these three databases were used for the remaining

data sets.

The mutual information (MI) between the models based on one

of the three selected secondary data sources was on average 0.376,

varying from 0.174 to 0.607 for the 10 training data sets and

indicating certain degree of independence between these sources.

No relationship was found between MI and the increase in

performance with respect to baseline. Seven of the 10 training

microarray data sets are from breast cancer (see Table 2).

However, as can be seen from Table 4, the increase in

performance caused by the three selected secondary data sources

was not limited to breast cancer. KEGG performed well for all

cancer types, OPHID resulted in a better performance for breast

cancer, ovarian cancer and lymphoma, while microRNA.org led

to an increased performance for both breast and prostate cancer.

Based on the training data sets, the data sources STRING and

TargetScan seemed to be specific to breast cancer. Finally, there

were no databases that simultaneously led to an improved

performance for the same training data sets.

Combination of multiple classifiers
Because the relevance of these three sources for each specific

classification task is not known beforehand, the three correspond-

ing individual classifiers were combined at a second level (step 5 in

Figure 2). Three types of combination rules were considered: 1)

fixed rules for which no training is required (that is, mean and

median), 2) simple trained rules for which the influence of each

model on the final prediction is determined by their individual

training performance or for which the optimal combination of

individual models is obtained with an exhaustive search, and 3)

more advanced models, being naı̈ve Bayes, logistic regression and

linear discriminant analysis. For each of the 200 experiments, the

last two types of combination rules were trained on 8 folds (that is,

including the 5 folds upon which each model was built expanded

with 3 untouched folds) and validated on the remaining 2 folds.

The global workflow consisting of the graph representation of the

secondary data sources, the incorporation into the calculation of

patient similarities, model building, the selection of the relevant

secondary data sources, the combination of relevant models and

validation is provided in Figure 2.

Incorporation of the three outstanding secondary data
sources outperforms the baseline models

The results for the 10 training microarray data sets are shown in

Figure 3 and Table 5. The five bars per data set represent the

mean area under the receiver operating characteristic curve

(AUC) values for the following models: 1) the baseline model built

on the microarray data only, 2) the model based on the secondary

data source with the best performance (KEGG, OPHID or

microRNA.org), 3) the combination of models according to the

best fixed rule, 4) the combination according to the best trained

rule, and 5) the combination of individual models using the best

advanced approach. Figure 4a provides an overview of the

performance of the three selected secondary data sources for all

training data sets. As the prediction accuracy is evaluated by

applying our 10-fold approach 200 times, the 200 test AUC values

of the baseline model were compared with the 200 test AUC

values of the other considered models using the one-sided paired-

sampled t-test. The p-values for these comparisons are shown per

Table 3. Characteristics of the Laplacian and G-matrices.

Secondary
data source

Laplacian: median
# gene pairs

Laplacian: 25th–
75th percentile

G-matrices: median
# gene pairs

G-matrices: 25th–
75th percentile

1 KEGG 69.870 41.771–99.310 5.553.761 4.950.232–6.473.276

2 HumanCyc 533 298–752 4.616.183 4.548.199–5.524.069

3 EHMN 5.416 3.339–11.847 9.356.394 8.954.741–10.040.781

4 REACTOME 43.611 27.716–59.786 6.453.263 4.585.327–7.725.010

5 OPHID 5.261 2.783–9.601 10.821.416 9.713.765–11.068.831

6 BioGRID 1.995 1.067–3.613 11.047.443 9.744.897–11.811.681

7 STRING 4.327 2.531–8.512 10.563.906 10.331.629–10.811.510

8 DOMINE 744.622 568.318–878.721 11.221.950 10.719.122–11.353.931

9 UniDomInt 863.228 667.232–1.019.495 11.541.609 10.635.969–11.826.811

10 PROSITE 256.028 221.618–276.509 10.967.586 10.962.602–11.560.607

11 Pfam 145.582 112.127–153.525 12.199.330 12.014.816–12.258.684

12 miRBase 342.756 275.376–347.322 10.136.253 9.243.720–10.163.274

13 miRNAmap 430.310 237.475–600.733 2.554.930 1.517.502–3.324.331

14 microRNA.org 228.423 148.857–350.045 2.025.078 1.410.494–2.800.161

15 TargetScan 422.876 242.981–656.470 5.420.278 3.766.078–6.798.828

doi:10.1371/journal.pone.0010225.t003

Figure 2. Global overview of the methodology. (A) In step 1, M secondary data sources are represented as a graph. The graph-related
information is subsequently incorporated via the pseudoinverse of the Laplacian (the G-matrix) into the calculation of patient similarity. In step 3, LS-
SVM models are built on each of the updated kernel matrices obtained in step 2. Based on a set of microarray training data, out of M secondary data
sources, r sources are selected that increase performance for all training data sets with respect to models built on only microarray data. (B) After
having selected the r outperforming secondary data sources, steps 1 to 3 are repeated for those r sources. In step 5, a classifier is learned and
constructed for the combination of the r corresponding LS-SVM models.
doi:10.1371/journal.pone.0010225.g002
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data set in Table 5. These results have been confirmed by applying

the Wilcoxon signed-ranks test to the average performance of all

data sets. The model based on the best individual secondary data

source outperformed the baseline models over all training data sets

(p-value 0.002). Also combining classifiers based on individual

secondary data sources with a fixed or trained rule outperformed

the baseline models with a p-value of 0.0039 and 0.0098,

respectively. The more advanced models did not perform

unambiguously better (p-value 0.557), although an improvement

was observed when reducing the number of classifiers.

To define the most optimal combination rules, we compared the

average performances for the fixed, trained and advanced

combination rules in Figures 4b to 4d, respectively. Based on the

training data sets, the mean fixed rule, the weighted trained rule

and naı̈ve Bayes performed best. Only these three rules were

therefore validated on the remaining 6 microarray data sets.

Figure 5 and Table 6 show the validation results when considering

KEGG, OPHID and microRNA.org as secondary data sources.

The validation data sets confirm the training results: combining

the three individual models significantly improved classification in

4 out of 6 data sets, while no significant improvement was

obtained in 2 out of 6 data sets. Overall, the best individual

secondary data source, the mean fixed rule and the weighted

trained rule outperformed the baseline model with a p-value of

0.0313, 0.0313 and 0.0313, respectively. These higher p-values

compared to the results on the training data are due to the lower

number of validation data sets. When applying the Wilcoxon

signed-ranks test to all 16 considered data sets, the p-values

decreased to 0.0004, 0.0005 and 0.001, respectively. We can

therefore conclude based on the training and validation data sets

that averaging the predictions of the three classifiers performs best.

Weighting the predictions according to the training AUC values

does not provide additional value. The benefit of incorporating

secondary data sources was largest for data sets T1, V3 and V4

due to weaker experimental data caused by the limited number of

samples.

Discussion

In this manuscript, improved outcome prediction and classifi-

cation decision making have been made possible by incorporating

the human interactome in an LS-SVM model, chosen among a

large set of possible methods in which prior information can be

incorporated in the presented manner. Interactome data from

secondary data sources were encoded in a graph-based way and

used in similarity matrices for patient classification. Ten micro-

array data sets were randomly selected for training. For the

majority of these data sets, three secondary data sources increased

performance with respect to the baseline model based on

microarray data only, being KEGG, OPHID and microRNA.org.

The 15 secondary databases considered in this study could

therefore be reduced to three gene-related information sources

that are relevant across multiple cancer types with regard to the

considered class of models. These sources also showed a good

performance on 6 validation microarray data sets. With only three

models to combine, it could be shown on both training and

validation data sets that averaging the predictions of the individual

models suffices. The outstanding results of equally weighting the

individual models are in line with the findings of Lewis and

colleagues on kernel matrices [31]. They showed that for many

applications, a naive unweighted sum of matrices is sufficient

unless multiple noisy data sets are among the available data sets,

and that optimization of the weights is only beneficial when

sufficient data are available to more reliably estimate the weights.

Combination rules that require additional training are therefore

only expected to gain in importance when the sample size in

microarray studies increases.

The three selected sources KEGG, OPHID and microRNA.org

are the most complete databases for their type of information.

With the KEGG database, information about groups of genes

involved in the same metabolic pathways, pathways related to

genetic information processing, regulatory pathways or pathways

active in human diseases and drug development, is incorporated.

OPHID is a database on predicted interactions between human

proteins combining PPIs obtained from specialist literature, high-

throughput experiments, evolutionary conservation and other

databases such as BIND, HPRD and MINT. In the micro-

RNA.org database, predicted miRNA target sites are filtered

according to evolutionary conservation. This database was

represented as a network with links between genes that are

targeted by the same miRNA. Lu and colleagues [32] observed a

general down-regulation of miRNAs in tumors compared with

normal tissues. They were able to successfully classify poorly

differentiated tumors using miRNA expression profiles. The gene

expression profiles lacked this information when applied to the

same samples. An improved classification performance by

including the microRNA.org network in this study confirms the

importance of miRNAs in cancer and their impact on target genes.

The extra layer for the combination of classifiers is essential. For

verification, the largest network per type of gene-based informa-

tion, being KEGG, REACTOME, OPHID, STRING, PRO-

SITE and microRNA.org were pooled (that is, the edge weights

were added) before an LS-SVM model was built. However, in all

cases our 2-layer approach outperformed models built on a union

of secondary data sources. This emphasizes the specific edge

interpretation for each type of interaction and makes the

construction of individual models per secondary data source

essential before combining them at a second level.

In conclusion, we showed that it is possible to incorporate prior

information from secondary data sources in the form of the human

interactome in any kernel method or non-linear, kernel-based

extension of a non-kernel method. Any type of gene-related

information can be considered and the matrices derived from each

graph are representable in many different ways. Moreover, no part

of the data needs to be discarded. All genes are considered, also

Table 4. Selection of secondary data sources based on the
training microarray data sets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1 14 9 0 11 10 0 0 13 15 12 0 8 0 0 0

T2 0 0 0 0 14 0 15 0 0 0 0 0 0 0 0

T3 0 0 0 14 15 0 0 0 0 0 12 0 11 13 10

T4 15 0 0 0 11 0 13 0 0 0 0 0 12 14 0

T5 15 0 0 0 0 0 11 0 0 0 0 0 14 12 13

T6 14 13 0 0 15 0 0 0 0 0 0 0 12 0 0

T7 15 0 0 14 0 0 0 0 0 0 0 0 0 13 0

T8 0 13 0 0 0 0 0 0 0 0 0 0 0 14 15

T9 7 0 12 0 15 9 10 14 0 11 0 0 0 13 8

T10 0 0 0 0 12 0 0 0 0 15 0 0 14 13 0

Sum 80 35 12 39 92 9 49 27 15 38 12 8 63 92 46

Individual models with a better performance than the baseline model are given
a decreasing score starting from 15 for the best model; models that perform
worse are given the score 0.
doi:10.1371/journal.pone.0010225.t004
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the ones that have not been thoroughly investigated or for which

no annotation is available. Our results show that for the

considered microarray technologies, cancer types and types of

outcome, integrating interactome data improves classification of

cancer outcome based on microarray data. This integration of

prior information in an SVM model based on gene expression

may benefit investigation of biological functionality.

Materials and Methods

Microarray data sets
An overview of the microarray data sets on breast, ovarian,

prostate cancer and large-B-cell lymphoma including at least 50

samples is provided in Table 2. For the data set of Bild [33], no

binary outcome was available. The median survival time of 3 years

was chosen as cut-off to balance both classes of samples. For the

data set of Rosenwald [34], the suggested 4 years was taken while

in the study by Wang [35], metastasis within 5 years was studied.

For these data sets, censored samples with last follow-up before the

chosen threshold (3, 4 or 5 years, respectively) were excluded,

resulting in the loss of 14, 20 and 10 samples, respectively.

The data sets gathered with the Affymetrix microarray

technology were preprocessed with MAS 5.0, the GeneChip

Microarray Analysis Suite 5.0 software (Affymetrix). An updated

array annotation was used for the conversion of probes to Entrez

Gene Ids [36]. A custom-designed microarray composed of genes of

which the products are preferentially expressed in lymphoid cells

was used in [34]. The data at the Entrez Gene level as provided by

the authors were therefore used. Missing gene expression values in

this data set were imputed unsupervised using the k-nearest

neighbors method [37], reducing the number of genes from 7399

to 6707. The parameter k was set to 15 such that a missing value for

a spot S in a sample was estimated as the weighted average of the 15

spots that are most similar to spot S in the remaining samples. We

also took the low signal-to-noise ratio of microarray data into

account by unsupervised exclusion of genes with low variation. The

Figure 3. Overall training results. Influence of secondary data sources and classifier combination on classification performance. The average test
AUC values under best training for 10 training microarray data sets, referred to as T1 to T10 are shown. Per training set, five bars are shown: 1) mean
AUC of the baseline model (blue); 2) mean AUC for the best individual secondary data source (KEGG, OPHID or microRNA.org) (cyan); 3) mean AUC for
the best fixed combination rule (green); 4) mean AUC for the best trained combination rule (orange); 5) mean AUC for the best advanced model
(brown). The secondary data source and combination rules that performed best and the p-values for the comparisons per training set are shown in
Table 5.
doi:10.1371/journal.pone.0010225.g003
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Table 5. Influence of secondary data sources and classifier combination on the performance for 10 training microarray data sets.

Data set model (combination) source/rule1 mean AUC (std)* p-valueu 2log(p)

T1 baseline 0.782 (0.113)

best individual KEGG 0.840 (0.100) 1.51e-25 24.82

best fixed rule mean 0.813 (0.105) 2.00e-17 16.70

best trained rule EXH 0.832 (0.104) 1.28e-20 19.89

best advanced rule LR 0.838 (0.105) 3.39e-12 11.47

T2 baseline 0.803 (0.081)

best individual OPHID 0.805 (0.078) 0.199 0.70

best fixed rule mean 0.808 (0.081) 0.0113 1.95

best trained rule W 0.808 (0.081) 0.0114 1.94

best advanced rule NB 0.806 (0.081) 0.125 0.90

T3 baseline 0.571 (0.073)

best individual OPHID 0.586 (0.078) 6.11e-5 4.21

best fixed rule median 0.576 (0.076) 0.0121 1.92

best trained rule W 0.575 (0.077) 0.089 1.05

best advanced rule LDA 0.550 (0.085) 0.999 0.00

T4 baseline 0.748 (0.088)

best individual KEGG 0.762 (0.085) 8.17e-7 6.09

best fixed rule median 0.765 (0.086) 7.30e-15 14.14

best trained rule W 0.764 (0.085) 1.87e-15 14.73

best advanced rule NB 0.764 (0.087) 3.40e-15 14.47

T5 baseline 0.727 (0.089)

best individual KEGG 0.736 (0.091) 0.000437 3.36

best fixed rule mean 0.737 (0.090) 6.02e-6 5.22

best trained rule W 0.737 (0.090) 8.77e-6 5.06

best advanced rule NB 0.734 (0.090) 0.000644 3.19

T6 baseline 0.645 (0.078)

best individual OPHID 0.653 (0.077) 9.73e-9 8.01

best fixed rule mean 0.650 (0.078) 2.74e-7 6.56

best trained rule W 0.650 (0.078) 3.27e-7 6.48

best advanced rule NB 0.647 (0.077) 0.0747 1.13

T7 baseline 0.929 (0.056)

best individual KEGG 0.942 (0.048) 6.02e-10 9.22

best fixed rule mean 0.937 (0.050) 2.27e-11 10.64

best trained rule W 0.937 (0.050) 3.45e-11 10.46

best advanced rule NB 0.937 (0.050) 1.36e-10 9.87

T8 baseline 0.584 (0.096)

best individual microRNA.org 0.587 (0.096) 0.156 0.81

best fixed rule median 0.581 (0.096) 0.785 0.10

best trained rule W 0.579 (0.093) 0.943 0.03

best advanced rule NB 0.565 (0.096) 0.999 0.00

T9 baseline 0.573 (0.110)

best individual OPHID 0.592 (0.117) 0.0151 1.82

best fixed rule mean 0.594 (0.113) 0.00842 2.07

best trained rule W 0.594 (0.113) 0.00787 2.10

best advanced rule NB 0.566 (0.117) 0.797 0.10

T10 baseline 0.680 (0.070)

best individual microRNA.org 0.691 (0.065) 0.0176 1.75

best fixed rule mean 0.688 (0.065) 0.0596 1.23
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5000 most varying genes were retained. Limiting the number of

genes to 5000 has the additional advantage that the computation of

the pseudoinverse Laplacian matrix remains tractable (see section

on the pseudoinverse Laplacian). But then again, the analysis should

be performed on a sufficient number of genes between which

interactions are described in secondary data sources.

Figure 4. Training results per type of combination rule. Average test AUC values under best training for classifiers or combined classifiers,
each built on one of the outstanding secondary data sources KEGG, OPHID or microRNA.org for 10 training microarray data sets. (A) mean AUC
values for the individual classifiers, built on KEGG (blue), OPHID (green) or microRNA.org (brown); (B) mean AUC values for two fixed rules: mean
(blue) and median (green); (C) mean AUC values for three trained rules: weighted with the 5-fold training AUC values (W) (blue), weighted with the 5-
fold training AUC values scaled to ]0,1] (SW) (green) and exhaustive search among all possible combinations of 3 classifiers (EXH) (brown); (D) mean
AUC values for three more advanced models: naı̈ve Bayes (NB) (blue), logistic regression (LR) (green) and linear discriminant analysis (LDA) (brown).
doi:10.1371/journal.pone.0010225.g004

Data set model (combination) source/rule1 mean AUC (std)* p-valueu 2log(p)

best trained rule SW 0.689 (0.065) 0.0419 1.38

best advanced rule NB 0.688 (0.066) 0.0586 1.23

1secondary data source or combination rule with the best performance (W = weighting according to the 5-fold training AUC values; SW = weighting with scaled 5-fold
training AUC values; EXH = exhaustive search among all possible combinations of 3 classifiers; NB = naı̈ve Bayes; LR = logistic regression; LDA = linear discriminant
analysis).
*mean test AUC value under best training (standard deviation).
uone-sided paired-sampled t-test for the comparison with respect to the baseline model.
doi:10.1371/journal.pone.0010225.t005

Table 5. Cont.
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Description secondary data sources
Metabolic pathways. Metabolic pathways were extracted

from four databases as each database may contain false positive

pathway predictions. Moreover, because most metabolic

reactions are linked with disease genes, the human metabolic

network is rather fragile [38]. The data source KEGG [23] stands

for Kyoto Encyclopedia of Genes and Genomes and is a

knowledge base for the analysis of gene functions in terms of

networks of genes and molecules. We focused on the KEGG

biochemical pathway database containing metabolic pathways,

pathways related to genetic information processing, regulatory

pathways involved in environmental information processing and

cellular processes, and pathways active in human diseases and

drug development. As the pathway information is matched with

the KEGG gene database, individual genes can be linked to

components of KEGG biochemical pathways. Based on these

cross-references, we extracted gene pairs defined as genes

encoding for proteins that can catalyze two reactions in the

same pathway.

Another large repository on metabolic pathways is BioCyc, a

collection of more than 350 organism-specific pathway/genome

databases (PGDBs) for most eukaryotic and prokaryotic species

with sequenced genomes [39]. Every BioCyc PGDB contains the

predicted metabolic network for one organism, including meta-

bolic pathways, enzymes, metabolites and reactions. These

databases can be divided into three groups, according to the

amount of manual curation. In this manuscript, we considered two

PGDBs, the intensively curated database MetaCyc [39] and the

computationally-derived database HumanCyc, subject to a

moderate curation of less than 1 year [40]. HumanCyc contains

information on 28783 human genes, their products and the

metabolic reactions and pathways they catalyze. The metabolic

pathways were predicted based on genome annotation, with

missing enzymes within the predicted pathways replaced by

candidate proteins when possible. MetaCyc [39], the Multi-

organism database of Metabolic Pathways and Enzymes provides

a high-quality resource on small-molecule metabolisms and

contains experimentally verified metabolic pathway and enzyme

Figure 5. Validation results for the optimal combination rules. Validation of the three selected secondary data sources and the best
performing combination rules on six new microarray data sets, referred to as V1 to V6. Per validation data set, five bars with the average test AUC
under best training are shown: 1) mean AUC of the baseline model (blue); 2) mean AUC for the best individual secondary data source (KEGG, OPHID
or microRNA.org) (cyan); 3) mean AUC for the fixed mean rule (green); 4) mean AUC for the weighted combination rule (orange); 5) mean AUC for the
naı̈ve Bayes rule (brown). A numerical overview is given in Table 6.
doi:10.1371/journal.pone.0010225.g005
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information curated from specialist literature. We extracted the

human pathways from MetaCyc; however, only one metabolic

pathway was not included in HumanCyc. Gene pairs were defined

as genes with proteins belonging to the same metabolic pathway,

in analogy to KEGG.

Because not all known human metabolic pathways are included

in HumanCyc and KEGG, we also considered a more recent

human metabolic network, manually reconstructed by integrating

genome annotation information from different databases and

metabolic reaction information from specialist literature [38]. This

network, referred to as EHMN (Edinburgh human metabolic

network) contains more than 2000 metabolic genes and almost

3000 metabolic reactions, reorganized into 70 human-specific

metabolic pathways. Also here, gene pairs were defined as genes

encoding for enzymes that are involved in the same reaction.

The fourth secondary data source is REACTOME [24], an

expert-authored knowledge base of human biological processes.

The database consists of 2907 reactions involving 2975 human

proteins and grouped into pathways taking their temporal

relationships and interdependencies into account. It represents

pathways of intermediary metabolism, regulatory pathways, signal

transduction and high-level processes such as the cell cycle. Gene

pairs were defined as genes involved in the same reaction or

complex.

Protein-protein interactions. Next, several major databases

on PPIs are available. PPIs are typically extracted from

publications in which high-throughput proteomic or small-scale

biomolecular methods were applied. Especially high-throughput

methods make PPI networks noisy with many false positives and

inaccurate with inconsistent annotations. In addition, each

available PPI database uses its own extraction, curation and

storage protocols, they do not necessarily explore the same

scientific papers and are composed of different compositions of

experimentally and computationally determined interactions.

Prieto and De Las Rivas [41] have shown a limited intersection

and overlap between the six major PPI databases for human

proteins (BioGRID, BIND, MINT, HPRD, IntAct, DIP) [42–47].

As the information contained in these databases is partly

complementary, knowledge on the interactome can be increased

and improved by combining multiple databases. Notably, even the

union of all databases is still incomplete with many unknown

components and pathways, reaching coverage of 31% of the

human proteome, corresponding to 12053 proteins and 83670

interactions. The five largest databases are considered in this

contribution, with HPRD containing 63.3% of the known PPIs,

BioGRID 40.9%, IntAct 34.9%, MINT 22.5%, and BIND 9.7%

according to data in 2008 (see the ‘statistics’ section on http://

bioinfow.dep.usal.es/apid/, [41]). We did not consider DIP as this

database only contains 1.75% of the known PPIs [47]. Four of the

largest databases (BIND, HPRD, MINT and IntAct) are

combined with high-throughput experiments in the Online

Predicted Human Interaction Database (OPHID), a catalog of

60675 known human PPIs [25]. This manually-curated, literature-

derived catalog was further expanded with predictions for 34824

interactions that occur in other model organisms but with both

human orthologs conserved in humans. In this way, OPHID could

extend the human interactome with a set of proteins that have not

yet been included in literature-based databases. We translated all

biomolecules included in OPHID to one or multiple

corresponding genes, after which relations between the resulting

genes were extracted. The same definition for gene pairs was used

for the remaining PPI database BioGRID [42]. As this database is

multi-organismal, we only extracted the interactions between

human genes. The list of gene pairs for this database was much

Table 6. Performance of the three selected secondary data
sources (KEGG, OPHID, microRNA.org) and the combination
rule per type that performed best on the training data (mean,
AUC weighting (W) and naı̈ve Bayes (NB)) for 6 validation
microarray data sets.

data set source/rule mean AUC (std) p-valueu 2log(p)

V1 baseline 0.741 (0.099)

KEGG 0.739 (0.097) 0.807 0.09

OPHID 0.734 (0.097) 0.982 0.01

microRNA.org 0.754 (0.101) 1.18e-7 6.93

mean 0.753 (0.096) 1.37e-7 6.86

W 0.752 (0.096) 3.13e-7 6.50

NB 0.750 (0.096) 3.37e-6 5.47

V2 baseline 0.610 (0.171)

KEGG 0.593 (0.154) 0.899 0.05

OPHID 0.627 (0.146) 0.0928 1.03

microRNA.org 0.610 (0.151) 0.509 0.29

mean 0.623 (0.147) 0.160 0.80

W 0.623 (0.148) 0.157 0.80

NB 0.595 (0.157) 0.864 0.06

V3 baseline 0.734 (0.225)

KEGG 0.770 (0.220) 2.27e-10 9.64

OPHID 0.723 (0.230) 0.979 0.01

microRNA.org 0.749 (0.224) 4.40e-4 3.36

mean 0.753 (0.225) 4.91e-6 5.31

W 0.753 (0.225) 5.10e-6 5.29

NB 0.737 (0.234) 0.380 0.42

V4 baseline 0.652 (0.189)

KEGG 0.688 (0.183) 5.11e-9 8.29

OPHID 0.630 (0.195) 0.999 0.00

microRNA.org 0.702 (0.180) 4.45e-17 16.35

Mean 0.682 (0.182) 4.55e-9 8.34

W 0.682 (0.182) 6.12e-9 8.21

NB 0.661 (0.182) 0.112 0.95

V5 baseline 0.667 (0.186)

KEGG 0.679 (0.180) 0.0128 1.89

OPHID 0.699 (0.176) 1.75e-6 5.76

microRNA.org 0.669 (0.187) 0.338 0.47

Mean 0.691 (0.180) 2.95e-7 6.53

W 0.692 (0.179) 1.55e-7 6.81

NB 0.678 (0.187) 0.0428 1.37

V6 baseline 0.604 (0.110)

KEGG 0.603 (0.109) 0.656 0.18

OPHID 0.618 (0.107) 0.00143 2.85

microRNA.org 0.611 (0.109) 0.00398 2.40

mean 0.607 (0.106) 0.196 0.71

W 0.607 (0.106) 0.185 0.73

NB 0.596 (0.114) 0.949 0.02

uone-sided paired-sampled t-test for the comparison with respect to the
baseline model.
doi:10.1371/journal.pone.0010225.t006
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smaller than for OPHID because the conversion from protein to

gene had already been done by its curators.

STRING [48], the Search Tool for Recurring Instances of

Neighboring Genes, is extracted from PPI networks and

predictions based on comparative genomics and text-mining. It

lists potential functionally associated proteins based on the

genomic association of their genes. It thereby acts as a

metadatabase that maps all interaction evidence onto a common

set of genomes and proteins, by weighting and integrating

information from numerous sources: PPI databases, high-through-

put experimental interaction data, associations highlighted in

published literature, interaction transfer between organisms,

functional co-expression of genes, conserved neighborhood, gene

fusions and phylogenetic co-occurrences. All resulting individual

scores are integrated in a combined score, reflecting the

confidence for each predicted protein association. This results in

an increased confidence when an association is supported by

multiple types of evidence. We truncated the interaction network

to a stringency of 500 for the confidence score and only retained

gene interactions that were experimentally determined.

Domain-domain interactions. As often only a fraction of a

protein directly interacts with its biological partners, we also

investigated the use of inter-chain DDIs, that is, interactions

between domains from different proteins. To increase coverage

and quality, we considered two comprehensive resources that have

collated all known and predicted DDIs from various sources. The

database DOMINE [49] and the Unified Domain Interaction

database (UniDomInt) [50], both using Pfam-A domain

definitions, combine DDIs based on experimentally derived 3-

dimensional structures in the Protein Data Bank and DDIs

predicted by 8 and 9 computational approaches, respectively. In

the DOMINE database [49], each predicted DDI is given a

discrete confidence level high, medium or low. We did not include

the low confident DDIs that were only predicted by one

computational method, reducing the number of DDIs to 6689.

UniDomInt [50], on the other hand, provides a continuous

reliability score between 0 and 1. We set the minimal threshold to

0.1, including 8470 DDIs. Genes of which the proteins interact via

a domain-domain interaction were linked in the corresponding

graph representations.

Protein families and domains. To cover an as broad as

possible range of gene-related information, we additionally

investigated whether incorporating information on proteins

belonging to the same protein family or sharing the same

protein domain improves classification. Information on the

structural and functional properties of proteins was extracted

from the databases PROSITE [51] and Pfam [52]. PROSITE is a

database that uses amino acid patterns and profiles for the

identification of protein families, domains and functional sites. The

raw data provided by KEGG were used to extract gene pairs with

one or multiple protein domains, families or functional sites in

common. Pfam [52] is another large comprehensive and accurate

collection of protein domains and families. As a similar strategy

was followed as for PROSITE, no distinction could be made

between the manually curated Pfam A families and the

automatically generated Pfam B families. Also for Pfam, gene

pairs were defined as genes of which the proteins belong to the

same protein family or share the same protein domain.

Transcription factors. Finally, microRNAs (or miRNAs)

are a class of small non-coding RNA species with critical functions

across various biological processes by regulating gene expression.

Evidence has suggested that miRNAs may play a role in human

cancers [32]. We therefore defined gene pairs based on the

miRNAs by which they are regulated, using four available

microRNA databases. The miRBase (microRNA database) [53]

contains a pipeline for predicting miRNA target genes in mRNA

sequences based on the miRanda algorithm. P-values were

assigned to individual miRNA-target binding sites, connecting

each miRNA to a list of predicted gene targets. For the 851

miRNAs included in the database, we set the p-value to 0.001 to

include only the most confident predicted miRNA-target

assignments. MiRNAmap [54] is another database containing

470 miRNAs, dividable into known miRNA genes obtained from

miRBase and putative miRNA genes identified by comparative

sequence analysis. Besides experimentally verified miRNA targets

obtained from both specialist literature and TarBase [55], three

computational tools miRanda, RNAhybrid and TargetScan were

used for the identification of putative miRNA targets. To reduce

the rate of false positive target site predictions, we applied the three

criteria that were proposed by Hsu and colleagues [54]: target sites

must be predicted by at least two tools, they must be located in

accessible regions, and the target genes must contain multiple

target sites. Next, microRNA.org [56] contains target predictions

also based on the miRanda algorithm with miRNA sequences

obtained from miRBase, but the predicted target sites of 677

miRNAs were filtered according to evolutionary conservation of

sequence blocks across multiple vertebrates. We set the threshold

for the conservation score to 0.70 to select target sites that are

conserved in mammals. Finally, the target site prediction tool

TargetScan [57] provides a p-score, corresponding to a Bayesian

estimate of the probability that a site is conserved due to miRNA

targeting. These scores reflect the biological relevance and efficacy

of each site. We set the threshold to 0.3, corresponding to 74

miRNA genes. For all these databases, gene pairs were defined as

genes targeted by the same miRNA.

The programming language Perl was used for the conversion of

each secondary data source into a list of gene pairs, used as input

for the calculation of the pseudoinverse Laplacian.

Pseudoinverse Laplacian
Many biological processes are representable as a large-scale

sparse network. Each secondary data source, and more specifically

the list of extracted gene pairs, can therefore be represented as a

weighted, undirected graph with symmetric weights wkl§0,

assigned to each edge between a pair of different nodes k and l.

Such a graph is composed of p nodes representing the genes, and

the edges connect genes that are linked with regard to the

secondary data source under study. The graph is characterized by

a weighted adjacency matrix W = [wkl], k,l = 1..p, and the diagonal

degree matrix D with degrees d1 to dp as diagonal elements. The

degree of a node k is defined as the sum of the weights wkl for node

k across all nodes l. From spectral graph theory, we can now define

the unnormalized graph Laplacian matrix L as the difference

between the degree matrix and the weighted adjacency matrix

(L = D2W). This matrix is symmetric and positive semidefinite.

Genes belonging to similar pathways will be connected by a

relatively large number of short paths, while fewer, typically longer

paths connect genes with completely separate functions. Finally, as

our aim is to add extra gene-related information with respect to

the traditional similarity measure rather than to discard genes for

which no information is available, self-loops were added to isolated

genes, setting their degree to 1.

Fouss and colleagues [30] have shown that the Moore-Penrose

pseudoinverse L+ of the Laplacian matrix of a graph can be

interpreted in terms of similarity between pairs of genes in the

interacting network. Matrix entries increase when the number of

paths connecting two nodes increases and when the length of the

paths decreases. In this manuscript, we will present the p x p
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pseudoinverse Laplacian matrix L+ of the graph corresponding to

secondary data source m as Gm~½gkl � k,l~1::p. The graph of

each secondary data source and the extraction of Gm are presented

as step 1 in Figure 2. In case of a fully connected graph, the G-

matrix is expected to be fully dense. Isolated genes, however,

introduce zero patterns in the inverse, thereby reducing the density

as illustrated in Table 3. Other graph kernels such as the diffusion

kernel [58] are less suitable since they require an extra parameter

to be optimized. Also, instead of the unnormalized Laplacian, the

normalized version D21/2LD21/2 in which the connectivity of each

gene is taken into account can be considered as well. However, the

use of the normalized Laplacian did not lead to an improvement in

performance (results not shown).

Kernel methods and weighted Least Squares Support
Vector Machines

Kernel methods are a group of algorithms that can handle a

very wide range of data types such as vectors, sequences and

networks. They map the data x from the original input space to a

high dimensional feature space with the mapping function W(x).

This embedding into the feature space is performed by a kernel

function K(xi,xj). This function efficiently computes the inner

product SW(xi),W(xj)T between all pairs of data items xi and xj in

the feature space, resulting in the kernel matrix. The size of this

matrix is determined only by the number of data items, whatever

the nature or the complexity of these items. For example, a set of

100 patients each characterized by 5000 gene expression values is

still represented by a 100 x 100 kernel matrix [59]. The

representation of all data sets by this real-valued square matrix,

independent of the nature or complexity of the data to be

analyzed, makes kernel methods ideally positioned for heteroge-

neous data integration.

A kernel algorithm for supervised classification is the Support

Vector Machine (SVM) developed by Vapnik [60] and others.

Contrary to most other classification methods and due to the way

data are represented through kernels, SVMs can tackle high

dimensional data (for example microarray data). Given a training

set fxi, yigN
i~1 of N samples with feature vectors xi [Rp and

output labels yi [ f{1,z1g, the SVM forms a linear decision

boundary in the feature space y(x)~sign½wTW(x)zb� with

maximum margin between samples of the two considered classes,

with w representing the weights for the data items in the feature

space and b the bias term. This corresponds to a non-linear

discriminant function in the original input space. A modified

version of SVM, the Least Squares Support Vector Machine

(LS-SVM), was developed by Suykens and colleagues [27–28].

On high dimensional data sets, this modified version is

much faster for classification because a linear system of equations

instead of a quadratic programming problem needs to be

solved. The constrained optimization problem for an LS-SVM

has the following form: min
w,b,e

1

2
wT wzc

1

2

XN

i~1

e2
i

 !
subject to

yi½wTW(xi)zb�~1{ei i~1::N with ei the error variables

tolerating misclassifications in case of overlapping distributions,

and c the regularization parameter which allows tackling the

problem of overfitting. It has been shown that regularization is

very important when applying classification methods to high

dimensional data, even for linear classifiers [61].

In many two-class problems, data sets are skewed in favor of one

class such that the contribution to the performance assessment

criterion of false negative and false positive errors is not balanced.

We therefore used a weighted LS-SVM in which a different weight

fi is given to positive and negative samples, in order to account for

the unbalance in the data set [29]. The objective function changes

into: min
w,b,e

1

2
wT wzc

1

2

XN

i~1

fie
2
i

 !
with fi~

N

2NP

if yi~z1

N

2NN

if yi~{1

8><
>: and

NP and NN representing the number of positive and negative

samples, respectively.

Adapted kernel function
Any symmetric, positive semidefinite function is a valid kernel

function, resulting in many possible kernels - for example linear,

polynomial, and diffusion kernels. They all correspond to a

different transformation of the data, meaning that they extract a

specific type of information from the data set. In this paper, the

linear kernel function was investigated. Traditionally, a kernel

matrix based on a linear kernel function is represented as

K~XX T with X~½x1T

; . . . ; xNT � the N x p patient microarray

data, N the number of samples, p the number of measured genes

(here, reduced to the 5000 most varying genes), and T

representing the transpose of a vector or matrix. In patient

domain, each matrix entry Kij corresponds to xiT

xj , with xi and xj

the gene expression profiles of samples i and j, respectively. We

incorporated a secondary G-matrix (introduced in the section on

the pseudoinverse Laplacian) in our kernel-based classification

framework by expanding the kernel matrix XX T to XGX T (step

2 in Figure 2). Each entry in this expanded kernel matrix now

corresponds to Kij~
Pp

k,l~1

xi
kgklx

j
l . Each G-matrix thus exhaus-

tively relates the gene expression profiles of patients, weighted by

its entries gkl. As each secondary data source leads to a different

kernel matrix, normalization is required to make them compa-

rable. The normalized kernel matrix ~KK was therefore considered,

defined as K=trace(K) with trace(K) the sum of the diagonal

elements of K.

Combining classifiers
It is not known beforehand which secondary data sources are

relevant for the problem at hand and thus which of the sources will

increase prediction accuracy. The predictions of the LS-SVM

models, each built with the inclusion of one secondary data source,

were therefore combined at a second level (step 5 in Figure 2).

Duin and Tax [62] have shown that no combining rule is optimal

in multiple combination tasks. We therefore considered multiple

combination schemes that have proven to be useful in specialist

literature and that provide continuous predictions on which the

AUC can be calculated. A comparison of AUC values is less

sensitive to the specific cut-off level used for assigning observations

to different classes.

A distinction is made between fixed and trained combining

rules [62–63]. As fixed combining rules, we investigated mean

and median. Although the mean or sum rule assumes

independent classifiers, it may also work for similar classifiers

with independent noise behavior, thereby reducing the error on

the estimated output values. The same holds for the median rule,

likely to yield more robust results in comparison to the mean rule.

Fixed combining rules, however, are almost always suboptimal

while a trainable combiner may lead to a more significant

improvement with respect to static combiners [63]. Moreover,

statistically independent classifiers are not required when a linear

or non-linear combiner is trained [64]. Although requiring

additional data and at the cost of additional training, a weighted

sum of the predictions of the individual classifiers was considered.

The weights were set to the raw training AUC values or to these

values after scaling to the half-open interval ]0,1]. Furthermore,
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an exhaustive search among all possible unweighted combina-

tions of individual classifiers was performed. We additionally

considered three more advanced models, being naı̈ve Bayes (NB),

logistic regression (LR) and linear discriminant analysis (LDA).

Both NB and LDA are ideal methods when the number of

training observations is limited. Although NB is based on the

assumption of independence between predictors, a good perfor-

mance has been shown for functional dependencies, that is,

predictors that are generated from the same underlying

distribution [65]. This is likely to be the case in this set-up as

the latent variables are obtained from the same microarray data

set, modified by a specific secondary data source.

Model building
In this study, each data set was split into 10 folds, stratified to

outcome. 50% of the data corresponding to folds 1 to 5 was used

for training the individual classifiers. This part of the data was

normalized per gene, and the obtained gene characteristics were

used for normalization of folds 6 to 10. An internal 5-fold cross-

validation on folds 1 to 5 was used for the optimization of the

regularization parameter c. Forty possible values for c ranging

from 1024 to 106 were considered on a logarithmic scale. The

final model parameter was chosen corresponding to the model

with the highest AUC. In case multiple models had the same

AUC, the model with the lowest balanced error rate and an as

high as possible sum of sensitivity and specificity was chosen. An

LS-SVM model was rebuilt on the entire training data with the

optimal regularization parameter and applied to the remaining

50% of the data. Similar results were obtained when the L-curve

was used for the selection of c [66]. As the c values of the

individual LS-SVM models were checked cautiously to prevent

overfitting and to assure good generalization performance, the

combining rules were learnt on 80% of the data of which 30%

(that is, folds 6 to 8) were new with respect to the first training

phase. Considering 80% of the data in the second phase for

training a combined classifier has the extra advantage that the

peaking phenomenon is countered, defined as the decrease in

classification accuracy when too many features are included in

the classifier [67]. Among the considered combined classifiers,

especially LDA suffers from this phenomenon [68]. LDA is also

poorly posed when the number of observations and parameters to

be estimated is comparable [69]. The use of 80% of the data

guarantees that the number of training observations sufficiently

exceeds the number of individual classifiers. The last 2 folds

corresponding to 20% of the data were used for validation. Not

only the combined classifiers but also the baseline LS-SVM

model built only on the microarray data and the models with the

individual use of each of the secondary data sources were

validated on the same observations. To reduce the random

variation in the selection of training and test data, the split of the

data into 10 folds was repeated 200 times. A comparison of the

AUC values was performed between the baseline model and all

other models using the one-sided paired-sampled t-test. However,

the overlap in training and test set between the 200 experiments

can increase the probability of type I errors (that is, rejecting a

true null hypothesis). Moreover, we are not only interested in the

performance for a specific problem, but rather in the general

performance on multiple data sets. The obtained results per data

set were therefore confirmed by repeating the comparisons over

all data sets with the average performance per set, using the non-

parametric Wilcoxon signed-ranks test [70].

Out of the 16 microarray data sets, 10 were randomly selected

for training indicated with the symbol T in Table 2. These 10 data

sets were used to determine the secondary data sources that

improved performance compared to the baseline model in the

majority of data sets. These data sets were subsequently used to

define which of the combination rules performed best. The set of

the best rules was applied to 6 validation microarray data sets

indicated with the symbol V in Table 2.

To assess the dependency between individual LS-SVM models,

we considered mutual information (MI) [71]. When two random

variables x and y have probability distributions P(x) and Q(y),

mutual information I is defined as the relative entropy between the

joint distribution R(x,y) and the product distribution P(x)Q(y):

I(x,y)~
P

x,y R(x,y)log2(R(x,y)=½P(x)Q(y)�). Mutual informa-

tion is a measure of the reduction in uncertainty about one

variable given the other, meaning that variables are statistically

independent when MI = 0. A higher MI indicates that the two

variables are non-randomly associated with each other [71]. In

this study, the variables x and y are binary and defined as 1 with

the classifier predicting a sample being of the positive class and 0

otherwise.
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