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Abstract: Glaucoma is a heterogenous, chronic, progressive group of eye diseases, which results in
irreversible loss of vision. There are several types of glaucoma, whereas the primary open-angle
glaucoma (POAG) constitutes the most common type of glaucoma, accounting for three-quarters of
all glaucoma cases. The pathological mechanisms leading to POAG pathogenesis are multifactorial
and still poorly understood, but it is commonly known that significantly elevated intraocular pressure
(IOP) plays a crucial role in POAG pathogenesis. Besides, genetic predisposition and aggregation
of abrogated proteins within the endoplasmic reticulum (ER) lumen and subsequent activation of
the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent unfolded protein
response (UPR) signaling pathway may also constitute important factors for POAG pathogenesis
at the molecular level. Glaucoma is commonly known as a ‘silent thief of sight’, as it remains
asymptomatic until later stages, and thus its diagnosis is frequently delayed. Thereby, detailed
knowledge about the glaucoma pathophysiology is necessary to develop both biochemical and genetic
tests to improve its early diagnosis as well as develop a novel, ground-breaking treatment strategy, as
currently used medical therapies against glaucoma are limited and may evoke numerous adverse
side-effects in patients.

Keywords: glaucoma; eye disease; hereditary; intraocular pressure; ocular hypertension; molecular
pathologies; unfolded protein response; PERK; cell death

1. Introduction

Glaucoma is a chronic and progressive disease affecting the structures of the eye, leading to the
optic nerve atrophy, to apoptosis of retinal ganglion cells (RGCs), and finally to loss of vision [1–3].
It has also been reported that a common feature of glaucoma is a thinning of the retinal nerve fibre layer
as well as cupping of the optic disc [4–7]. According to the morphology of the anterior chamber angle,
glaucoma may by subdivided into open-angle glaucoma (OAG) and angle-closure glaucoma (ACG) [8,9].
The intra-ocular pressure (IOP) is determined by the balance between secretion of aqueous humor by
the ciliary body and its drainage through both the trabecular meshwork (TM) and uveoscleral outflow
pathway. Increased resistance to aqueous outflow via the TM is a characteristic of individuals with
OAG, whereas in individuals with ACG, access to the drainage pathway is obstructed [10]. Both OAG
and ACG may constitute a primary disease [10], whereas a secondary glaucoma may develop inter
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alia as a result of trauma [11], intake of medications like corticosteroids [12,13], inflammation [14], or
specific conditions such as pigment dispersion or pseudo-exfoliation [15–17].

Despite many studies, the precise etiology of the glaucoma has not yet been determined, and
factors that may play a crucial role in the disease progression have not been characterized in detail [18].
It is commonly known that glaucoma development and progression are strictly correlated with
the pathophysiology of the optic nerve, the rate and severity of which is affected by the level of
IOP. Interestingly, the level of IOP may determine whether or not the etiologic factors will evoke
glaucomatous damage. It has been demonstrated that, in approximately half the people with IOP of 35
mmHg or higher, the glaucoma and field loss have been diagnosed [19], whereas a lower percentage of
individuals have developed glaucoma over several years with the IOP ranging from 21 to 30 mmHg.
Thus, the elevated level of IOP is associated with most forms of glaucoma, and is currently the only
known modifiable risk factor for glaucoma [20].

Glaucoma has relatively high prevalence, as it has been reported that it constitutes the second
cause of global blindness, after cataract. Cataract accounts for 47.8% of blindness worldwide,
whereas glaucoma accounts for 12.3% of blindness worldwide. It has also been demonstrated that
glaucoma-associated visual impairment is more severe in the least developed regions, and affects
adults more often than children, as well as women more than men [21]. The number of people affected
by the glaucoma is still increasing and it is estimated that, in 2040, it may reach up to 111.8 million
worldwide [22]. It has been reported that 79.6 million people worldwide will be diagnosed with
OAG and ACG by 2020, and 5.9 million individuals with OAG and 5.3 million individuals with ACG
will be bilaterally blind [23]. Glaucoma is commonly called a ‘silent thief of sight’, as it may remain
asymptomatic at the relatively late stage. It has been demonstrated that there is a high frequency of
undiagnosed glaucoma cases worldwide, thereby many individuals that suffer from glaucoma are
unaware about the disease progression [24–28].

2. Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma

There are many subtypes of glaucoma (Figure 1), whereas primary open-angle glaucoma (POAG)
constitutes the most common type of glaucoma [29]. Adult-onset POAG affects individuals after 40
years of age [30], whereas early-onset POAG (juvenile POAG) affects younger individuals between 3
years of age and early adulthood [31]. It has been demonstrated that POAG is an autosomal dominant
disease and its common clinical feature constitutes an elevated level of IOP [32,33]. POAG is clinically
characterized by an open iridocorneal angle; damage of the optic nerve, including optic disc cupping;
loss of RGCs; and, finally, defects in the visual field [20,34]. Risk factors for POAG include, among
others, high IOP, positive family history, advanced age, black race, increased cup–disk ratio (CDR),
CDR asymmetry, and disc hemorrhage, as well as corticosteroids intake (Figure 2A) [35–37]. Among
the above-mentioned factors, an elevated level of IOP constitutes the most common cause of POAG
development. As the IOP patients are categorized into high tension glaucoma (HTG) or normal tension
glaucoma (NTG) subgroups [38], the NTG constitutes one of the POAG subtypes, comprising a special
form of glaucomatous neurodegeneration or glaucomatous optic neuropathy (GON) almost exactly
the same as that in POAG, whereas the IOP remains in the normal range, thus it equals 21 mmHg
or less [39–41]. Most NTG individuals suffer from adult-onset disease, however, the disease may
sporadically have early onset with autosomal dominant inheritance [42–44]. The etiology of NTG is
multifactorial and still not fully elucidated. Multiple structural and functional differences provide clear
evidence that various mechanisms may be strictly correlated with the pathogenesis of NTG. It has been
reported that common risk factors for the development and progression of NTG may be associated
with general status as low blood pressure [45], migraines [46], dysregulation of blood flow [47],
and diabetes mellitus [48], as well as optic disc hemorrhages [49] and parapapillary atrophy [50].
Interestingly, it has been demonstrated that central corneal thickness (CCT) constitutes a crucial
clinical factor to precisely determine glaucoma severity during the initial examination. Evaluation
of CCT may be useful for identification of glaucoma individuals at high risk for disease progression.
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Lower CCT was closely correlated with worse both Advanced Glaucoma Intervention Study score
and mean deviation of visual field, as well as with increased vertical and horizontal cup–disc ratios
(CDRs) [51]. The CCT constitutes a crucial factor that should be measured to precisely interpret the
IOP measurements [52]. Shih et al. have reported that measurement of CCT has an important impact
both on the clinical management of individuals with diagnosed glaucoma and glaucoma suspects [53].
Study by Shetgar and Mulimani has demonstrated that CCT was markedly lower in NTG glaucoma
patients as compared with control and POAG patients. However, the ocular hypertension (OHT)
patients have been characterized by significantly higher CCT as compared with controls and POAG
patients. Owing to the significant impact of CCT on IOP measurement, which constitutes not only
a major glaucoma diagnostic parameter, but also an important parameter to follow up a disease
progression, a significant number of glaucoma patients are misdiagnosed to improper glaucoma
subtypes. Thereby, evaluation of the CCT is key to making a correct diagnosis and to management of
glaucoma individuals and glaucoma suspects [54]. The above-mentioned data have been consistent
with the results obtained by René-Pierre et al., which also demonstrated that NTG patients have been
characterized by lower CCT in comparison with control group and POAG individuals. Moreover, in
the mentioned study, in OHT patients, higher CCT has been diagnosed as compared with the control
group and POAG patients [55]. Moreover, Doyle et al. have reported that CCT was significantly lower
in NTG individuals as compared with POAG individuals. Furthermore, lower CCT was noted in NTG
patients with vascular risk factors as compared with patients without vascular risk factors [56]. It has
also been demonstrated that glaucoma individuals with thin CCT were more often at an advanced
stage of the disease and also represented NTG patients and black African ancestry [57]. Furthermore, a
study by Henderson et al. has shown that OHT individuals with thinner CCT have been characterized
by markedly lower retinal nerve fibre layer thickness measurements as compared with control subjects
and OHT individuals with thicker CCT. Thereby, mentioned research has suggested that different CCT
measurements may be connected with different possibilities for glaucoma damage development [58]. It
has been reported that scleral thickness and CCT are characterized by a moderate positive correlation.
Stress plays a key role in glaucoma pathogenesis and evokes retinal layers malformations as well as,
finally, significant neuronal tissue strain. Progression of glaucoma damage is inversely correlated with
the CCT. When the CCT decreases, the level of stress increases inversely, which consequently evokes
significant interruption of retinal layers and higher levels of neural tissue strain, which increases the
risk of glaucoma development and progression. The above-mentioned hypothesis may constitute an
explanation of the association of low CCT and increased susceptibility to glaucoma damage in NTG
patients [59].
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Figure 1. Clinical classification of open-angle glaucoma (OAG) (A) and angle-closure glaucoma 
(ACG) (B). 

Figure 1. Clinical classification of open-angle glaucoma (OAG) (A) and angle-closure glaucoma (ACG) (B).
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Figure 2. Risk factors for open-angle glaucoma (OAG) (A) and angle-closure glaucoma (ACG) (B). 
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patients [62,63]. Tezel et al. have demonstrated an elevated level of antibodies against small heat 
shock proteins (HSPs) such as alpha-crystallins and HSP27 in NTG individuals. Furthermore, NTG 
individuals have been characterized by a higher titer of autoantibodies to small HSPs as compared 
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cells evoked their apoptotic cell death [64]. Elevated levels of both HSP27 and HSP60 have been 
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Figure 2. Risk factors for open-angle glaucoma (OAG) (A) and angle-closure glaucoma (ACG) (B).

As mentioned above, there are multiple risk factors that contribute to glaucoma development
and progression, whereas it has also been reported that autoimmune mechanisms may play a crucial
role in glaucoma pathogenesis. Thereby, detailed knowledge concerning the role of the immune
system in glaucoma development and progression may contribute to better understanding of the
disease pathogenesis as well as to the development of a novel treatment strategy against glaucoma [60].
It has been reported that immunoregulation plays a central role in determination of whether RGCs
survive or undergo apoptotic cell death in glaucoma patients [61]. Wax et al. have demonstrated
an increased antibody reactivity in NTG individuals. Thereby, it has been reported that immune
mechanisms may play an important role in the pathogenesis of optic neuropathy in NTG patients [62,63].
Tezel et al. have demonstrated an elevated level of antibodies against small heat shock proteins (HSPs)
such as alpha-crystallins and HSP27 in NTG individuals. Furthermore, NTG individuals have been
characterized by a higher titer of autoantibodies to small HSPs as compared with control subjects or
individuals with high-pressure glaucoma. Interestingly, antibodies against small HSPs had a pathogenic
significance in glaucoma patients, as being applied to retina tissue or cells evoked their apoptotic cell
death [64]. Elevated levels of both HSP27 and HSP60 have been demonstrated in the human donor
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glaucomatous eyes as compared with normal eyes from age-matched donors [65]. Grus et al. have
shown complex antibody profiles against optic nerve antigens in sera of glaucoma patients (POAG,
NTG, and OHT) and control subjects. The mentioned analysis indicated that several molecular weight
regions, characterized by an increased antibody reactivity, were present, especially in the NTG patients.
Moreover, several regions with lower reactivities have been found in the NTG individuals as compared
with other analysed groups. Besides, Grus et al. evaluated the IgG autoantibody repertoires in sera
of glaucoma individuals against optic nerve antigens. They demonstrated a significant difference
between all analyzed groups against optic nerve antigens. Interestingly, the NTG individuals have
been characterized by the highest variance from controls (p < 0.01). The above-mentioned research has
shown immunological effects in both POAG and NTG patients, and has suggested that autoantibodies
may play an important role in both NTG and POAG pathogenesis [66]. It has also been revealed that
serum autoantibodies to α-fodrin, also typical of other neurodegenerative disease, have been present
in glaucoma individuals from German and the United States. Thereby, it has been suggested that
an α-fodrin may constitute antibody biomarker in both study populations. The above-mentioned
analysis has shown an increased frequency and immunoreactivity to α-fodrin, especially in the sera
of NTG patients. The results obtained in this study suggested a significant role of autoimmunity
and the neurodegenerative processes in glaucoma pathogenesis [67]. A study by Gramlich et al. has
demonstrated that IgG antibodies and plasma cells are deposed in human glaucomatous retina.
Furthermore, deposits of IgG have been found in a pro-inflammatory environment, with accompanying
increased levels of TNF-a, IL-6, and IL-8, which may be maintained locally by immune-competent
cells such as microglia. The above-mentioned research has indicated an immunological involvement
in glaucoma, like in the pathogenesis of other multiple neurodegenerative diseases, and it presents
pathogenic mechanisms, which are closely correlated with the unique nature of the eye and retina [68].

Primary angle-closure glaucoma (PACG) also constitutes a common cause of blindness, as it is
said to be responsible for nearly half of the cases of glaucoma-related blindness worldwide [69,70].
PACG, as compared with POAG, is characterized by an anatomically closed angle. ACG typically
results from abnormal anatomy of the anterior segment of the eye, such as a narrow anterior chamber
angle, a shallow anterior chamber depth, a thicker lens, a more anterior lens position, a small corneal
diameter, or a shorter axial length [71–74]. ACG is caused by uveal effusion and anterior rotation of
the ciliary body with resultant closure of the iridocorneal angle [75]. Pupillary block constitutes the
most common mechanism of an angle closure and is evoked by the resistance of aqueous humor to
flow from the posterior towards anterior chambers through the pupil. Aqueous humor accumulates
behind the iris, which increases its convexity and finally leads to angle closure [76–78]. PACG is
commonly classified into primary angle-closure suspect (PACS), primary angle closure (PAC), and
PACG itself [79,80]. There are numerous risk factors leading to PACG development, whereas it has
been demonstrated that the prevalence of PACG development is higher primarily among women, the
elderly, and hyperopic individuals, and it is most prevalent in Asian ethnicity (Figure 2B) [23,81–85].

3. Genes as Risk Factors for POAG Pathogenesis

There is ample evidence that genes play a crucial role in the pathogenesis of multiple eye diseases,
including POAG. Detailed research of the disease-inducing genes provides important data closely
connected with the pathogenesis of heritable eye disease, as the disease-causing genes may constitute a
part of a key biological signaling pathways that, after detailed investigation, may explain the molecular
mechanisms responsible for the diseases pathogenesis and progression. Moreover, identification of
the disease-inducing genes may contribute to the development of the DNA-based tests useful for the
assessment of patient’s risk for the disease and to distinguish between clinically similar disorders.
Identification of the specific mutations may be important for the prediction of the clinical course of
the disease [86]. The prevention and early diagnosis of glaucoma require the evaluation of various
genetic and environmental risk factors as well as IOP [87]. Currently, glaucoma therapies are limited,
as they are primarily based on the reduction of the elevated IOP, as a major risk factor for POAG
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development [88]. Although IOP has a huge influence on the glaucoma development, genetic factors
also have a considerable impact on the pathomechanism of glaucoma [89]. Multiple studies in the
recent decades have identified numerous genes and genetic risk factors that play a key role in glaucoma
pathogenesis. The above-mentioned investigations significantly increased knowledge about the disease
mechanisms, which is important for the development of new diagnostic tools and novel therapies
against glaucoma [90].

Early-onset glaucoma may affect children and young adults and it is predominantly inherited as
Mendelian autosomal dominant or recessive traits, whereas glaucoma affecting older individuals is
characterized by a complex inheritance [88]. Genetic mutations responsible for early-onset glaucoma
development are rare and are characterized by large biological impact, and thus high penetrance.
Variants of genes contributing to adult-onset glaucoma are common and have a small, incremental effect
on the disease development and only combined effects of multiple risk factors, including environmental
risk factors, may evoke a significantly larger impact on the disease pathogenesis [86,88,91]. It has been
reported that there are at least 20 genomic regions strictly correlated with POAG pathogenesis [92].
Variants of genes with rare frequency and high effect size, which lead to the development of POAG
include myocilin (MYOC), WD repeat domain 36 (WDR36), optineurin (OPTN), TANK-binding kinase 1
(TBK1), as well as neurotrophin 4 (NTF4) [42,88,93–98]. Moreover, mutations in paired box 6 (PAX6) gene
are rare with large biological effect and are closely associated with the pathogenesis of developmental
glaucoma related to anterior segment dysgenesis [91]. Variants of genes with common frequency and
low effect size leading to the development of POAG include the following: Cyclin-dependent kinase
inhibitor 2B (CDKN2BAS), caveolin 1 and caveolin 2 (CAV1/CAV2), sine oculis homeobox homolog 1 and sine
oculis homeobox homolog 6 (SIX1/SIX6), transmembrane and coiled-coil domains 1 (TMCO1), growth arrest
specific 7 (GAS7), atonal homolog 7 (ATOH7), and RPGR Interacting Protein 1 (RPGRIP1) [88,91,99–107].

3.1. Rare Variants of Genes with High Effect Size Correlated with POAG Pathogenesis

3.1.1. MYOC

MYOC, which encodes myocilin protein, constitutes the first identified gene linked to POAG
pathogenesis. It has been found at locus GLC1A on chromosome 1q23-25 [108]. As a consequence
of its independent discovery by several laboratories MYOC is also known as a trabecular meshwork
inducible glucocorticoid response (TIGR), GLC1A, myocilin, or TIGR/myocilin gene [109,110]. MYOC
protein is mainly present in the ocular tissue in the TM cells, the Schlemm’s canal, the sclera, the
ciliary body, the retina, as well as the optic nerve [111,112]. It has been reported that mutant myocilin
is poorly secreted and aggregated within TM cells. Accumulated abnormal myocilin protein may
be toxic towards TM cells and may subsequently evoke their dysfunction or apoptotic cell death,
which may eventually result in decreased aqueous outflow, elevated IOP, and subsequent glaucoma
development [40,113–118]. Interestingly, research by Kasetti et al. has demonstrated that mutant
myocilin directly triggers abnormal accumulation of the extracellular matrix in the endoplasmic
reticulum (ER) of TM cells, which may decrease aqueous humor outflow facility as well as evoke IOP
elevation in myocilin-associated glaucoma [119].

Polansky et al. have demonstrated induction of the expression of a 57kD myocilin protein in
human TM cells treated with dexamethasone [120]. Mutations in MYOC have been identified in 2–4%
of individuals suffering from POAG worldwide [41]. It has been demonstrated that MYOC mutations
are responsible for most cases of autosomal dominant juvenile-onset POAG, and they cause up to
4.6% of cases of adult-onset POAG. The prevalence of MYOC mutations is similar regardless of race or
geographic location [40,121]. The most commonly identified MYOC mutation constitutes Gln368Stop
and it has been identified in POAG individuals of all racial groups, with the highest frequency among
Caucasian subjects. A few instances of the Gln368Stop mutation have been reported in African
American and Indian POAG individuals [40,121,122]. It has been demonstrated that MYOCQ368X

constitutes the most frequent variation responsible for late-onset POAG development, with an average
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age of 59 years at the date of diagnosis, whereas the Y437H mutation is responsible for early-onset
glaucoma with an average age of onset of 20 years [115]. Besides, it has been reported that C1456T
mutation in MYOC was responsible for the POAG pathogenesis in the Chinese family [123].

3.1.2. WDR36

Another gene correlated with glaucoma pathogenesis constitutes WDR36, which contains several
iterations of the WD40 repeat motif (WD40-repeat 36). WDR36 expression has been reported both
in multiple non-ocular and ocular tissues including lens, iris, sclera, ciliary muscles, ciliary body,
TM, retina, and optic nerve. WRD36 encodes protein, the function of which still remains poorly
understood, whereas it has been predicted that WRD36 may be a causative gene for the adult-onset
POAG development at the GLC1G locus. It has been suggested that the pathoetiology of both high-
and low-pressure glaucoma may be correlated with WDR36 specific expression in ocular tissues as
well as with mutations present in the WDR36 gene [124]. Interestingly, it has been demonstrated that
abnormalities in WDR36 alone are not sufficient for POAG development, whereas correlation of WDR36
sequence variants with more severe disease in POAG patients suggests that abnormalities in the WDR36
may lead to POAG development, and also that WDR36 may constitute glaucoma modifier gene [125].
Investigation by Skarie et al. has demonstrated that Wdr36 in zebrafish, a homolog of human WDR36,
constitutes a functional homolog of the Utp21 in yeast, which is a component of the rRNA processome,
and it is directly involved in 18S rRNA processing and nucleolar homeostasis. Furthermore, Wdr36
loss of function evokes ocular dysmorphology and activation of the p53 stress-response signaling
pathway. Thereby, WRD36 may play a causative or modifying roles in the POAG pathology [126].
Moreover, it has been demonstrated that five Utp21p variants, homologous to L25P, R529Q, I604V,
D658G, and M671V in human WDR36, resulted in growth defects with significant changes in the
pre-rRNA levels. Thus, non-synonymous amino acid variations in WDR36 alter protein function and
evoke deleterious cellular conditions, which may be directly correlated with POAG pathogenesis [127].
A study by Chi et al. has revealed that WDR36 plays a crucial role in the retina homeostasis and WDR36
mutation may be responsible for the progressive devastating retinal damage [128]. Interestingly, it has
been suggested that WDR36 may constitute a minor disease-causing gene in POAG in the German
population [94], whereas in Chinese individuals, WDR36 may be correlated only with sporadic HTG,
but not with NTG or JOAG. Additionally, Fan et al. have suggested a different WDR36 mutation pattern
in the Chinese population from other ethnic populations [129].

3.1.3. OPTN

OPTN, an adaptor protein, is directly involved in mediation of variety of cellular processes
including cell signaling, vesicle trafficking, and autophagy [130–132]. OPTN is expressed in multiple
human ocular tissues including TM, cornea, nonpigmented ciliary epithelium, iris, and retina [133,134].
Moreover, OPTN has also been found in the aqueous humour, thus it may be classified as a secretory
protein [42]. To explain in detail the glaucoma pathogenesis, a cytoprotective role of OPTN has been
proposed. It has been reported that OPTN plays a crucial role in the neurotrophins secretion, which is
necessary for cell survival [135].

Some OPTN mutations are correlated with POAG pathogenesis, whereas glaucoma-associated
OPTN mutations constitute mostly missense mutations [136,137]. OPTN mutations have been reported
in 16.7% of families with hereditary POAG, whereas most of them have been associated with NTG [42].
Glaucoma-associated missense mutations of OPTN include, among others, E50K [138], H26D, H486R,
and E322K, whereas E50K constitutes the most common OPTN mutation and is strictly associated
with the more severe form of glaucoma [138–143]. Furthermore, it has been demonstrated that
OPTN mutation is correlated with accumulation of damaged mitochondria and disrupted mitophagy.
Shim et al. have reported that OPTN E50K mutation is closely connected with activation of oxidative
stress and apoptotic signaling pathway and triggers dynamics alteration-mediated mitochondrial
degradation in RGCs. Moreover, expression of E50K OPTN triggered mitochondrial fission-mediated
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mitochondrial degradation and mitophagy in the glial lamina of aged E50K−tg mice [144]. The transgenic
mice with overexpression of E50K OPTN demonstrated diffused retinal layers with thinner retina in
comparison with the mice with low expression of E50K OPTN [145]. Individuals with glaucoma and
the OPTN E50K mutation have been found to have NTG that was more severe than that in a control
group of individuals with NTG without the OPTN E50K mutation [138]. Besides, E50K mutant mice
exhibited histological abnormalities in the retina, massive apoptosis, and degeneration of entire retina
resulting in approximately a 28% reduction of the retina thickness. It has also been demonstrated that
OPTN E50K mutation-mediated glaucoma may be triggered via disruption of interaction between
OPTN and Rab8 GTPase [146].

Interestingly, it has been reported that POAG individuals with Glu50Lys mutation in OPTN have
primarily exhibited early-onset of severe optic nerve damage that occurs without IOP elevation [147].
Two OPTN mutations, Glu50Lys and Arg545Gln, have been identified in several studies of NTG patients,
whereas data confirming the Glu50Lys mutation with NTG pathogenesis are stronger [42,148,149]. It
has been reported that NTG patients with the Gln50Lys mutation exhibited a lower level of IOP, larger
CDR, more visual field loss, as well as higher rate of surgery than NTG subjects without Gln50Lys
mutation [138]. Furthermore, another variant of the OPTN gene, Met98Lys, has been detected more
frequently in NTG patients, primarily in Asian cohorts [142,148,150].

3.1.4. TBK1

TBK1, an IκB kinase (IKK)-related kinase, is associated with interferon regulatory factor (IRF)-
and nuclear factor (NF)-κB-activation [151]. Thereby, it is correlated with innate immune defense and
its dysregulation may have a significant impact on pathogenesis of multiple diseases [152–154]. TBK1,
in order to promote an innate immunity by modulating transcription, may activate autophagy proteins
OPTN and p62 [155,156]. TBK1 also plays a key role in clearance of intracellular protein aggregates
and damaged organelles [157,158].

Duplication of the TBK1 gene is directly correlated with 1–2% cases of NTG [159]. In in vitro
research by Trucker et al., a cellular model of RGC-like neurons differentiated from skin-derived
induced pluripotent stem cells from TBK1-associated NTG individuals, as well as from normal control
subjects, has been used. It was demonstrated that both fibroblasts and RGC-like neurons derived
from NTG patients with TBK1 gene duplication exhibited significantly increased level of one of the
key markers of autophagy, LC3-II protein. Hence, the above-mentioned study has suggested that
dysregulation of this catabolic pathway may result in TBK1-associated glaucoma development [160].
Fingert et al., in in vivo experimental model, have confirmed the pathogenicity of the TBK1 gene
duplication in human NTG and suggested that overexpression of TBK1 may play an important role
in glaucoma pathology. In the mentioned study, transgenic mice with a copy of the human TBK1
(Tg-TBK1) were used. It was demonstrated that TBK1 were primarily localized within ganglion cell
layer of the retina. A higher concentration of the TBK1 labelling was exhibited in RGCs of g-TBK1
mice, as compared with wild-type mice. Besides, in Tg-TBK1 mice, the loss of RGCs was confirmed to
be progressive. Tg-TBK1 mice with higher doses of the TBK1 gene exhibited the phenotype of human
TBK1-associated NTG [159]. In another study, it has been demonstrated that TBK1 is expressed in
ganglion cells and the retinal nerve fiber layer [161]. Research by Fingert et al. links the duplication of
genes located on chromosome 12q14, including TBK1, with familial NTG and suggested that an extra
copy of the TBK1 gene is responsible for NTG pathogenesis [162]. Furthermore, Morton et al. have
suggested that protein encoded by OPTN, a gene also associated with NTG, may directly interact with
TBK1, which supports its role in glaucoma pathogenesis. The mutant E50K OPTN correlated with
POAG displayed strikingly enhanced binding to TBK1, which may contribute to the familial POAG
caused by this mutation [43].
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3.1.5. NTF4

Human NTF4 gene is located on chromosome 19q13.33, which was previously identified as a
putative glaucoma locus in a genome-wide linkage scan [163,164]. NTF4 belongs to the neurotrophin
protein family. It has been reported that NTF4 plays a key role in the activation of tyrosine kinase B
(TrkB) receptor on RGCs and prevents their apoptotic cell death in in vitro cellular models as well
as in in vivo animal models after axotomy [163,165–169]. NFT4 is also involved in the postnatal
survival of retinal neurons during development and degeneration [170]. In the literature data, the
role of NTF4 in POAG pathogenesis remains controversial, whereas NTF4 has not been identified
as a POAG-causing gene in several studies [171,172]. However, Pasutto et al. have reported seven
different heterozygous NTF4 mutations accounting for about 1.7% of POAG European individuals [97].
Interestingly, Vithana et al. have suggested that NTF4 disease-causing mutations may be ethnic specific,
because, in the Chinese cohort, they did not identify any of the NTF4 mutations previously reported
in European POAG individuals, including the most frequent mutation R206W. Furthermore, their
findings of only a single, novel Leu113Ser mutation indicate that NTF4 mutations are a rare cause of
POAG in the Chinese individuals [98].

3.1.6. PAX6

PAX6 gene is located on 11p13 region on chromosome 11 [173]. PAX6 protein belongs to the
paired box family of transcription factors. It has been reported that PAX6 is active in epithelial and
mesenchymal cells during ocular development and plays a crucial role in synchronization of the
complex interaction of cell types of different origin, which are responsible for proper morphogenesis of
the anterior eye [174]. Moreover, PAX6 plays an important role in maintaining the multipotent state of
progenitor cells, such as neuronal retina, pigment epithelium of retina, iris, ciliary body, and cortex, as
well as some subcortical brain structures, and their proliferation [175]. It has been demonstrated on the
zebrafish model of corneal disease that PAX6b mutants embryos have been characterized by a thick
cornea, iris hypoplasia, a shallow anterior chamber, as well as a small lens. Besides, ultrastructure
analysis has shown a disrupted corneal endothelium. Interestingly, PAX6b mutants have demonstrated
loss of corneal epithelial expression of genes, also including regulatory genes. Loss of PAX6b function
also results in significant changes in the gene regulation program [176].

It has been demonstrated that occurrence of PAX6 mutations may result in the development of
aniridia, which constitutes a severe panocular eye disease associated with iris hypoplasia [177–180].
There are several research data confirming a direct correlation of PAX6 gene mutation with aniridia
occurrence [181–184]. Interestingly, it has been reported that aniridia is frequently correlated with
glaucoma and glaucoma associated with aniridia may trigger a progressive loss of vision [185].
Netland et al. have reported that, in 46% individuals, out of 83 aniridia subjects, glaucoma has been
identified [186]. Furthermore, Mayer et al. have shown that glaucoma has been identified in 52% out
of 80 patients with congenital aniridia [187]. Lin et al. have demonstrated that aniridia associated
with glaucoma, congenital cataract, and lens subluxation may be caused by the recurrent nonsense
mutation c.718C > T (p.Arg240X) in exon 9 of the PAX6 gene [188]. It has also been demonstrated that
loss of PAX6 expression may cause an aniridia occurrence [189–191]. Owing to the direct correlation of
aniridia and glaucoma occurrence, Liu et al. have demonstrated that PAX6 expression has also been
markedly downregulated in non-myocilin POAG cases as compared with controls [192]. Research by
Kroeber et al. has shown that somatic inactivation of one allele of PAX6 from the epithelial cells of lens
and cornea disrupted development of both TM and Schlemm’s canal. Furthermore, it also results in
a growing adhesion between iris periphery and cornea in juvenile eyes, which triggers a complete
closure of the iridocorneal angle in the adult eye. The above-mentioned structural malformations
evoke a significant increase of the IOP and, consequently, optic nerve axon degeneration and glaucoma
development [193].
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3.2. Common Variants of Genes with Modest Effect Size Correlated with POAG Pathogenesis

3.2.1. CDKN2BAS

CDKN2BAS, also known as an antisense non-coding RNA in the INK4 locus (ANRIL), is located on
chromosome 9p21. It has been reported that CDKN2BAS is directly correlated with the pathogenesis
of multiple human diseases including type 2 diabetes, endometriosis, intracranial aneurysma,
megakaryopoiesis, coronary artery disease, and periodontitis, as well as with several forms of
cancer such as prostate cancer, stomach cancer, pancreatic cancer, leukemia, glioma, colorectal cancer,
and lung cancer [194–199]. The role of CDKN2BAS still remains not fully understood, whereas it has
been reported that CDKN2BAS is involved in regulation of the expression of CDKN2A and CDKN2B
coding cyclin-dependent kinase inhibitors. CDKN2A and CDKN2B play a crucial role in cellular
proliferation and block cell cycle progression, and have an important influence on physiological
processes including replicative senescence, apoptosis, as well as stem-cell self-renewal [200]. There is
ample evidence that occurrence of CDKN2BAS polymorphisms may contribute to the alteration in the
expression of target genes, which play a key role in cell cycle regulation and may contribute to the
RGCs’ apoptosis, and subsequently to glaucoma development [201].

Burdon et al. have demonstrated a strong association of CDKN2BAS with advanced OAG.
Additionally, a retinal expression of CDKN2BAS in human ocular tissues has also been reported.
CDKN2A and CDKN2B were significantly upregulated in the retina of a rat model of glaucoma [100].
Pasquale et al. have reported that alleles of CDKN2BAS1 single nucleotide polymorphisms, which
influence the risk of developing POAG, may also have a significant impact on optic nerve
degeneration among POAG individuals, which indicates an important role of CDKN2BAS1 in
POAG pathogenesis [202]. It has been demonstrated by Cao et al. that single nucleotide polymorphism
rs1063192, located near the CDKN2B, is associated with POAG, and the minor allele C of rs1063192 is
protective against POAG in the Afro-Caribbean population of Barbados. Research by Cao et al. has
suggested that rs1063912 constitutes a common protective variant for POAG in both African and
European descent [203]. Restrepo et al. have suggested that CDKN2BAS1 constitutes a crucial locus for
POAG risk among African Americans, as they have reported a direct correlation between the risk of
POAG and African genetic ancestry at CDKN2BAS1 [204].

The optic nerve head is involved in many ophthalmic disorders including POAG. Two of the most
important parameters such as the size of the optic disc area and the vertical cup–disc ratio (VCDR) are
highly heritable. A study by Ramdas et al. has shown that single-nucleotide polymorphism rs1063192
in CDKN2BAS on chromosome 9p21 is associated with VCDR, and thereby with POAG pathogenesis.
Moreover, it has been reported that CDKN2B is implicated in transforming growth factor beta (TGFβ)
signaling pathway [205]. It has been reported that the characteristic cupping of the optic nerve head
in glaucoma is strictly correlated with TGFβ as well as with elevated biosynthesis and deposition
of extracellular matrix (ECM) proteins [206]. Kasetti et al. have demonstrated that glucocorticoid
such as dexamethasone triggers activation of TGFβ signaling pathway, which results in increased
ECM accumulation and ER stress activation in the TM as well as significant elevation of IOP. Besides,
dexamethasone induced TGFβ2 in the aqueous humor and TM of a mouse model of OHT. Hence, the
above-mentioned results suggested that targeting of the TGFβ signaling pathway may constitute a
promising therapy against glaucoma [207].

3.2.2. CAV1/CAV2

CAV1 and CAV2 code for caveolin 1 and caveolin 2, respectively, both of which belong to
the caveolin family proteins [208,209]. Caveolins play a crucial role in multiple cellular processes
such as vesicular transport, cholesterol homeostasis, and signal transduction [210–213]. It has been
demonstrated that they are expressed in ocular tissues such as human retina, ciliary muscle, TM, and
Schlemm’s canal [214]. Caveolins inhibit endothelial nitric oxide synthase activity in the caveolae,
which may evoke significant changes in vascular tone and TM function, which are closely associated
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with POAG pathogenesis [215–219] It has also been reported that caveolin 1 plays a major role in the
IOP maintenance via modulation of aqueous humor drainage from the eye. It has been demonstrated
in vivo that CAV1-deficient mice exhibited OHT via aberrant pressure-dependent drainage of aqueous
humor. Deficiency of CAV1 induces loss of caveolae in both the Schlemm’s canal and TM. Besides, an
aqueous drainage from CAV1-deficient eyes was more sensitive to nitric oxide synthase inhibition than
in used controls. Thereby, the mentioned results indicate a direct link between a glaucoma risk gene
and glaucoma pathology [220].

Genome-wide association studies (GWAS) on an Icelandic cohort showed that variant rs4236601
in CAV1 and CAV2 on chromosome 7q31 has a significant influence on POAG pathogenesis,
whereas it has been suggested that the mentioned correlation is dependent on the population [214].
Thorleifsson et al. have identified a variant rs4236601 and demonstrated that it is strictly correlated
with POAG pathogenesis in European and east Asian individuals. It has been shown that rs4236601
has no impact on other common POAG risk factors including increased IOP level and CCT, as well as
type 2 diabetes, hypertension, and myopia. It has been demonstrated that mentioned variant is located
close to the CAV1 and CAV2, both of which are expressed in the TM and RGCs. Thorleifsson et al. have
shown that frequency of the rs4236601 variant is lower in east Asian individuals than in individuals of
European ancestry [102]. Additional research by Nunes et al. has also confirmed that variant rs4236601
is correlated with POAG pathogenesis, as it has been demonstrated that it contributes to the incidence
of POAG in a sample of the Brazilian Southeastern population [221]. Research by Rong et al. has
confirmed the association of rs4236601 with POAG in the southern and northern Chinese HTG patients,
and also identified a common single nucleotide polymorphism rs3801994 at the CAV1/CAV2 locus
in Chinese and Japanese individuals [222]. A recent study by Lu et al. has confirmed a correlation
between rs4236601 at the CAV1/CAV2 locus and NTG pathogenesis in Chinese individuals [223].
Furthermore, Loomis et al. have suggested a direct association between CAV1/CAV2 single nucleotide
polymorphisms in POAG pathogenesis and gender, as well as paracentral visual field defects. They
confirmed significant associations between ten CAV1/CAV2 single nucleotide polymorphisms and
POAG pathogenesis. Nine of them were significant only in women and five of them were correlated
with POAG with early paracentral visual field defects. Besides, none of the investigated single
nucleotide polymorphisms were associated with POAG with peripheral visual field loss only or POAG
among men. Thus, the above-mentioned data confirmed a role of CAV1, CAV2, or both of them in
POAG, and suggested that the caveolins may affect POAG pathogenesis in women and in patients with
early paracentral -visual field defects [224]. Another study by Wiggs et al. has reported that the single
nucleotide polymorphisms are associated with POAG pathogenesis in American Caucasian population.
In the same research, it was also confirmed that associations with several CAV1/CAV2 single nucleotide
polymorphisms, such as rs1052990 and rs4236601, are significant mostly among women [103].

3.2.3. SIX1/SIX6

Both SIX1 and SIX6 are located on 14q22.3-q23.3 chromosome [225]. Members of the SIX family
of homeoproteins are expressed in various tissues during vertebrate embryogenesis, and constitute
a crucial regulators of the cell development, proliferation, differentiation, survival, and migration.
In vivo studies have shown that the SIX family members are important both during organogenesis
and tissue specification [226–230].

SIX1 is commonly expressed in otic vesicles, nasal pits, branchial arches, and in dorsal root
ganglia and somites, which give rise to the skeletal muscle of the trunk and limbs [231]. It has been
reported that SIX1 plays a key role in the development of the mammalian retina [232]. SIX6, also
known as Optx2, is expressed in the ventral optic stalk, which constitutes a structure that precedes the
optic nerves embryologically. It has been reported that SIX6 is associated with congenital glaucoma
pathogenesis. There is ample evidence that it is also correlated with anophthalmia in both mice and
humans. Moreover, SIX6 is directly involved in the eye development [233,234]. It has been reported
that SIX6 is expressed in the ganglion cell layer and inner nuclear layer, as well as in the developing
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and adult human retina, optic nerve, and other brain structures such as hypothalamic and pituitary
regions [235,236].

The significance of the SIX1/SIX6 locus in glaucoma has been previously discovered for VCDR and
POAG, whereas the subsequent research confirmed a direct correlation between polymorphisms in this
region and glaucoma onset [237]. A significant correlation between single nucleotide polymorphism
rs10483727 located in SIX1/SIX6 and POAG pathogenesis has been reported [101,238]. Furthermore, it
has been demonstrated that rs10483727 is associated with VCDR, which constitutes an important optic
nerve parameter clinically used to diagnose and monitor POAG progression [205]. Carnes et al. have
sequenced the SIX6 coding and regulatory regions in 262 POAG cases and 256 controls and identified six
nonsynonymous coding variants, namely five rare and one common variant, Asn141His (rs33912345),
that has been strictly correlated with POAG pathogenesis in the NEIGHBOR/GLAUGEN datasets.
It has been demonstrated that homozygous for the SIX6 risk allele (His141) individuals have a
statistically thinner retinal nerve fiber layer as compared with homozygous for the SIX6 non-risk
allele (Asn141) individuals. The results obtained by Carnes et al. have led to the conclusion that SIX6
risk variants disrupt the development of the neural retina, resulting in a reduced number of RGCs,
and hence increased risk of glaucoma-associated loss of vision [234]. Kou et al. have reported that
the T risk allele of the lead single nucleotide polymorphism, rs10483727, localized in SIX1/SIX6 was
directly connected with a decrease in the global and different sectoral retinal nerve fiber layer (RNFL)
thickness in individuals of European descent. Individuals with more copies of the risk allele exhibited
a significantly thinner RNFL. Besides, individuals with the heterozygous genotype have also been
found to have an intermediate level of RNFL thickness as compared with the homozygous groups [239].
Cheng et al. have evaluated the association between the SIX6 missense variant rs33912345 and RNFL
thickness by spectral-domain optical coherence tomography in the Singapore Chinese subjects. It has
been demonstrated that non-glaucomatous subjects with the SIX6 missense variant exhibited reduced
RNFL thickness in regions mainly affected by glaucoma. Thereby, it could be concluded that it may
constitute the major mechanism for increased risk of POAG in individuals with the SIX6 His141
risk variant [240]. The results obtained by Sang et al. have suggested that two single nucleotide
polymorphisms at the SIX1-SIX6 locus, namely rs10483727 and rs33912345, are significantly correlated
with HTG, NTG, and overall POAG, especially with an increased incidence risk of NTG in the Chinese
population. Besides, it has been demonstrated that the correlation between rs10483727 and rs33912345
variants and POAG pathogenesis was significant in patients aged between 20 and 40 years, but not in
those aged above 40 years in the HTG group, whereas in the NTG individuals, the genetic association
has been found in both younger and older subgroups for rs33912345. For rs10483727, a direct correlation
has been indicated only for individuals with NTG above 40 years old [241]. A significant association
between rs10483727 (C > T) variant in SIX1/SIX6 locus and POAG pathogenesis has also been confirmed
in the Saudi Arabia population [242].

Shah et al. have not established a significant correlation between the rs10483727 and rs33912345:
c.421A > C variants and PAOG pathogenesis in the South Indian population, whereas subjects carrying
the corresponding C or T risk alleles exhibited a dose-dependent reduction in the thickness of the
retinal nerve fiber layer and a significant increase in the VCDR. Shah et al. have further support for the
implication of SIX6 variants in the POAG pathogenesis, as well as the SIX6 haploinsufficiency. This study
also demonstrated that the newly identified 4 bp deletion significantly reduced reporter expression
in RGCs and amacrine layers, where human SIX6 is expressed [243]. Moreover, Mohanty et al. have
reported that SIX6 plays a crucial role in POAG pathogenesis, as two novel mutations p.R116G and
p.R116E in the SIX6 were found in North Indian POAG individuals. Replacement of R116 by G or E
might evoke loss of interaction between DNA and R116 of wild type (WT) SIX6 protein. Individuals
with the p.R116E mutation exhibited not only significantly more visual field damage, but also earlier
age of onset of the disease [244].
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3.2.4. TMCO1

TMCO1, also known as HP10122, is ubiquitously expressed in multiple developing and adult
human tissues, including the ocular tissues. TMCO1 encodes a transmembrane protein with a
coiled-coil domain that may localize to the Golgi apparatus and ER or to the mitochondria within
different cell types. It has been reported that the protein sequence is completely conserved among
many mammalian species. TMCO1 has been identified in retinal cells, whereas the strongest expression
has been reported in RGCs. Moreover, it has been demonstrated that TMCO1 plays a significant role in
apoptotic cell death. Thus, the above-mentioned data may suggest a direct correlation of TMCO1 with
glaucoma pathogenesis, which is characterized by excessive RGCs’ apoptosis [100,245–247].

The physiological function of TMCO1 is not fully elucidated, whereas it has been reported that it
plays a key role in the maintenance of calcium ion homeostasis within the ER [248,249]. Furthermore,
it has been suggested that TMCO1 may constitute an important protein in tumor suppression as well
as play a crucial role in cell cycle regulation within the ocular tissues [250,251].

Burdon et al. have identified loci rs4656461[G] near TMCO1 on chromosome 1q24 associated with
severe POAG-mediated visual field loss in a GWAS of a Caucasian cohort [100]. The same TMCO1
rs4656461 variant was correlated with POAG pathogenesis in the Pakistani population [252]. Moreover,
rs4656461 and rs7555523 variants at TMCO1 showed significant association with POAG in the Chinese
population, as carriers of these risk alleles at TMCO1 seemed to be predisposed to the development of
high-tension POAG [253]. However, a study by Kondkar et al. has reported that rs7555523 variant
in TMCO1 as well as related clinical indices including IOP and CDR are not correlated with POAG
pathogenesis in the Saudi Arabian cohort [254]. Research by Sharma et al. has demonstrated a direct
correlation between genetic variations both in and around TMCO1 with age at the diagnosis of POAG.
Outcomes obtained in this study have suggested that individuals homozygous for the rs4656461 risk
allele (GG) are 4–5 years younger at the date of diagnosis than noncarriers of this allele. Moreover, it
has been shown in this study that TMCO1 is expressed in most tissues in the human eye, including the
TM and retina. The cytoplasmic and nuclear inclusions of endogenous TMCO1 in the human ocular
tissues have been confirmed [251]. Koolwijk et al. have reported that IOP, a highly heritable risk factor
for POAG, is significantly associated with rs7555523 located in TMCO1. Moreover, TMCO1 has been
confirmed to be highly expressed in the ciliary body, TM, lamina cribrosa, optic nerve, and retina.
Interestingly, it has also been shown that TMCO1 functionally interacts with other glaucoma-associated
genes including CAV1 [106]. Besides, Verkuil et al. have demonstrated a direct association of an
another single nucleotide polymorphism, namely rs4657473 (C > T), in TMCO1 with POAG in African
Americans population [255].

3.2.5. GAS7

The GAS7 belongs to the Pombe Cdc 15 homology (PCH) family [256]. It has been reported that
growth arrest-specific (GAS) proteins play an important role in the regulation of multiple biological
processes such as microfilament organization, neuronal differentiation, apoptosis, tyrosine kinase
receptor activity, and control of the cell cycle progression [257–262]. GAS7, located on chromosome
17p13.1 [106], is expressed in early embryonic cells, testis, and neurons of several regions of the
brain [263–266]. Furthermore, it has been demonstrated that GAS7 is expressed in the optic nerve and
lamina cribrosa, which belongs to the connective tissue network via which the nerve fibers traverse
to create the optic nerve, and it is predicted that the mentioned structure may constitute the main
site for glaucomatous damage to the optic nerve. A moderate to high expression of GAS7 has also
been demonstrated in the ciliary body, which produces the aqueous humor, and high expression of
GAS7 has been found in the TM, which is the major tissue involved in aqueous humor outflow. Both
ciliary body and TM are responsible for IOP level controlling [106]. Moreover, high expression of
GAS7 has been demonstrated in amacrine cells in the mouse retina, whereas lower expression GAS7
has been demonstrated in retinal cell types, which are usually not affected by glaucoma [267]. GAS7
may interact with other genes implicated in glaucoma pathogenesis such as MYOC, OPTN, WDR36,
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CAV1, nitric oxide synthase 2 (NOS2), forkhead box C1 (FOXC1), apolipoprotein E (APOE), amyloid precursor
protein (APP), and clusterin (CLU) [106]. It has been reported that GAS7 interacts with MYOC and
CAV1 via β-catenin (CTNNB1) and RhoA (RHOA). β-catenin constitutes a part of the Wnt signaling
pathway, which is implicated in trabecular outflow regulation, whereas RhoA signaling is responsible
for regulation of the intracellular levels of phosphorylated myosin light chain, which directly influences
TM cellular contraction and aqueous humor outflow [268,269]. It has also been reported that GAS7 is
regulated by transforming growth factor (TGF) beta, which is implicated in trabecular outflow and the
optic disc development [270].

Investigation by Koolwijk et al. has identified the rs11656696 polymorphism located in GAS7 and
demonstrated that it is associated with IOP level in subjects from four independent population-based
studies from the Netherlands, as well as from four additional cohorts from the United Kingdom,
Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study.
The analysis has demonstrated that the rs11656696 polymorphism is directly linked with glaucoma
pathogenesis. Interestingly, in subjects from four additional cohorts, each copy of the rs11656696[A]
minor allele was correlated with a 0.19 mmHg decrease in IOP [106]. A recent study by Xu et al. has
demonstrated that rs11656696 polymorphism in GAS7 is directly correlated with POAG pathogenesis
and may constitute a protective factor against POAG in a Chinese population. The minor [A] allele
frequency of rs1165669 polymorphism was 0.477 in the POAG cases, whereas it was 0.526 in controls.
It has been reported that individuals carrying rs11656696 AA genotype were less likely to suffer from
POAG than individuals carrying AC/CC genotypes [271]. However, Kondkar et al. have reported
that polymorphism rs11656696 is not associated with IOP and CDR, thereby it is not considered a risk
factor for POAG in the Saudi Arabian cohort [272].

3.2.6. ATOH7

ATOH7, also known as Math5, is located on 10q21.3-22.1 chromosome. It has been reported that
ATOH7 is a single exon gene that encodes a basic helix-loop-helix (bHLH) transcription factor. There is
ample evidence that bHLH transcription factors are responsible for retinal nerve formation in the
vertebrates as well as in the invertebrates. Brown et al. have demonstrated that human ATOH7 plays a
crucial role both in the RGCs and optic nerve formation. Thereby, it has been suggested that mutations
in ATOH7 may trigger a congenital malformations or degenerative diseases of the optic nerve [273].
Besides, using an in vivo experimental model, it has been confirmed that ATOH7 transcription factor
catalyzes the rate-limiting step in the specification of RGCs [274]. Furthermore, it has been reported
that ATOH7 constitutes an important protein in the differentiation of Müller cells-derived retinal stem
cells into RGCs in a rat model of glaucoma [275]. There is a lot of other evidence that ATOH7 plays a
key role in formation of RGCs and optic nerve. It has been demonstrated that ATOH7-/- mice showed
deprivation of RGCs and optic nerve formation. Moreover, lack of ATOH7 also resulted in thinner
retinas, fewer rod bipolar cells, Muller glia, and calretinin-positive amacrine cells, but relatively more
cones and cholinergic amacrines, as compared with wild-type mice [276–278]. Moreover, a recent
study by Zhang et al. has confirmed that human ATOH7 possesses a high potential in promoting
early retinogenesis and specifying the RGC differentiation program, hence it provides insight for
manipulating RGCs formation from stem cell-derived retinal organoids [279]. However, it has been
demonstrated that expression of ATOH7 alone is insufficient for direct differentiation of RGCs during
normal retinal development. ATOH7-expressing cells give rise to multiple retinal cell types such as
RGCs, amacrine, horizontal, and photoreceptor cells. It has been suggested that ATOH7 plays a crucial
role in determining the RGC competence of retinal progenitors and is also responsible for the activation
of key transcription factors in RGCs’ development [280].

Multiple GWAS have reported a strong correlation between VCDR, commonly used to identify
and monitor glaucomatous damage to the optic nerve, and rs7916697 polymorphism near ATOH7
in two Australian twin cohorts, the Rotterdam study cohorts, and a Latino population [205,281,282].
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Additionally, a suggestive protective association has been reported between the rs7916697
polymorphism in ATOH7 and POAG in the Afro-Caribbean population of Barbados [203].

GWAS have also reported a link between ATOH7 and raftlin lipid raft linker 1 (RFTN1) and
glaucoma-related optic disc parameters. ATOH7 and RFTN1 polymorphisms have been demonstrated
in POAG individuals and their relationships with VCDR and CCT have been confirmed. Chen et al. have
demonstrated that combination of ATOH7 (rs3858145 GG) and RFTN1 (rs690037 TT) polymorphisms
may significantly increase risk of POAG development [283].

Fan at al. have revealed that POAG risk, which is associated with increased VCDR, was
significantly influenced by the C allele of rs1900004 polymorphism in ATOH7 in an American Caucasian
population [238]. Furthermore, the rs1900004 polymorphism in ATOH7 has also been reported as a
non-IOP-related genetic risk factor for NTG in a Japanese population [284]. Philomenadin et al. have
suggested that rs1900004 polymorphism in ATOH7 may constitute a risk factor for POAG development
only upon interaction with variants of other candidate genes in an Indian population [107]. However,
a link between rs1900004 polymorphism in ATOH7 and POAG risk or its related clinical indices such
as IOP and CDR has not been confirmed in a Saudi Arabian cohort [285].

3.2.7. RPGRIP1

The human RPGRIP1 gene is located on chromosome 14q11 and is expressed as multiple splice
variants [286]. RPGRIP1 consists of N-terminal and coiled-coil domains followed by a C2 domain
and a C-terminal RPGR-interacting domain (RID). There is ample evidence that RPGRIP1 is highly
expressed in the human retina [287–289]. It has been suggested that RPGRIP1 expression is enriched in
retinal photoreceptors, where it is stably associated with the connecting cilia [290,291]. Furthermore, it
has been demonstrated that RPGRIP1 is also strongly expressed in a subset of inner retinal neurons,
namely in the amacrine cells [292]. The function of RPGRIP1 has not yet been fully elucidated [293,294].
Interestingly, RPGRIP1 has been identified in the retina as a complex with the CEP290 protein as well
as in the amacrine cells with the neuronal nucleoporin RANBP2 [295]. Thereby, it is predicted that
RPGRIP1 isoforms may constitute a plastic and dynamic scaffold for proteins or protein modules
of specific signaling pathways of different retinal cell subpopulations [296,297]. Besides, it has
been suggested that RPGRIP1 may participate in ciliary protein transport [294]. Moreover, it has
been suggested that RPGRIP1 is directly implicated in various forms of glaucoma, including POAG.
Fernandez-Martines et al. have demonstrated that heterozygous non-synonymous RPGRIP1 variants
may cause or increase the susceptibility to glaucoma, as well as that disrupted interaction of RPGRIP1
with other proteins may result in glaucoma development in European individuals [105].

4. Endoplasmic Reticulum Stress and the Unfolded Protein Response Signaling Pathway

The newest data have reported that aggregation of misfolded and unfolded proteins within the
lumen of the ER is strictly associated with the pathogenesis of multiple neurodegenerative disorders,
as it may affect numerous cell signaling pathways and neuronal connectivity, and finally evoke
neuronal apoptosis [298–301]. The ER constitutes a dynamic cellular organelle that plays a major
role in protein synthesis, posttranslational modification, trafficking, lipids and steroids synthesis,
carbohydrate metabolism, calcium homeostasis, as well as efficient drugs metabolism [302–304].
ER homeostasis is maintained via ER chaperones including glucose-regulated protein 78 (GRP78), also
known as immunoglobulin heavy chain-binding protein (BiP), that promote proper proteins folding
into functional proteins, maintain proteins in a folded state, prevent aggregation of protein folding
intermediates, and direct aberrant proteins to ER-associated protein degradation (ERAD) [305,306].
Multiple factors, including significantly increased protein translation, oxidative and osmotic stress,
depletion of energy and ER calcium level, acidosis, drug-induced toxicity, gene mutations, viral
infection, as well as increased temperature, may markedly enhance the rates of aberrant proteins
within the ER [307–311]. Disruption of the ER homeostasis directly triggers accumulation of misfolded
and unfolded proteins within the ER lumen, and subsequently evokes activation of the unfolded
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protein response (UPR) signaling branches to decrease the level of aberrant proteins within the ER
lumen and thereby restore homeostasis [312]. However, if the ER stress is severe and prolonged, the
pro-adaptive branch of the UPR may switch into the pro-apoptotic one. Thus, there is ample evidence
that targeting components of the UPR signaling pathway may constitute a novel, promising treatment
strategy against ER stress-dependent human neurodegenerative pathologies [301,313,314].

Protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol requiring enzyme-1
(IRE1), and activating transcription factor 6 (ATF6) constitute the three major transducers of the UPR
signaling pathway [315–318]. It has been reported that PERK, a serine/threonine ER kinase, is firstly
activated among all of the three branches of the UPR signaling pathway [319–322]. PERK belongs
to the eIF2α kinase subfamily and is composed of a luminal domain and cytoplasmic domain with
serine/threonine protein kinase activity [323,324]. Under physiological conditions, all three UPR
receptors are maintained in an inactive state by GRP78 chaperones, whereas an increased level of
aberrant proteins within the ER lumen promotes dissociation of the GRP78 proteins from the UPR
effectors, which directly evokes activation of the mentioned transducers [325,326]. In turn, PERK
undergoes oligomerization and autophosphorylation, which subsequently activate its kinase domain
so as to induce the UPR signaling pathway cascade [327]. The main downstream target of PERK
constitutes eukaryotic initiation factor 2α (eIF2α), and becomes phosphorylated under ER stress
conditions, resulting in attenuation of global protein translation and, on the other hand, enhanced
translation of only selective proteins including activating transcription factor 4 (ATF4). ATF4 plays
a dual role, because, as a transcription factor, it may increase the expression of proteins responsible
for cells adaptation to mild or moderate ER stress conditions, or, under severe and chronic ER
stress, it promotes expression of pro-apoptotic proteins, including CCAAT-enhancer-binding protein
homologous protein (CHOP) [328,329]. It has been reported that CHOP-mediated apoptotic cell death
is strictly correlated with the enhanced expression of multiple pro-apoptotic genes such as B-cell
lymphoma-2 (BCL-2), growth arrest and DNA damage-inducible protein (GADD34), endoplasmic
reticulum oxidoreductin 1α (ERO1α), or tribbles-related protein 3 (TRB3) [330–332].

5. The Role of the ER Stress-Dependent Unfolded Protein Response Signaling Pathway in
POAG Pathogenesis

ER stress may be evoked by overexpression of genes or gene mutations, which results in protein
aggregation as well as other molecular processes, the major role of which is to prevent the nascent
protein from the processing via the ER. It has been demonstrated that genetic abnormalities that
directly disrupt the proper ER function may subsequently induce UPR signaling pathway, resulting
in cell death (Figure 3). There is ample evidence that ER-mediated apoptosis may contribute to the
development and progression of several diseases including ocular diseases [91]. Interestingly, there is
increasing evidence confirming that ER stress and UPR signaling pathway are directly implicated in
POAG pathogenesis, as one of the neurodegenerative, ocular diseases [114,333–335].

Mutation in MYOC constitutes one of the major causes of POAG development at the genetic level.
MYOC missense mutations may be strictly correlated with activation of the ER stress-mediated UPR
signaling pathway [336–338]. Zhou et al. have demonstrated that mutant myocilin is characterized by
lower solubility than the physiological form of myocilin. Thus, one of the major causes of the ER stress
induction by the mutant myocilin may be associated with its higher ability to aggregation, as compared
with the normal form of myocilin [109]. Moreover, another study by Aroca-Aguilar et al. has shown that
disease-causing MYOC mutations significantly reduced myocilin solubility, which directly promoted
its aggregation within the ER lumen [339]. The pathological mechanisms responsible for outflow
resistance within the TM as well as subsequent elevation of the IOP have not yet been fully elucidated.
Recent studies have demonstrated that accumulation of the unfolded or misfolded proteins within
the ER lumen may directly induce ER stress conditions, resulting in significant elevation of the IOP
as well as TM damage [340]. It has been demonstrated that disrupted ability of the UPR to remove
aberrant mutant or damaged proteins such as myocilin may trigger ER stress, which subsequently
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leads to impairment of TM cells [114,335]. Accumulated mutated myocilin within the ER lumen
evoked overexpression of GRP78 and protein disulfide isomerase. Besides, mentioned molecular
events resulted in deformed cellular morphology and diminished cell proliferation, which constituted
a major cause of TM cells’ dysfunction, which may play a key role in glaucoma pathogenesis [114].
Topical ocular sodium 4-phenylbutyrate (PBA) treatment rescued glaucoma phenotypes in a transgenic
mouse model of POAG caused by the Y437H MYOC mutation (Tg-MYOCY437H). Topical PBA markedly
improved secretion of myocilin, and reduced its aggregation and subsequent ER stress conditions in
the TM of Tg-MYOCY437H mice. Furthermore, it has also been demonstrated that topical PBA evoked
significant reduction of ER stress-mediated IOP level in WT mice [338]. Furthermore, it has been
found that, in Tg-MYOCY437H mutant, myocilin aggregated in the lumen of the ER in the TM, resulting
in the induction of ER stress conditions. Additionally, severe and long-term ER stress conditions
have been closely associated with increased IOP and TM apoptotic cell death in an in vivo model of
Tg-MYOCY437H mice. Interestingly, phenylbutyric acid-mediated reduction of ER stress promoted
secretion of mutant myocilin in the aqueous humor and significantly declined its deposition within the
ER, resulting in the prevention of TM apoptotic cell death in Tg-MYOCY437H mice [336].
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Figure 3. Activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent
UPR signaling pathway within retinal ganglion cells (RGCs). POAG pathogenesis, on the molecular
level, is correlated with the accumulation of aberrant proteins, such as mutant myocilin, within the ER
lumen, which evokes ER stress conditions within the RGCs, subsequent significant elevation of the
intraocular pressure (IOP) and activation of the PERK-dependent unfolded protein response (UPR)
signaling pathway. Under mild to moderate ER stress conditions, UPR has a pro-adaptive role, whereas
severe or long-termed ER stress conditions trigger activation of the pro-apoptotic branch of the UPR,
directly leading to RGCs’ apoptosis.

It has been reported that the ER stress-dependent UPR signaling pathway activation is closely
correlated with glaucoma pathogenesis. After induction of ER stress conditions via treatment of RGCs
with tunicamycin, the levels of GRP78, phosphorylated form of eIF2α (p-eIF2α), and CHOP were
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significantly increased. Hence, the mentioned data indicate that apoptosis of RGCs may occur in the
ER stress-dependent manner. Interestingly, it has also been reported that the levels of BiP and CHOP, as
one of major markers of the UPR signaling pathway activation, were significantly increased in retinal
cells after N-methyl-D-aspartate (NMDA)-induced injury. Thereby, the above-mentioned molecular
event may confirm a correlation between ER stress and glaucoma pathogenesis [341]. Moreover,
a study by Doh et al. has also demonstrated that ER stress and PERK-dependent UPR signaling
pathway play a critical role in the RGCs’ apoptotic cell death. In the mentioned study, the levels
of GRP78, p-PERK, and p-eIF2α, induced by an elevated IOP, were markedly increased during the
early stage of the UPR signaling pathway activation to protect RGCs against apoptosis. On the other
hand, in the case when the increased IOP was prolonged, the CHOP expression was also significantly
increased, directly leading to apoptotic cell death of RGCs at the late stage of the UPR signaling pathway
activation. Thus, the above-mentioned data confirm a strong correlation between ER stress-mediated
PERK/p-eIF2α/CHOP signaling pathway activation and RGCs’ cell death in chronic glaucoma [342].

Furthermore, a study by Zode et al. has demonstrated that chronic ER stress plays a critical role in
OHT development in an in vivo mouse model of glaucoma induced by glucocorticoid. Treatment of
WT mice with dexamethasone evoked an elevation of IOP, loss of RGCs, as well as axonal degeneration.
Interestingly, increased IOP has been associated with persistent ER stress of the TM. Besides, an elevated
expression of CHOP, a major marker of the ER stress-mediated apoptosis, has been found in the anterior
segment tissues. Deletion of CHOP suppressed ER stress in mentioned tissues and also prevented
dexamethasone-mediated OHT [333]. Moreover, a recent study by Wang et al. has confirmed a link
between ER stress-mediated activation of the UPR signaling pathway and glaucoma pathogenesis.
Both TM stem cells and TM cells were treated with the ER stress inducers, whereas a significantly
elevated expression of ER stress markers, such as GRP78 and CHOP, was demonstrated only in TM cells
in comparison with TM stem cells [343]. Moreover, a study by Peters et al. has confirmed that inability
of TM cells to suppress ER stress evokes enhanced expression of CHOP, which may evoke not only
IOP elevation, but also loss of TM cells in the apoptotic-dependent manner. It has been demonstrated
that persistent ER stress plays a crucial role in glaucoma development, because the levels of ER stress
markers including GRP78, GRP94, ATF4, ERO1α, and CHOP were markedly increased in glaucomatous
TM cells as compared with normal TM cells [334]. A study by Yang et al. has demonstrated that
components of the ER stress-mediated UPR signaling pathways may constitute a novel therapeutic
targets for glaucoma as well as other neurodegenerative disorders. The above-mentioned study showed
that opposite manipulation of the UPR signaling pathway, namely inhibition of PERK/eIF2α/CHOP
branch of the UPR and activation of the X-box-binding protein 1 (XBP1), results in RGCs axons and
somata survival and preserves visual function [344].

Ultimately, the above-mentioned data have confirmed a hypothesis that the induction of
PERK-dependent UPR signaling pathway under ER stress conditions may be closely correlated
with POAG pathogenesis at the molecular level. Hence, targeting of the components of the UPR
signaling branches may contribute to the development of a novel, ground-breaking treatment strategy
against POAG.

6. Summary and Perspective

POAG, the most common form of the glaucoma, rarely causes symptoms until it is at the advanced
stage, thus it is commonly known as a ‘silent thief of sight’. The currently existing approach for
treatment against POAG is primarily limited to the reduction of the IOP and may evoke numerous
side-effects in POAG patients. Furthermore, it does not take into account the molecular processes
occurring in the ocular tissues. As proven above, there are multiple glaucoma-associated genes,
whereas their detailed functions in the disease pathogenesis and progression are not fully elucidated.
Thereby, a precise characterization of genes that are directly linked to POAG pathogenesis constitutes
a crucial step to develop gene-based diagnostic tests, which will detect disease earlier and predict
response to drugs and treatment, and it may also contribute to the development of novel gene therapies.
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Moreover, the newest data have demonstrated that ER stress and PERK-dependent UPR signaling
pathway may play a crucial role in POAG pathogenesis at the molecular level. Thus, components
of the PERK-mediated UPR signaling pathway, implicated in POAG pathogenesis, may constitute a
potential targets of a novel, ground-breaking treatment approach against POAG, which could prevent
the disease development in the future.
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