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Introduction
Immune checkpoint inhibitors (ICIs), primarily 
programed death-1 (PD-1) inhibitors, have 
recently revolutionized treatment of gastric cancer 
(GC) and have emerged as a promising treatment 
strategy for GC patients. As the only Food and 
Drug Administration (FDA)-approved prediction 
biomarker for ICI therapy in patients with GC, 
the programed death ligand-1 combined positive 
score (PD-L1 CPS) has some utility as a predictor 
of the efficacy of PD-1/PD-L1 inhibitors alone, 
but prediction of the efficacy of immunotherapy/

chemotherapy combinations varies among ICIs1–3; 
furthermore, the optimal threshold needs to be 
evaluated in clinical trials across treatment 
lines.2,4–8 In salvage settings without selective bio-
markers or PD-L1 expression, PD-1 inhibitors 
have a fairly wide range of response rates (10–
26%) for metastatic GC.4,6,9 More importantly, in 
clinical practice, multiple factors may interfere 
with PD-L1 assay results10; these include inter- 
and intratumor heterogeneity,11,12 different detec-
tion antibodies and platforms,13 strong subjectivity 
of different pathologists11 and, as a continuous 
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Abstract
Background: The programed death ligand-1 combined positive score (PD-L1 CPS), the only 
FDA-approved biomarker for immune checkpoint inhibitor therapy in gastric cancer (GC) 
patients, is an important but imperfect predictive biomarker. The molecular characteristics of 
tumors that influence the PD-L1 CPS are largely unknown and would be helpful for screening 
patients who would benefit from immunotherapy.
Methods: PD-L1 immunohistochemistry (IHC) and targeted next-generation sequencing 
techniques were used to compare genomic alterations in 492 GC patients in two groups (PD-
L1 CPS ⩾ 1, positive; CPS < 1, negative). Screened PD-L1 expression-related factors were 
analyzed for immunotherapy efficacy in three distinct GC cohorts from public databases.
Results: Positive PD-L1 expression occurred in 40% of GC patients and was associated with 
a higher proportion of phosphatidylinositol 3-kinase (PI3K), SWItch/Sucrose NonFermentable 
(SWI/SNF), lysine demethylase (KDM), and DNA (cytosine-5)-methyltransferase (DNMT) (all 
p < 0.01), pathway alterations. Compared to wild-type GC patients, those with PI3K pathway 
alterations had a higher response rate (p = 0.002) and durable clinical benefit rate with 
immunotherapy (p = 0.023, p = 0.038) as well as longer progression-free survival (p = 0.084, 
p = 0.0076) and overall survival (p = 0.2, p = 0.037) with immunotherapy.
Conclusion: This study revealed PD-L1 expression-related factors in the tumor genome in 
a GC cohort. Alterations in the PI3K pathway associated with PD-L1 positivity were shown to 
be associated with better immunotherapy efficacy in three distinct GC cohorts from public 
databases. Our results provide a potential avenue for patient selection and rational immune 
combination development for GC patients.
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variable, possible gray areas above and below the 
cutoff value. It is clear that PD-L1 expression is an 
important but imperfect predictive biomarker for 
treatment of GC with ICIs. Taken together, find-
ings to date illustrate the importance of identifying 
other more effective predictive biomarkers associ-
ated with treatment of GC with ICIs.

In GC, most studies have focused mainly on the 
association of PD-L1 expression with specific 
molecular features, including MAPK pathway 
mutations, high microsatellite instability (MSI-
H) and KMT2 gene mutations.14–18 Furthermore, 
recent data indicate that specific molecular fea-
tures may affect the predictive utility of PD-L1 
expression.14,19 Systematic exploration of the 
impact of clinical features and molecular features 
on PD-L1 expression has not been performed. 
Further clarification of the link between the 
PD-L1 CPS as well as clinical and molecular fea-
tures may provide new insights into the search for 
predictive markers and rational drug combina-
tions for GC immunotherapy.

In this study, we investigated the clinical features 
and genomic features of tumors in different 
PD-L1 CPS groups (CPS ⩾ 1, <1) in a cohort 
containing 492 GC patients (GC cohort) from 
the real world, with PD-L1 testing and targeted 
next-generation sequencing (NGS) performed on 
same tissue samples. Three GC cohorts treated 
with ICIs from Samsung Medical Center (SMC), 
Peking University Cancer Hospital (PUCH), and 
Memorial Sloan Kettering Cancer Center (MSK) 
were also used to evaluate how these molecular 
features may impact the efficacy of immunother-
apy or prognosis in GC patients.

Materials and methods

Patient selection
Patients from the GC cohort. To characterize the 
relationship between both clinical features and 
molecular features and PD-L1 expression, we 
used a retrospective cohort of 492 patients with 
stage I-IV GC from April 2018 to December 
2022. The main inclusion criteria of the GC 
cohort were as follows: (1) GC diagnosis, (2) 
complete basic clinical information, (3) available 
NGS and PD-L1 testing data, and (4) quality 
control carried out (Supplemental Figure 1).

Patients from public databases. The detailed patient 
selection process is presented in Supplemental 

Figure 1. To analyze the association between specific 
PD-L1-related molecular features from the GC 
cohort and immunotherapy efficacy, we collected 
whole-exome sequencing (WES) data for 94 GC 
patients treated with ICIs from the SMC and 
PUCH immunotherapy cohorts. In the SMC 
immunotherapy cohort, a total of 49 GC patients 
treated with a PD-1 inhibitor were included in the 
final analysis after excluding two patients in whom 
the best response was not evaluated and four 
patients for whom there were no PD-L1 assay 
results. In the PUCH immunotherapy cohort, a 
total of 22 GC patients who were treated with only 
a PD-1 inhibitor were included in the final analysis 
(14 patients treated with PD-L1 inhibitors or 
immunocombination therapy and three who had no 
PD-L1 assay results were excluded). Single-nucleo-
tide variants (SNVs) and insertions/deletions 
(indels) in the PUCH immunotherapy cohort were 
obtained from the figshare database (https://fig-
share.com/). Furthermore, a PD-1 immune check-
point monotherapy cohort (MSK immunotherapy 
cohort) of 19 gastric or gastroesophageal junction 
adenocarcinoma patients with follow-up informa-
tion was used to explore the correlation between 
specific molecular features and the efficacy and 
prognosis of ICI therapy. SNVs and indels of the 
MSK immunotherapy cohort were obtained from 
cBioPortal (https://www.cbioportal.org/). Fastq files 
of the SMC immunotherapy cohort were obtained 
from the European Nucleotide Archive (https://
www.ebi.ac.uk/; Supplemental Table 1).

Tumor response was determined according to the 
Response Evaluation Criteria in Solid Tumors 
1.1 (RECIST v1.1). In general, response (R) was 
defined as confirmed complete response (CR) or 
partial response (PR); nonresponse (NR) was 
defined as confirmed stable disease (SD) or pro-
gressive disease (PD).20 Durable clinical benefit 
(DCB) was defined as CR, PR, or SD lasting 
24 weeks; no durable benefit (NDB) was defined 
as progressive disease or SD lasting <24 weeks.21 
Progression-free survival (PFS) and overall sur-
vival (OS) were defined as the time from the start 
of immunotherapy to the date of radiographic dis-
ease progression, death or last evaluation.21,22 For 
basic demographic information on the GC, SMC, 
PUCH, and MSK immunotherapy cohorts, see 
Supplemental Table 2.

PD-L1 immunohistochemistry
PD-L1 expression in the GC cohort was assessed 
using the combined positive score (CPS) and the 

https://journals.sagepub.com/home/tam
https://figshare.com/
https://figshare.com/
https://www.cbioportal.org/
https://www.ebi.ac.uk/
https://www.ebi.ac.uk/


L Liu, L Niu et al.

journals.sagepub.com/home/tam 3

tumor percentage score (TPS) by IHC staining of 
formalin-fixed paraffin-embedded (FFPE) sec-
tions using an anti-PD-L1 antibody (clone 22C3, 
1:50, Dako, M3653). As previously reported, the 
CPS was calculated as the number of PD-L1 pos-
itive cells (tumor cells, lymphocytes, and mac-
rophages) divided by the total number of tumor 
cells multiplied by 100,23 and the TPS was calcu-
lated according to the ratio of PD-L1-stained 
tumor cells to the total number of viable tumor 
cells.24 PD-L1 positivity was defined as a CPS ⩾ 1; 
PD-L1 negativity was defined as a CPS < 1.

NGS of the GC cohort
Genomic DNA from white blood cells and FFPE 
tumor tissue was extracted with TIANamp 
Genomic DNA Kit (TIANGEN, Beijing, China) 
and blackPREP FFPE DNA Kit (Analytic Jena, 
Germany), respectively. Genomic DNA was 
sheared into 150- to 200-bp fragments using a 
Covaris M220 according to the recommended 
settings. Fragmented DNA was input for library 
construction. A KAPA hyper preparation kit 
(Kapa Biosystems, Wilmington, USA) was used 
to prepare indexed Illumina NGS libraries 
according to the manufacturer’s instructions. 
Nine  polymerase chain reaction (PCR) cycles of 
ligated fragments were amplified using index 
primers according to the DNA quality of the pre-
PCR. DNA was purified with Agencourt AMPure 
XP beads (Beckman-Coulter, CA, USA), and 
double size screening was performed for library 
preparation. All the libraries were quantified 
using a Qubit DNA dsDNA assay kit (Thermo 
Fisher, Massachusetts, USA), and fragment 
length was determined using a DNA 1000 kit 
(Agilent, CA, USA) on an Agilent Bioanalyzer 
2100. The DNA libraries were sequenced using 
150-bp paired-end runs with an Illumina NovaSeq 
6000 and captured with two designed Genescope 
panels (Genecast, Beijing, China) including 414 
shared tumor-related genes. For WES cohorts 
from public databases, only these 414 genes were 
included in the analysis. For the cohort of panel 
capture sequences from the public database, 
genes shared with these 414 genes were assessed.

Variant calling
Variant calling for the GC cohort. For the GC 
cohort, the mean coverage depth after deduplica-
tion across all target regions on tissue samples and 
matched white blood cells was 2124× and 495×, 

respectively. The software programs VarDict (ver-
sion 1.5.1; https://github.com/AstraZeneca-NGS/
VarDict) and FreeBayes (version 1.2.0; https://
github.com/freebayes/freebayes) were used to 
identify SNVs and indels in each patient’s tumor 
tissues and matched white blood cells. Matched 
white blood cells from each patient were used to 
filter the germline variants, clonal hematopoiesis, 
and sequence artifacts to obtain somatic genetic 
alterations of tumor tissue. The ANNOVAR assay 
was used to annotate the function of genetic vari-
ants. Somatic genetic alterations, including SNVs 
and indels, were selected by the following exclu-
sion criteria: (1) located in intergenic regions or 
intronic regions; (2) synonymous SNVs; (3) minor 
allele frequency (MAF) ⩾0.002 in the Exome 
Aggregation Consortium (ExAC) and Genome 
Aggregation Database (gnomAD; https://gnomad.
broadinstitute.org/); (4) variant allele frequency 
(VAF) <0.01 in tumor tissue; (5) strand bias for 
genetic alterations in the reads; (6) number of sup-
porting reads for a variation <2; and (7) depth 
<30×.25–31 For copy number variation (CNV) 
calling, white blood cell samples of patients were 
used as a paired control, and the CONTRA assay 
(version 2.0.8) was used to call CNVs from the 
FFPE tumor samples for each patient with a copy 
number threshold of 3 for CNV gain and 1.2 for 
CNV loss.32 CNV burden was determined as the 
total number of genes with copy number gains or 
losses.

WES variant calling. For the SMC immunother-
apy cohort, our analysis started with data in the 
fastq file format. The average sequencing depths 
of tumor samples and normal samples after dedu-
plication were 139× and 92×, respectively. After 
removing low-quality reads using fastp (version 
0.23.1), clean reads were aligned to the human 
reference genome (Hg19, NCBI Build 37.5) with 
Burrows–Wheeler Aligner (version 0.7.17).33 
Then, the Picard toolkit (version 2.26.4; http://
broadinstitute.github.io/picard/) was used to cre-
ate duplicates, and Genome Analysis Tool Kit 
(GATK, version 4.2.2.0; https://gatk.broadinsti-
tute.org/) was used for realignment.34 The 
MuTect2 tool of Genome Analysis Tool Kit was 
used to call SNV and indel alterations in tumor 
and normal samples, and then the alterations 
were annotated through VEP (version 104.3).35 
Finally, somatic alterations were obtained after 
filtering germline alterations, and the final somatic 
alterations used for the following analysis were 
selected based on the following standards: (1) the 
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result of GATK filtering was PASS; (2) normal 
sample depth ⩾30× and tumor sample depth 
⩾50×; (3) number of supporting reads for an 
alteration was both ⩾5 in tumor samples and ⩽3 
in control samples; (4) both tumor sample 
VAF ⩾ 0.03 and (tumor sample VAF)/(normal 
sample VAF) ⩾5; (5) MAF < 0.01 in the data-
bases ExAC and gnomAD; and (6) the Sorting 
Intolerant from Tolerant (SIFT) database36 did 
not classify the alteration as tolerated, and the 
Polymorphism Phenotyping (PolyPhen) database 
did not classify the alteration as benign.37

Analysis of the microsatellite instability status, 
tumor mutational burden, and mutant-allele 
tumor heterogeneity in the GC cohort
Microsatellite instability status assessment. Mic-
rosatellites were defined as tandem DNA repeats 
with one to six bases in coding and noncoding 
regions throughout the genome. Microsatellite 
instability (MSI) is a hypermutable phenotype at 
the genomic level due to deficient mismatch 
repair (MMR) activity caused by germline muta-
tions or gene hypermethylation in the DNA 
MMR system, which detects and corrects errors 
such as base–base mismatches and insertion–
deletions in microsatellites caused by polymerase 
slippage during DNA synthesis.38 For assessment 
of MSI status, the NGS method has shown good 
agreement with PCR or immunohistochemistry 
in several studies.39–41 MSI status in the GC 
cohort was evaluated as follows.

Adaptors of raw read pairs were trimmed using 
Trimmomatic (version 0.39; https://github.com/
topics/trimmomatic). Clean reads were mapped 
against the human reference genome (build hg19, 
UCSC) using Burrows-Wheeler-Alignment Tool 
(BWA, version 0.7.12; https://bio-bwa.source-
forge.net/) and sorted using SAMtools (version 
1.3; https://github.com/samtools/samtools). 
Duplicates were performed followed by local 
indel realignment using GATK (version v2.8; 
https://gatk.broadinstitute.org/). For each micro-
satellite locus, all spanning reads (covering at 
least 2 bp in both the 5′ and 3′ directions) were 
extracted from a realigned BAM file. Following 
deduplication, the length of the mononucleotide 
repeat in each deduped alignment was counted 
and tallied by length. The number of alleles of 
each observed length compared to the reference 
genome within each of the microsatellite loci for 
30 healthy blood samples was evaluated, and then 
the mean and SD of the number of alleles were 

calculated as the baseline reference value. 
Experimental results were compared against 
baseline reference values at each locus to assess 
the instability of microsatellite loci. If the tally of 
alleles counted exceeded the MSI stable reference 
value of [mean number of alleles + (3 × SD)], the 
locus was scored as lightly unstable. If the tally of 
alleles counted exceeded the MSI stable reference 
value of [mean number of alleles + (4 × SD)], the 
locus was scored as heavily unstable. Finally, the 
fraction of unstable loci among all loci analyzed 
was calculated for each experimental sample. A 
fraction of 25% lightly unstable loci or a fraction 
of 15% heavily unstable loci was considered to 
indicate MSI. The QC check was as follows: (1) 
microsatellite loci were covered by at least 100 
spanning reads; (2) the duplication ratio of each 
microsatellite locus was ⩾30%; (3) each allele 
was covered by at least two spanning reads; and 
(4) alleles with <5% of the reads counted for the 
most frequently observed allele were excluded.

Tumor mutational burden calculation. Tumor 
mutational burden (TMB) was calculated as the 
number of somatic, coding, base substitutions, and 
short indels detected in each Mb genome.42 In sev-
eral clinical trials, TMB has been shown to be a 
good predictor of immunotherapy efficacy43,44 and 
has emerged as a surrogate for neoantigen burden, 
which is an independent biomarker associated with 
the outcome of ICIs.45 SNV mutations for TMB 
calculation were filtered through the following 
rules: (1) no splicing or exonic mutations; (2) 
depth <100× and VAF < 0.05; (3) MAF ⩾ 0.002 
in the databases ExAC and gnomAD; and (4) 
strand bias mutations in the reads and other rules 
as previously reported.44 Then, we calculated the 
TMB of the tumor samples after obtaining the 
absolute mutation counts of the tumor samples 
against the mutation spots of the normal samples 
with the following formula: absolute mutation 
counts × 1000,000/panel exonic base number. The 
TMB was measured in mutations per Mb.

Mutant-allele tumor heterogeneity calcula-
tion. Mutant-allele tumor heterogeneity (MATH) 
is an algorithm to quantify the genetic heteroge-
neity of a tumor sample based on the mutant 
allele frequencies of all alleles in the tumor, and a 
MATH value is calculated for each sample, which 
reflects the level of tumor heterogeneity.46 The 
VAF of the alteration was calculated as the ratio of 
alternate allele observations to the read depth at 
each position. We modified the MATH score to 
include all somatic variants with a VAF between 
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0.02 and 1 calculated as 100 × median absolute 
deviation (MAD)/median of the VAF.47

Pathway analysis
The genes in pathway analysis referred to the pre-
viously reported gene list and gene annotation 
website (https://reactome.org/)48–51 and were 
compared with the 414 genes covered in the 
Genecast panel. If an alteration in any gene 
occurred in a specific pathway, that pathway was 
considered altered. The final gene list of each 
pathway is presented in Supplemental Table 3.

Statistical analysis
Statistical analyses were performed with R software 
(version 4.0.3; https://www.r-project.org/), SPSS 
software (version 19; https://www.ibm.com/spss), 
and GraphPad Prism software (version 8.0.1; 
https://www.graphpad.com/). Differences between 
proportions were evaluated by Fisher’s exact test. 
Logistic regression based on the first penalization 
method was used for multivariate analysis of 

categorical variables. The Kruskal–Wallis test was 
used for comparisons of differences between multi-
ple groups, and post hoc analyses of two matched 
groups were performed with Dunn’s test. For com-
parison of differences between two groups, the 
Wilcoxon test was used. Spearman rank correlation 
coefficients were used to examine correlations. 
Survival curves were plotted using the Kaplan–
Meier analysis, and p values were estimated using 
the log-rank test. All tests were two-sided, and p 
values <0.05 were considered statistically signifi-
cant differences unless otherwise stated.

Results

Clinical characteristics and PD-L1  
expression in the GC cohort
A total of 492 GC patients with both targeted 
NGS and PD-L1 results were included in the pre-
sent study. As shown in Figure 1(a) and (b), we 
evaluated PD-L1 expression using IHC. The 
median age of all the patients was 62 years (range 
19–90). Among the 492 patients, 323 (66%) were 

Figure 1. PD-L1 expression in PD-L1 positive and PD-L1 negative groups. (a and b) Representative images  
of PD-L1 expression in PD-L1 positive (a) and PD-L1 negative (b) subjects. (c) Distribution of PD-L1 expression 
based on the CPS. (d) Distribution of PD-L1 expression [positive (⩾1) and negative (<1)] in GC patients.  
(e) Correlation between the PD-L1 CPS and TPS.
CPS, combined positive score; PD-L1, programed death ligand-1; TPS, tumor percentage score.
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male and 169 (34%) female. The number of all 
patients with stage I, II, III, and IV disease was 9 
(2%), 39 (8%), 152 (31%), and 292 (59%), 
respectively. MSI-H status was observed in 28 
(6%) of the 492 patients. The median CPS of 
PD-L1 expression was 0.64 [range 1–100; 
Supplemental Table 2]. The patients were divided 
into two groups according to the results of the 
PD-L1 expression assay: a negative PD-L1 
expression (PD-L1 negative) group with a 
CPS < 1 (n = 295, 60%) and a positive PD-L1 
expression (PD-L1 positive) group with a CPS ⩾ 1 
[n = 197, 40%; Figure 1(c) and (d)]. The PD-L1 
positive patients were older than the PD-L1 nega-
tive patients (p = 0.0039; Supplemental Figure 2). 
The PD-L1 expression level did not significantly 
differ by sex gender or clinical stage (p > 0.05; 
Supplemental Figure 2).

As another method to evaluate PD-L1 expres-
sion, the TPS was applied to assess expression of 
PD-L1 on tumor cells, and the CPS evaluated 
expression of PD-L1 in both tumor and immune 
cells. In this study, the PD-L1 TPS correlated 
moderately positively with the CPS [Spearman 
rho = 0.54, p < 0.0001; Figure 1(e)].

Association between summary genomic 
molecular features and PD-L1 expression 
status in the GC cohort
The PD-L1 positive group possessed a higher 
percentage of MSI-H patients than the PD-L1 
negative group [Figure 2(a)]. As a continuous 
variable, the PD-L1 CPS was modestly associ-
ated with an increased TMB [Spearman 
rho = 0.20, p < 0.0001; Figure 2(b)], and as a 
categorical variable, the TMB was significantly 
elevated in PD-L1 positive patients compared 
to PD-L1 negative patients [p < 0.001; Figure 
2(c)]. However, after excluding MSI-H 
patients, no significant association was observed 
between TMB and PD-L1 CPS [p = 0.054; 
Figure 2(d)]. PD-L1 CPS showed a weak nega-
tive correlation with MATH (Spearman 
rho = −0.09, p = .04) and did not correlate with 
CNV burden [Spearman rho = 0.00421, 
p = 0.93; Figure 2(e) and (f)].

Association of individual molecular alterations 
with PD-L1 expression status in the GC cohort
We investigated altered genes and pathways that 
differed between the PD-L1 positive and PD-L1 
negative groups. These genomic alterations with 

a population percentage greater than 10% (10% 
included) included TP53 (64%), CDH1 (21%), 
ARID1A (18%), HMCN1 (15%), KMT2D 
(12%), PIK3CA (12%), and KMT2C [10%; 
Figure 3(a)]. A total of 40 altered genes were sig-
nificantly associated with PD-L1 status; 39 genes 
were more frequently altered in PD-L1 positive 
cells than in PD-L1 negative cells, including 
MSH6 (8% versus 2%), BCOR (6% versus 1%), 
CTCF (7% versus 1%), FLCN (5% versus 0%), 
PIK3CB (5% versus 0%), PIK3CA (16% versus 
8%), KMT2A (9% versus 3%), MSH3 (7% versus 
2%), MAP2K4 (6% versus 1%), ABL1 (5% versus 
1%), WHSC1 (5% versus 1%), and PDCD1 [3% 
versus 0%; top 12, all p ⩽ 0.01; Figure 3(b) and 
Supplemental Table 4]. In contrast, mutations in 
CDH1 (15% versus 26%) occurred more com-
monly in PD-L1 negative samples [p < 0.01; 
Figure 3(b) and Supplemental Table 4].

Among the PD-L1 positive and PD-L1 negative 
groups, there were enrichment diversities of path-
way alterations in p53 (65% versus 64%), RTK/
RAS (49% versus 46%), DDR (34% versus 32%), 
SWI/SNF (37% versus 23%), PI3K (37% versus 
23%), HMT (31% versus 21%), Notch (17% ver-
sus 16%), Wnt (23% versus 14%), TGFβ (15% 
versus 13%), cell cycle (14% versus 8%), Hippo 
(12% versus 6%), HAT (8% versus 6%), KDM 
(12% versus 5%), Nrf2 (2% versus 2%), DNMT 
(8% versus 2%), and Myc [3% versus 1%; Figure 
3(c)]. In contrast to patients in the PD-L1 negative 
group, patients in the PD-L1 positive group har-
bored obvious enrichment (all p < 0.01) of altera-
tions in PI3K (p = 0.001), SWI/SNF (p = 0.001), 
KDM (p = 0.003), and DNMT [p = 0.005; Figure 
3(d) and Supplemental Figure 3 A–D].

PD-L1 expression-related PI3K pathway 
alterations associated with better 
immunotherapy efficacy
Based on the findings that genomic pathway 
alterations in PI3K, SWI/SNF, KDM, and 
DNMT pathways correlated with PD-L1 expres-
sion in the GC cohort, we wondered if these 
genomic pathway alterations affected the efficacy 
to ICI treatment in GC patients. Three of the 
four altered pathways associated with PD-L1 
expression identified in the GC cohort, namely, 
PI3K (62% versus 14%, p = 0.002), SWI/SNF 
(p = 0.038), and KDM (p = 0.003), had signifi-
cantly higher alteration rates in the response (R) 
group than in the nonresponse (NR) group in the 
SMC immunotherapy cohort20 [Figure 4(a) and 
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Supplemental Figure 4A]. In addition, no mean-
ingful difference in the alteration rate of the 
DNMT pathway (p = 0.265) was observed 
between the R and NR groups in the SMC immu-
notherapy cohort (Supplemental Figure 4A). In 
the PUCH immunotherapy cohort, the alteration 

rate of the PI3K pathway (56% versus 8%, 
p = 0.023) was significantly higher in the DCB 
group than in the NDB group21 [Figure 4(b) and 
Supplemental Figure 4B]. However, there were 
no significant differences in alteration rates for 
the other three pathways in the DCB and NDB 

Figure 2. Molecular features of PD-L1 expression status in the GC cohort. (a) Comparison of the frequency of MSI 
status in the PD-L1 positive and PD-L1 negative groups. (b) Correlation between TMB and CPS. (c) Association of 
TMB and PD-L1 CPS in all GC patients. (d) Association between TMB and PD-L1 CPS in the MSS subgroup of GC 
patients. (e) Correlation between MATH and CPS. (f) Correlation between the CNV burden and CPS.
CNV, copy number variation; CPS, combined positive score; GC, gastric cancer; MATH, mutant-allele tumor heterogeneity; 
MSI, microsatellite instability; MSS, microsatellite stable; PD-L1, programed death ligand-1; TMB, tumor mutational burden.
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groups (Supplemental Figure 4B). In the MSK 
immunotherapy cohort containing gastric or gas-
troesophageal junction adenocarcinomas treated 
with PD-1 immune checkpoint monotherapy, 

pathways with significant differences in alteration 
rates in the MSK cohort were PI3K (80% versus 
21%, p = 0.038) and SWI/SNF (p = 0.038), both 
of which had higher alteration rates in the DCB 

Figure 3. Gene and pathway alterations in different PD-L1 expression statuses of the GC cohort. (a) The 
landscape of gene alterations with population frequencies greater than or equal to 10% and genes with 
significantly different alteration levels between the PD-L1 positive and PD-L1 negative groups. (b) Distribution 
of gene alteration rates in the PD-L1 positive group and PD-L1 negative group. The alteration rates of the 
genes were processed by log10. (c) Population percentage of tumors harboring pathway alterations in the 
PD-L1 positive versus PD-L1 negative groups. (d) Forest plot of comparison results for the frequency of altered 
pathways in the PD-L1 positive and PD-L1 negative groups.
GC, gastric cancer; PD-L1, programed death ligand-1.
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group than in the NDB group [Figure 4(c) and 
Supplemental Figure 4C]. In summary, PI3K is 
the common pathway associated with efficacy in 
the three immunotherapy cohorts.

At the same time, we assessed the correlation 
between PD-L1 expression and immunotherapy 
efficacy in both SMC and PUCH immunother-
apy cohorts. In the SMC immunotherapy 
cohort, the PD-L1 positivity rate was signifi-
cantly higher in the R group than in the NR 
group (Supplemental Figure 4A). However, in 

the PUCH immunotherapy cohort, the differ-
ence in PD-L1 positivity rates between the DCB 
and NDB groups was not significant 
(Supplemental Figure 4B). Multivariate logistic 
regression results showed that the PI3K path-
way was an independent factor affecting immu-
notherapy efficacy, whereas PD-L1 expression 
was not an independent factor in either the 
SMC or PUCH immunotherapy cohorts 
(Supplemental Figure 4A and B), suggesting 
that the PI3K pathway may be more effective 
for predicting immunotherapy efficacy.

Figure 4. Association of PI3K pathway alterations with efficacy and PFS for immunotherapy. (a) Comparison of the frequency of PI3K 
pathway alterations in the R and NR groups of the SMC immunotherapy cohort. (b) Comparison of the frequency of PI3K pathway 
alterations in the DCB and NDB groups of the PUCH immunotherapy cohort. (c) Comparison of the frequency of PI3K pathway 
alterations in the DCB and NDB groups of the MSK immunotherapy cohort. (d) Association of PI3K pathway status with PFS of ICI-
treated patients in the PUCH immunotherapy cohort. (e) Association of PI3K pathway status with PFS- of ICI-treated patients in the 
MSK immunotherapy cohort.
DCB, durable clinical benefit; ICI, immune checkpoint inhibitor; MSK, Memorial Sloan Kettering Cancer Center; NDB, no durable benefit; PFS, 
Progression-free survival; PUCH, Peking University Cancer Hospital; SMC, Samsung Medical Center.
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Because PI3K pathway alterations were the only 
common factor associated with immunotherapy 
efficacy in the three immunotherapy cohorts, we 
further explored their relevance to the prognosis 
of patients treated with ICIs. The Kaplan–Meier 
analysis suggested that PI3K pathway alterations 
were significantly associated with longer PFS 
(p = 0.0076) in the MSK cohort and showed a 
certain trend toward significance to be associated 
with longer PFS (p = 0.084) in the PUCH cohort 
[Figure 4(d) and (e)]. For OS, PI3K pathway 
alterations in the MSK cohort were significantly 
correlated with longer OS (p = 0.037), further 
indicating the potential role of PI3K pathway 
alteration as a predictor for ICI therapy in GC 
patients. Meanwhile, PI3K mutation was associ-
ated with a trend toward improved OS in PUCH 
cohort, albeit the correlation was not statistically 
significant (Supplemental Figure 5A and B).

Discussion
In clinical practice, it is important to optimize 
therapy based on the molecular characteristics of 
tumors in specific populations to improve treat-
ment outcomes and reduce unnecessary toxicity. 
It has been reported that genetic composition 
may regulate PD-L1 expression, which in turn 
affects antitumor immunity.52 To our knowledge, 
this is the first study to simultaneously investigate 
factors associated with PD-L1 expression, includ-
ing clinical features and genomic molecular fea-
tures, in Chinese GC patients. Our research 
indicated that PD-L1 expression correlated not 
only with the age of GC patients but also with the 
specific altered pathways of tumors, such as the 
PI3K pathway. More importantly, PI3K pathway 
alterations correlated with the efficacy of ICI 
therapy and the prognosis of ICI-treated patients.

Our data showed that the percentage of PD-L1 
positive GC patients (CPS ⩾ 1) was 40% (197/492), 
which was less than that reported in previous stud-
ies (45.9–71.7%).24,53 This was also noted in the 
HER2 positive GC cohort, with a PD-L1 positivity 
rate of 57.3%.54 This variation across studies may 
be attributable to a variety of factors, including dif-
ferences in populations, differences in the cancer 
stage, prior treatment or the tumor immune micro-
environment (TIME) of patients, sample heteroge-
neity and phenotypic differences, and differences in 
the PD-L1 antibodies used. Additionally, our 
results demonstrated that the PD-L1 expression 
level in older patients was significantly higher than 
that in younger patients. This was in line with a 

previous study,24 but most studies have not shown 
a significant difference between PD-L1 expression 
and age.54,55 To our knowledge, the present study 
assessed PD-L1 distribution in the largest GC 
cohort to date. Further studies on the distribution 
of PD-L1 expression in different populations are 
needed to better guide clinical practice.

In GC, there was a correlation between PD-L1 
expression, TMB and MSI status. In our study, 
both the TMB value and proportion of MSI-H 
patients in the PD-L1 positive group were signifi-
cantly greater than those in the PD-L1 negative 
group, but the correlation between TMB and 
PD-L1 expression disappeared when the MSI-H 
patients were censored. These results were con-
sistent with a previous gastroesophageal adeno-
carcinoma (GEA) study involving GC patients14 
and may provide a reason why PD-L1 positive 
patients are the most likely to benefit from treat-
ment with ICIs.

PI3K pathway alterations may be one of the fac-
tors influencing PD-L1 expression and ICI treat-
ment efficacy in GC patients. The 
phosphatidylinositol 3-kinase (PI3K) signaling 
pathway affects multiple biological functions of 
cancer cells, such as cell growth, proliferation, 
metabolism, and mobility.56 In colorectal cancer 
(CRC) and glioma cells, oncogenic activation of 
the PI3K-AKT pathway can increase PD-L1 
expression,57,58 and this regulation occurs at least 
partially by altering PD-L1 mRNA levels in mela-
noma and triple negative breast cancer cells.52,59,60 
In non-small cell lung cancer, oncogenic activa-
tion of the AKT–mTOR pathway, which is down-
stream of the PI3K pathway, has been confirmed 
to promote immune escape by driving PD-L1 
expression in vivo.61,62 In our study, PI3K path-
way alterations were associated with PD-L1 posi-
tivity (CPS ⩾ 1) in both the GC cohort and SMC 
immunotherapy cohort, better efficacy of ICIs in 
three immunotherapy cohorts (SMC, PUCH, 
and MSK), longer PFS in ICI-treated GC 
patients from both the PUCH and MSK immu-
notherapy cohorts, and longer OS in ICI-treated 
GC patients from the MSK immunotherapy 
cohort. The activity of the PI3K–ATK pathway 
has been associated with antitumor immunity in 
GC, not only in our study but also in a previous 
investigation.63 Nevertheless, a recent study in 
dMMR/MSI-H gastric adenocarcinoma showed 
that patients with a high number of mutated 
genes in the PI3K–AKT–mTOR pathway had a 
worse objective response rate and shorter PFS 
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and OS than patients with a low number of 
mutated genes in the PI3K–AKT–mTOR path-
way.64 We speculate that the reason for this con-
tradiction may be the different subjects of the 
study, as this previous study included only 
dMMR/MSI-H patients, which represent a very 
small fraction of GC patients and may be primi-
tively sensitive to immunotherapy. Our study 
included both dMMR/MSI-H and pMMR/MSS 
GC patients. The value of PI3K pathway altera-
tions for predicting response to GC immunother-
apy is worthy of further validation in a larger 
cohort. In addition, some studies have shown that 
restoration of immune-related signaling, improve-
ment of antigen presentation, increased density of 
tumor-infiltrating immune cells, and promotion 
of immune recognition of tumor cells correlate 
with pharmacological inhibition of the PI3K 
pathway.62,65–67 In summary, this may provide a 
possible explanation for why patients with PI3K 
pathway alterations benefit more from immuno-
therapy, strengthening the rationale for combin-
ing ICIs with agents targeting the PI3K pathway.

The principal limitations of this study are as fol-
lows. First, clinical information, such as prior 
treatments that may affect the PD-L1 CPS, was 
not available for the GC cohort. Second, the low 
number of patients in the validation cohort of 
immunotherapy may affect the confidence of the 
results. However, we evaluated the impact of the 
PD-L1 CPS-related altered pathway on the effi-
cacy of ICIs and prognosis in three separate 
cohorts, which provides additional evidence to 
support our findings. Therefore, the relationship 
of PI3K pathway alterations with the PD-L1 CPS 
and the efficacy of ICIs and prognosis of ICI-
treated patients in a much larger cohort study 
including both PD-L1 CPS and DNA sequenc-
ing data has yet to be validated.

Conclusion
In conclusion, this is the largest study to date 
characterizing PD-L1 distribution and the molec-
ular landscape associated with PD-L1 expression 
in the GC population. Our study highlights that 
PD-L1 expression status is significantly related to 
clinical factors and molecular factors. Among 
them, PI3K pathway alterations are related to 
PD-L1 positivity and correlate with the efficacy of 
ICI therapy and the prognosis of ICI-treated 
patients. Our study provides potential new 
insights into the use of PI3K pathway alteration 
status to select more patients who may benefit 

from ICI therapy and to develop rational immu-
notherapy combination strategies for GC patients.
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