
I. Introduction

The decision-making process is fundamental for healthcare 
facilities struggling to improve healthcare quality. Monitor-
ing activities is the first step in the decision-making process, 
yet it remains a challenge for healthcare facilities, requiring 
maturity of their decision information system where infor-
mation is collected correctly, shared in a timely manner in a 
representative form, and personally adapted to health profes-
sionals’ needs.
 As an emerging data science field to leverage data and to 
translate it into actionable insights, business analytics (BA) 
empowers decision makers with data and supports them 
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to make decisions. BA may be defined as “a broad category 
of applications, technologies, and processes for gathering, 
storing, accessing, and analyzing data to help business users 
make better decisions” [1].
 Three types of BA are employed by organizations: descrip-
tive, predictive, and prescriptive [2,3]. Most healthcare facili-
ties start with descriptive analytics, using data to understand 
past and current healthcare decisions and to make informed 
decisions [4]. Studies of applied descriptive analytics for 
chronic diseases [5], cardiovascular diseases [6], diabetes, 
oncology, elderly care, gynecology, mental health [7], supply 
chain management, and clinical research have shown that 
it can enable the delivery of timely care and cost-saving by 
eliminating inefficiencies.
 The majority of BA users are in developed countries; there-
fore, there is a need for promotion of research on BA in de-
veloping countries [8].
 This study aimed to describe the experience of a low-in-
come healthcare facility in adopting BA where business pro-
cesses were adjusted according to BA insights and to discuss 
implementation challenges in such an environment.

II. Case Description

1. Project Settings
The University Psychiatric Centre Ibn Rochd (CPU) is the 
reference public teaching hospital for mental health in the 
Greater Casablanca region of Morocco with an estimated 
population of 6.812 million citizens in 2014 and a litter ca-
pacity of 104 beds.
 CPU has utilizes an Electronic Medical Record (EMR) 
system in outpatient consultation, which it adopted in 2015. 

Each time a patient has a consultation, the doctor adds 
clinical notes to the patient record in the EMR system and 
a single computerized physician order entry (CPOE) of 
psychiatric drug prescription. However, not all patient visits 
are recorded in the EMR system. The ratio of patients seen 
with and without CPOE was 0.48 (2,200/4,560) in 2016, 2.33 
(5,496/2,358) in 2017, and 1.27 (4,540/3,568) in 2018.
 To monitor this activity, we applied BA techniques to EMR 
data over a 3-year period from Jan 19, 2016 to Dec 31, 2018. 
The monitored key metrics were the following: (1) monthly 
number of consultation represented by the monthly number 
of CPOEs; (2) number and proportion of mental diseases 
represented by the 10th revision of the International Clas-
sification of Diseases (ICD10); (3) number of prescribed 
psychiatric drugs aggregated by family and specialty names; 
(4) monthly number of CPOEs performed by a particular 
physician; (5) number of CPOEs for a particular geolocation 
using patient district geolocation; and (6) monthly averaged 
outpatient care wait time computed by calculating for each 
patient the delay between patient arrival time and CPOE 
time.

2. Business Analytics Techniques
Descriptive business analytics was conducted including three 
steps.

1) Data extraction
It includes three processes namely extraction, transforma-
tion, and load (ETL) to extract EMR data fields using struc-
tured query language queries, to compute new fields, and to 
store fields in a data warehousing server. We used Pentaho 
Data Integration as an ETL graphical tool [9]. Figure 1 shows 

Figure 1.   Pentaho ETL Editor showing 
a drug dimension trans-
formation. ETL: extraction, 
transformation, and load.
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a drug dimension transformation.

2) Data modeling
A data star schema model [10] transforms data fields to a 
dimension data model where the dimension hierarchy and 
measures are defined. Using Pentaho Model Editor, we cre-
ated the data model represented in Figure 2.

3) Data visualization
For representing outcomes, we used Pentaho Report Editor 
included in Pentaho BA Solution [11]. Figure 3 shows the 
graphical interactive reporting editor for creating graphs.

3. Statistical Analysis
Using R statistics version 3.5.3, we describe continuous vari-
ables by mean ± standard deviation, and categorical variables 

by number (%). We applied the Student t-test to compare 
CPOE means of 2 years and ANOVA one-way test to com-
pare multiple outpatient wait care time annual means. A p-
value less than 0.05 was considered statistically significant.

4. Results
1) Acts quantitative assessment
CPU outpatient acts are estimated by the monthly number 
of CPOEs (Figure 4). This number increased significantly (p 
< 0.0001) in 2017 (mean ± SD, 433 ± 66) compared to 2016 
(183 ± 88). However, a significant decrease was noted (p = 
0.028) in 2018 (378 ± 47) compared to 2017.

2) Medico-economic key metrics
Care insights were obtained according to several medico-
economic dimensions, such as socio-demographic factors 

Figure 2.   Pentaho Model Editor show-
ing data modeling.

Figure 3.   Pentaho Report Editor sh-
ow ing drug prescriptions 
per diagnosis.
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(sex, marital status), economic factors (patient health insur-
ance), medical factors (diagnosis, clinical scales, hospital-
ization decision). Figure 5 shows the top five diagnoses ac-
cording to time dimension, and Figure 6 shows the top five 
diagnoses according to gender dimension in 2018.

3) Psychiatric drug needs according to prescription
Monitoring drug prescriptions allows CPU to have a real 
estimation of drug needs. BA Roll UP and Drill Down tech-

niques allow reporting of (1) aggregated measures of drug 
families, drug specialties or (2) detailed information about a 
particular prescribed drug (Figure 7).

4)  Health professional performance monitoring
Physician performance was evaluated by monitoring each 
physician’s monthly number of CPOEs over time. Figure 8 
shows a personal follow-up of one physician whose activity 
drastically improved after the first-year feedback meeting.

5) Outpatient care wait time monitoring
The monthly averaged outpatient care wait time in minutes 
is presented in Figure 9. A significant progressive decrease 
was noted (p < 0.0001) between 2018 (68 ± 49), 2017 (81 ± 
56) and 2016 (93 ± 56).

6) Psychiatric drugs distribution mapping
Using a country-based geographical location database [12], a 
district-based map of prescribed psychiatric drugs weighted 
by patient count was created (Figure 10). Prescribed psy-
chiatric drugs and patient count are graphically correlated 
(green color goes with bigger dots).
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Figure 4.   Monthly CPOE number at the University Psychiatric 
Centre outpatient consultation by year. CPOE: comput-
erized physician order entry.
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Figure 5.   Top five diagnoses by year 
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tion.
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Figure 8.   Monthly number of CPOEs performed by one physician at the University Psychiatric Centre outpatient consultation by year. 
CPOE: computerized physician order entry.
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III. Discussion

In addition to obtaining data-driven quantitative assessment 
of activity, we also adjusted many CPU business processes 
according to BA insights:
 - EMR adoption was enhanced based on CPOE monitor-

ing. The number of CPOEs significantly increased in 
2017 compared to 2016 (Figure 4) due to BA report feed-
back.

 - The significant decrease in the number of CPOEs in 
2018 compared to 2017 (Figure 4) coincided with CPU 
manager (project leader) departure, which spurred the 
new manager to resume efforts to ensure project sustain-
ability.

 - Intern training was adapted to the distribution of mental 
disorders (Figure 5).

 - Drug-need estimation was for the first time data driven 
(Figure 7).

 - Private manager–physician meetings to discuss poor 
CPOE activity in 2016 (Figure 8) drastically impacted 
physician performance in subsequent years.

 - Outpatient care wait time excessive average in May 2016 
(Figure 9) led to better physician leave planning in sub-
sequent years. 

 - The Mental Health League (non-governmental associa-
tion dispensing free psychiatric drugs to patients) used a 
drug-distribution map (Figure 10) to rationalize psychi-

atric drug dispensing.
 Several challenges in BA adoption were encountered in our 
experience:
 - Maturity of strategic needs and business organization: 

Higher investment in technology may not bring more 
returns, rather organizational capability acts as a key 
mediator in value creation [13]. CPU managers are more 
aware of BA strategy plan need to become a data-driven 
facility.

 - Data quality and governance: Underlying data quality 
and semantic interoperability systems adoption are data 
success factors to address in decision-making process 
[14,15]. To tackle data issues, CPU adopts structured 
clinical templates and data repositories along with BA 
fuzzy matching techniques.

 - Quality key metrics issues: It is important to identify 
appropriate metrics to know whether an implemented 
change represents an improvement over existing pro-
cesses [16]. Bringing relevant metrics out of the existing 
EMR system designed only for continuity of care was 
quite challenging in this project.

 - Audit and feedback: Continued auditing and feedback of 
performance has been recognized as critically important 
[4,16]. Annual feedback meetings based on BA reports 
have been a key success factor for project sustainability.

 - Reporting and interpreting results: Reporting should be 
collaborative between health professionals and data sci-

Figure 10.   District-based distribution 
of prescribed psychiatric 
drugs weighted by patient 
count at the University 
Psychiatric Centre outpa-
tient consultation in 2018. 
Dots are bigger according 
to patient count, and dot 
color is green, yellow, or 
red for high, medium, or 
low drug count, respec-
tively.
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entists who know data limits and weaknesses [17]. Col-
laboration between CPU medical staff and medical infor-
matics staff was important for interpreting outcomes.

 - Evaluation of BA adoption impact on healthcare facility: 
BA impact on business performance and business value 
creation implies a multidimensional relationship evalu-
ation model [18]. The relationship between BA and firm 
performance is to a large degree mediated by process 
change capabilities [19]. Project stakeholders positively 
perceive BA impact on business processes and on infor-
mation processing.
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