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Abstract: Quercus acutissima Carruth. is a Chinese important energy plant with high ecological and
economic values. While the species chloroplast genome has been reported, its mitochondrial genome
(mitogenome) is still unexplored. Here, we assembled and annotated the Q. acutissima mitogenome,
and we compared its characteristic differences with several closely related species. The Q. acutissima
mitogenome’s main structure is branched with three distinguished contigs (linear molecule 1, circular
molecule 2, and circular molecule 3) with 448,982 bp total length and 45.72% GC content. The
mitogenome contained 51 genes, including 32 protein-coding, 16 tRNA and 3 rRNA genes. We
examined codon usage, repeated sequences, genome recombination, chloroplast to mitochondrion
DNA transformation, RNA editing, and synteny in the Q. acutissima mitogenome. Phylogenetic
trees based on 29 species mitogenomes clarified the species classification. Our results provided
comprehensive information of Q. acutissima mitogenome, and they are expected to provide valuable
information for Fagaceae evolutionary biology and to promote the species germplasm utilization.

Keywords: Quercus acutissima; mitochondrial genome; repeated sequences; genome recombination;
phylogenetic relationship

1. Introduction

Q. acutissima, Fagaceae, is a deciduous tree and is one of the three members of the East
Asian branch of Quercus [1]. The species is widely distributed in China’s warm temperate
and subtropical regions [2], which is characterized by fast growth, strong sprouting ability,
early fast-growing period, drought resistance, and less strict soil requirements. The species
is suitable for mountainous areas, hills and hillocks, growing mixed with either evergreen
or deciduous trees and often is an upper layer species [3]. Q. acutissima forests have
great production potential and can be used as timber and fuel (i.e., high economic value).
Additionally, the species has high capacity for water and soil conservation, which are
important ecological attributes [4]. The species has high resistance and absorption ability to
sulfur dioxide, chlorine, hydrogen fluoride, and it is more resistant to fire and smoke. It is
suitable for urban landscape, windbreak, fire prevention, and water connotation forests [5].
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The mitochondria are important sites for energy synthesis and conversion for various
cell physiological activities [6,7]. Mitochondria plays a crucial role in plant growth and
development [8] as it converts biomass energy into chemical energy by phosphorylation,
and it is involved in cell division, differentiation, and apoptosis [9–11]. Generally, for
angiosperms, the nuclear genome is bi-parental inherited, while the chloroplasts and
mitochondria, it is uniparentally inherited [12], thus eliminating paternal line influence and
facilitating genetic mechanisms studies [13]. The complex nature of mitogenomes made it
more difficult to assemble compared to other organelles genomes [14], as evident by the
number of released organelles genomes (7427 chloroplast genomes, 449 mitogenomes, and
1120 plastid genomes: https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/,
accessed on 4 May 2022).

Angiosperms mitogenomes vary widely in size and structure, ranging from 66 Kb
(Viscum scurruloideum Barlow) [15] to 11.3 Mb (Silene conica L.) [16] with 19 to 64 [15] known
genes (not including duplicate genes and ORFs), 5 to 25 [15,17] introns, and highly variable
intergenic regions [18]. The conformation of plant mitogenomes is diverse, and most of the
assembled mitogenomes are circular. However, some may be polycyclic, such as maize [19]
and kiwifruit [20], or linear, such as Lactuca sativa L. [21], and some have multi-branched
structures, such as Sitka spruce (Picea sitchensis (Bong.) Carrière) [22] mitogenome.

Q. acutissima is an excellent germplasm material for studying stepped terrain effects
and paleoclimate change on the species evolution, genetic structure, population dynamics,
and distribution history in China on a large spatial scale [23]. The cpDNA sequence-
based analysis showed slightly higher genetic diversity and limited chloroplast gene flow
(seed flow) in the Q. acutissima population [24]. Although the Q. acutissima chloroplast
genome has been reported [25], the mitogenomes is not. Here, we assembled and annotated
Q. acutissima mitogenome. This study aimed to analyze relative synonymous codon usage
(RSCU) and repeated sequences, detect genome recombination, assess gene transfer be-
tween chloroplast and mitochondrial genomes, and RNA editing sites, and explore synteny
and phylogenetic relationships. Our results are expected to provide a theoretical basis for
species identification and biological research, they are of great significance for exploring
the species origin and its evolutionary relationship, and they are expected to promote
molecular systematics and conservation genetics research and applications.

2. Materials and Methods
2.1. Plant Materials and Sequencing

In May 2021, live Q. acutissima leaves were collected from the Aishan National For-
est Park, Songshan street, Qixia City, Shandong Province (N 37◦2′51′′ E 120◦47′33′′).
Plant specimens (barcode number sdf1001223) and total genomic DNA were stored in
Shandong Provincial Center of Forest and Grass Germplasm Resources (Biao Han, han-
biao3361@shandong.cn, code htq2021cp10), and we obtained total DNA according to the
steps of the Blood/Cell/Tissue Genomic DNA Extraction Kit (TIANamp Genoic DNA
Kit) of Tiangen company. We used both the Nanopore GridION sequencing platform
(Oxford Nanopore Technology, Oxford Science Park) and Illumina Novaseq 6000 platform
to sequence and construct the library, obtaining raw sequence data (Nanopore raw data
were 14.79 Gb, N50 were 9816 bp and Illumina raw data were 10.56 Gb).

2.2. Genome Assembly and Annotation

We assembled the Q. acutissima mitogenome using a combined strategy of Illumina and
Nanopore. The second-generation DNA sequencing data were assembled using the default
parameters of GetOrganelle v1.7.5 [26] to obtain a graphical mitogenome. The mitogenome
was visualized using Bandage [27], and the single extended fragments of chloroplast and
nuclear genome were manually removed. Then, the Nanopore data were aligned to the
graphed mitogenome fragments using bwa software [28], and the resulting Nanopore
data were used to resolve the repeated sequence regions of the graphed mitogenome. The
final result is a branched multigenomeric structure. Arabidopsis thaliana (L.) Heynh. was
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selected as the reference genome for protein-coding genes (PCGs) of mitogenome, and
Geseq [29] was used to annotate the mitogenome. The tRNA and rRNA of mitogenome
were annotated using tRNAscan-SE [30] and BLASTN [31], respectively. Mitogenome
annotation errors were manually corrected using Apollo [32]. The annotated mitogenome
has been deposited into GenBank under accession number MZ636519.

2.3. Analysis of RSCU and Repeated Sequences

The protein-coding sequences of the genome were extracted using Phylosuite [33].
Mega 7.0 [34] was used to conduct codon preference analysis for PCGs of mitogenome
and calculate RSCU values. MISA (https://webblast.ipk-gatersleben.de/misa/, accessed
on 30 April 2022) [35], TRF (https://tandem.bu.edu/trf/trf.unix.help.html, accessed on
30 April 2022) [36], and REPuter web server (https://bibiserv.cebitec.uni-bielefeld.de/
reputer/, accessed on 30 April 2022) [37] identified repeated sequences including simple
sequence repeat (SSR), tandem repeat and interspersed repeat. The results were visualized
using the Circos package [38].

2.4. Detection of Genome Recombination

BLASTN [31] was used to detect the repeated sequences in the Q. acutissima mi-
togenome, and a total of 160 results were obtained. Subsequently, 87 pairs of repeated
sequences were obtained after manual exclusion. Then, two repeat units of the repeated
sequences and their flanking 1000 bp regions were extracted as the primary conformation.
Afterwards, the 1000 bp region upstream and downstream of the repeat unit was exchanged
to artificially simulate the secondary conformation that could result from recombination.
Finally, the three-generation data were mapped to these sequences of major and minor
conformations, and by counting the number of long reads that completely span the repeated
sequences, we determine whether there is a recombination of the genome.

2.5. Chloroplast to Mitochondrion DNA Transformation and RNA Editing Prediction

The chloroplast genome was assembled and annotated using GetOrganelle [26] and
CPGAVAS2 [39], respectively. Homologous fragments were analyzed using BLASTN [31],
and the results were visualized using the Circos package [38]. The prediction of RNA
editing events was based on the online website PREP suit (http://prep.unl.edu/, accessed
on 5 May 2022) [40].

2.6. Synteny and Phylogenetic Analysis

A dot plot of pairwise comparison was generated and plotted conserved co-linear
blocks. Based on sequence similarity, a Multiple Synteny Plot of the Q. acutissima mi-
togenome with closely related species was plotted using MCscanX [41]. The mitogenome
of closely related species were selected and downloaded (https://www.ncbi.nlm.nih.gov/,
accessed on 5 May 2022) based on their affinity, and then, PhyloSuite [33] was used to
extract shared genes. MAFFT [42] with a bootstrap value of 1000 was used for multiple
sequence alignment analysis, and MRBAYES [43] was used for phylogenetic analysis. The
results of the phylogenetic analysis were visualized in ITOL software [44].

3. Results
3.1. Q. acutissima Mitogenome Features

The main structure of the Q. acutissima mitogenome is branched, and after excluding
duplicated regions from the Nanopore data, we obtained three contigs (molecules 1–3)
with 448,982 bp total length and 45.72% GC content (Figure 1). The lengths of linear
molecule 1, circular molecule 2, and circular molecule 3 were 224,233, 188,259, and 36,490 bp,
respectively, and the GC contents were 45.88, 45.68, and 44.98%, respectively (Figure 2).

https://webblast.ipk-gatersleben.de/misa/
https://tandem.bu.edu/trf/trf.unix.help.html
https://bibiserv.cebitec.uni-bielefeld.de/reputer/
https://bibiserv.cebitec.uni-bielefeld.de/reputer/
http://prep.unl.edu/
https://www.ncbi.nlm.nih.gov/
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The Q. acutissima mitogenome was annotated with 32 PCGs (including 24 unique
mitochondrial core and 8 non-core genes), 16 tRNA genes (trnE-UUC, trnM-CAU, and
trnP-UGG are multi-copy), and 3 rRNA genes (Table S1). Among the 32 PCGs, 10 contained
introns (rpl2, cox2, nad1, rps3, ccmFC, rps10 and nad5 had a single intron, nad4 contained
three introns, nad2 and nad7 had four introns), while two genes (nad1 and nad5) were
trans-spliced. The core genes include five ATP synthase genes (atp1, atp4, atp6, atp8, and
atp9), nine NADH dehydrogenase genes (nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7,
and nad9), four ubiquinol cytochrome c reductase genes (ccmB, ccmC, ccmFc, and ccmFn),
three cytochrome c oxidase genes (cox1, cox2, and cox3), one transport membrane protein
gene (mttB), one maturases gene (matR), and one cytochrome c biogenesis gene (cob). Non-
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core genes include three large subunit of ribosome genes (rpl2, rpl5, and rpl10), four small
subunit of ribosome genes (rps3, rps4, rps10, and rps12), and one succinate dehydrogenase
gene (sdh3).

3.2. PCGs Codon Usage Analysis

The codon usage analysis of 32 PCGs was performed, and the codon usage of each
amino acid is shown in Table S2. Codons (RSCU > 1) were considered to be used preferen-
tially by amino acids. As shown in Figure 3, in addition to the RSCU values of 1 for both
the start codon AUG (Met) and UGG (Trp), there is also a general codon usage preference
for the mitochondrial PCGs. GCU (Ala), UAU (Tyr), and CAU (His) were the three most
frequent codons in Q. acutissima.
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3.3. Q. acutissima Mitogenome Repeats Analysis

A total of 3, 79, 68, and 11 SSRs were found in molecule 1, 2, and 3, respectively
(Figure 4), and SSRs in monomeric and dimeric forms accounted for 41.77, 44.12, and
72.73% of the total SSRs, respectively. In molecule 1, thymine (T) monomeric repeats
accounted for 52.94 % (9) of the 17 monomeric SSRs, TA repeats accounted for 31.25 % of
the dimeric SSRs, and there were no hexameric SSRs. In addition, there were 12 tandem
repeats with a match greater than 67% and length between 13 and 22 bp, and 58 pairs
of interspersed repeats with length greater than or equal to 30 were observed, including
30 pairs of direct repeats (the longest being 216 bp) and 28 pairs of palindromic repeats. In
molecule 2, thymine (T) monomeric repeats accounted for 43.75% (7) of the 16 monomeric
SSRs, AT repeats accounted for 35.71% of the dimeric SSRs, and there were no hexameric
SSRs. In addition, there were 16 tandem repeats with matches greater than 70% and lengths
between 13 and 30 bp, and a total of 65 pairs of interspersed repeats with lengths greater
than or equal to 30 were observed, including 48 pairs of direct repeats (the longest being
112 bp) and 17 pairs of palindromic repeats. In molecule 3, adenine (A) monomeric repeats
accounted for 60.00% (3) of the 5 monomeric SSRs, and there were no trimeric, pentameric
or hexameric SSRs. In addition, there were three tandem repeats with a match greater
than 81% and a length between 18 and 22 bp, and a total of seven pairs of interspersed
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repeats with a length greater than or equal to 30 were observed, including four pairs of
direct repeats (the longest being 35 bp) and three pairs of palindromic repeats.
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3.4. Detection of Genome Recombination

There are not many repeated sequences in the Q. acutissima mitogenome, most of
which are short in length, and no evidence of recombination was detected. However,
evidence of recombination was detected for two pairs of longer repeats (Table 1). The
length of the repeated sequence R1 is 10,578 bp; due to the limited length of ONT data, only
19 and eight long reads were detected to support the primary and secondary conformations,
respectively. The two units of R1 are located on the molecule 1 (Figure 5), which allows the
region between the two repeat units to be inverted. Another pair of repeated sequences R2
is 1679 bp in length, and due to the relatively short length, 224 and 182 long reads were
detected to support the primary and secondary conformations, respectively. This indicates a
high frequency of recombination occurring in this region. The R2 can mediate the formation
of independent circular molecule 3 or integration of molecule 3 onto molecule1, but the
proportion of the former is higher.

Table 1. Recombination frequency of the Q. acutissima mitogenome related to two long repeats.

Repeat Length
(bp) Location Reads Support

Major Conformation

Reads Support
Alternative

Conformation

R1 10,578
molecule 1: 35,975–25,398

19 8molecule 1: 66,867–77,444

R2 1679
molecule 1: 68,252–66,574

224 182molecule 2: 34,939–36,490;
1–127

3.5. Chloroplast to Mitochondrion DNA Transformation

According to the sequence similarity analysis, a total of 23 fragments were homologous
to the mitogenome and chloroplast genome, with a total length of 15,688 bp, accounting for
3.49% of the total length of the mitogenome (Figure 6, Table 2). Among them, four fragments
exceeded 1000 bp, with fragments 1 and 2 being the longest at 4760 bp. By annotating
these homologous sequences, 13 complete genes were identified, including 2 PCGs (petL,
petG), 10 tRNA genes (trnV-GAC, trnI-GAU, trnA-UGC, trnD-GUC, trnM-CAU, trnI-CAU,
trnW-CCA, trnP-UGG, trnN-GUU, trnH-GUG), and 1 rRNA gene (rrn16S).
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Table 2. Fragments transferred from chloroplasts to mitochondria in Q. acutissima.

Alignment
Length Identity% Mis-match Gap Openings CP Start CP End Mt Start Mt End MTPT Annotation

1 4760 99.979 1 0 106,031 110,790 98,643 93,884 Complete (trnV-GAC, rrn16S, trnI-GAU,
trnA-UGC), Partial (rrn23S)

2 4760 99.979 1 0 140,802 145,561 93,884 98,643 Partial (rrn23S), Complete (trnA-UGC, trnI-GAU,
rrn16S, trnV-GAC)

3 354 97.74 8 0 620 973 26,955 26,602 Partial (psbA)
4 354 97.74 8 0 620 973 75,887 76,240 Partial (psbA)
5 127 100 0 0 108,462 108,588 224,233 224,107 Partial (trnI-GAU)
6 127 100 0 0 143,004 143,130 224,107 224,233 Partial (trnI-GAU)
7 77 98.701 1 0 33,701 33,777 133,648 133,724 Complete (trnD-GUC)
8 75 94.667 4 0 57,523 57,597 83,943 84,017 Complete (trnM-CAU)
9 77 89.61 6 2 159,056 159,130 127,587 127,511 Complete (trnI-CAU)
10 77 89.61 6 2 92,462 92,536 127,511 127,587 Complete (trnI-CAU)
11 28 100 0 0 1015 1042 26,579 26,606 Partial (psbA)
12 28 100 0 0 1015 1042 76,263 76,236 Partial (psbA)
13 1149 99.739 3 0 37,300 38,448 140,389 139,241 Partial (psbD, psbC)
14 1017 77.778 150 46 71,581 72,585 141,644 142,596 Complete (petL, petG, trnW-CCA, trnP-UGG)
15 495 83.03 73 8 70,186 70,678 140,403 140,888 Partial (psbE)
16 889 73.903 177 42 106,819 107,682 76,204 75,346 Partial (rrn16S)
17 889 73.903 177 42 143,910 144,773 75,346 76,204 Partial (rrn16S)
18 83 98.795 1 0 136,687 136,769 157,954 157,872 Complete (trnN-GUU)
19 83 98.795 1 0 114,823 114,905 157,872 157,954 Complete (trnN-GUU)
20 55 96.364 2 0 143,130 143,184 8165 8111 Partial (trnI-GAU)
21 55 96.364 2 0 108,408 108,462 8111 8165 Partial (trnI-GAU)
22 38 100 0 0 13,356 13,393 49,527 49,490 Partial (atpA)
23 91 96.703 2 1 14 103 31,975 31,885 Complete (trnH-GUG)

Total 15,688
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3.6. The Prediction of RNA Editing

A total of 466 potential RNA editing sites were identified on 32 mitochondrial PCGs
based on the online website PREP suit for the prediction of RNA editing events at a cutoff
value = 0.2 criterion, all of which were C-T(U) edits (Figure 7). The predicted RNA editing
sites in each gene are shown in Figure 7. On the mitochondrial genes, 38 RNA editing sites
were identified for both ccmFN and nad4 genes, which were the most among all genes. The
next highest number was 32 for ccmB.
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3.7. Synteny and Phylogenetic Analysis

As shown in Figure 8, a positive repeat sequence of approximately 10 kb in length was
identified in the Q. acutissima mitogenome by dot-plot analysis. The largest co-linear blocks
of nearly 20 kb were identified in the dot plot with Fagus sylvatica L., and larger co-linear
blocks were identified in the dot plot with Juglans mandshurica Maxim. and A. thaliana, but
they were smaller than 20 kb. A large number of homologous co-linear blocks were detected
between Q. acutissima and the closely related species (Figure 9). The results indicate that
the co-linear blocks are not arranged in the same order among individual mitogenomes;
that is, the Q. acutissima mitogenome has undergone extensive genomic rearrangements
with closely related species, and the mitogenomes is extremely unconserved in structure.

Due to the genome’s low substitution rate, mitochondrial genes are a valuable source
of information for phylogenetic analysis at a high taxonomic level [45]. In order to deter-
mine the phylogenetic position of Q. acutissima, we used the mitogenome sequences of
29 angiosperm species from GenBank based on the sequences of 14 conserved mitochon-
drial PCGs to construct a phylogenetic tree, with A. thaliana as the outgroup (Figure 10).
Based on a relatively high support rate and in line with the latest classification of APG
(Angiosperm Phylogeny Group), Q. acutissima belonged to the family Fagaceae of the order
Fagales and is closely related to F. sylvatica.
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Figure 9. Mitogenome synteny. Bars indicated the mitogenomes, and the ribbons showed the
homologous sequences between the adjacent species. The red areas indicate where the inversion
occurred, the gray areas indicate regions of good homology. Common blocks less than 0.5 kb in
length are not retained, and regions that fail to have a common block indicate that they are unique to
the species. A. thaliana was also compared.
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4. Discussion

Mitochondria are important organelles in eukaryotic cells, providing energy for vari-
ous cells physiological activities. In fact, plant mitogenomes are more complex than those
of animals, with extensive size variation, sequence alignment, repetitive content, and highly
conserved coding sequences [12,21], and many mitogenome sequences of plants have been
reported [46–48]. Although plant mitogenomes are often assembled and displayed as
circular maps, plant mitochondrial DNA does, most likely, not exist as one large circular
DNA molecule but mostly as a complex and dynamic collection of linear DNA with com-
binations of smaller circular and branched DNA molecules [21,49–52]. In the entire order
of the Fagales, the assembled mitogenome sequences of three species have been made
public: Quercus variabilis Blume (GenBank MN199236, unverified) [53], Betula pendula Roth.
(GenBank LT855379.1, not annotated) [54], and F. sylvatica (GenBank NC050960.1) [55]. The
total Q. acutissima mitogenome length of 448,982 bp is between the Q. variabilis (same family,
same genus) (412,886 bp) and the F. sylvatica (same family, different genus) (504,715 bp),
while B. pendula (same order, different family) is the longest (581,505 bp). The GC content is
an important factor in the assessment of species [56], the GC content of the Q. acutissima
mitogenome was 45.72%, which was close to the GC content of the Q. variabilis mitogenome
(45.76%) and F. sylvatica mitogenome (45.8%). The F. sylvatica mitogenome may fit best in a
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circular display, which is not corresponding to the physical structure of the genome in vivo,
where it is more likely to exist in different conformations [55]. In the present study, the
Q. acutissima mitogenome is a branched structure of two circular molecules and one linear
molecule; however, the coexistence of these molecules needs to be further investigated.

There are 64 codons in the eukaryotic genome, and there is a wide variation in the
rate of genomic codon usage among different species and organisms. This preference is
thought to be the result of a relative equilibrium that gradually develops within the cell
over a long period of evolutionary selection. In Q. acutissima, most PCGs were the typical
ATG start codon, and the distribution of amino acid compositions was similar to other
angiosperms [57,58].

Repeated sequences are widely present in the mitogenome and can be divided into
two main categories: tandem and interspersed repeats [59]. Repeated sequences in the
mitogenome are often critical for intermolecular recombination, and in general, the largest
repeats within a species (usually more than about 1 kb in angiosperms) have been found
to recombine constitutively, leading to isomerization [51,60]. The longest interspersed
repeat sequence in the Q. acutissima mitogenome exceeded 1 kb (10,578 bp in size) and
may be responsible for heterodimerization. In comparison, the longest repeat sequence of
Q. variabilis mitogenome is 17.3 kb in size, the longest F. sylvatica repeat is 918 bp, while the
longest repeat existed in B. pendula is only 474 bp.

Homologous recombination mediated by repeats is almost universal in plant mi-
togenomes [61,62]. It has been reported that the size of the repeats is closely related
to the frequency of recombination [63]; namely, the frequency of recombination medi-
ated by short repeats tends to be lower than that mediated by long repeats. For exam-
ple, in Nymphaea colorata Peter [64], Scutellaria tsinyunensis C. Y. Wu et S. Chow [65] and
Abelmoschus esculentus (L.) Moench [66], the long repeats had high recombination frequen-
cies, and the short repeats had lower recombination frequencies; all of the repeats identified
in the Prunus salicina Lindl. [67] mitogenome were short repeats, and they all had low
recombination frequency. In the Q. acutissima mitogenome, we found two pairs of long re-
peats that also had a high frequency of recombination, but some potential repeats involved
in recombination have not been discovered.

During mitochondrial evolution, some chloroplast fragments migrate into the mi-
togenome, and the length and sequence similarity of the migrated fragments vary between
species [12]. We found 23 fragments that were homologous to the chloroplast genome and
mitogenome, with a total of 13 complete, 2 PCGs, 10 tRNA, and 1 rRNA genes. The transfer
of tRNA genes from chloroplasts to mitochondria is common in angiosperms [68].

In plants, RNA editing is required for gene expression, and cytidine (C)-to-uridine (U)
RNA editing is enriched in mitochondrial and chloroplast genomes [56]. Studying RNA
editing sites helps to understand the expression of mitochondrial and chloroplast genes
in plants. Previous research had uncovered approximately 491 RNA editing sites within
34 genes in Oryza sativa L. [48], 486 within 31 genes in Phaseolus vulgaris L. [14], and 421
within 26 genes in Acer truncatum Bunge [56]. In this study, 466 RNA editing sites were
identified in 32 PCGs based on online site prediction, all of which exhibited C-U RNA
editing. The number of RNA editing sites varied greatly among genes, but the largest
numbers of cytochrome c biogenesis and NADH dehydrogenase genes were similar to
those of A. truncatum and P. vulgaris. The identification of RNA editing sites provides clues
to predicting the gene function of new codons.

The covariance study is the arrangement of homologous genes or sequences, and
the results showed that a large number of homologous covariance blocks were detected
between Q. acutissima and F. sylvatica, J. mandshurica and A. thaliana, among which the
largest covariance block with F. sylvatica was nearly 20 kb, while the larger covariance
blocks with J. mandshurica and A. thaliana were less than 20 kb. The inconsistent order of
the co-linear blocks’ arrangement suggests that Q. acutissima mitogenome has undergone
extensive genomic rearrangements from them and is extremely unconserved in structure,
which should be the main reason for the evolution and diversification of Q. acutissima
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mitogenome. The Q. acutissima chloroplast genome was shown to be more conservative
with similar characteristics to other genus Quercus species, and analysis of the phylogenetic
relationships was found Q. acutissima to be closely related to Q. variabilis [25]. In this study,
we further analyzed the phylogenetic relationships of Q. acutissima based on mitochondrial
genomic information and constructed a sequence phylogenetic tree using PCGs. The results
indicated that the affinity between Q. acutissima and F. sylvatica is closer.

5. Conclusions

Here, we assembled and annotated the Q. acutissima mitogenome and performed
extensive analyses based on DNA and amino acid sequences of annotated genes. The
total length of Q. acutissima mitogenome is 448,982 bp, with 45.72% GC content. The
mitogenome main structure is branched, including linear molecule 1, circular molecule
2, and circular molecule 3, but whether these molecules coexist needs further study. We
annotated 32 PCGs, including 24 unique mitochondrial core and 8 non-core, 16 tRNA, and
3 rRNA genes. Additionally, the codon usage, repeated sequences, genome recombination,
chloroplast to mitochondrion DNA transformation, RNA editing, and synteny were also
analyzed. Phylogenetic trees based on the mitogenomes of 29 species contributed to the
scientific classification of Q. acutissima. This study provided information on the genetic
characteristics, phylogenetic relationships, and evolution of Q. acutissima as well as serves
as a basis for species identification and biological research in Fagaceae.
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www.mdpi.com/article/10.3390/genes13081321/s1, Table S1: Gene composition in the Q. acutissima
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Author Contributions: D.L. and H.G. contributed equally to this work. Conceptualization, Methodol-
ogy, Writing—Original Draft Preparation: D.L. and H.G.; Data Analysis: J.Z., Y.C. and Y.G.; Resource
Investigation: K.Q., P.D., H.Y. and T.X., Sample collection: Q.J. and S.H.; Writing—Review and
Editing: W.L. and B.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Q. variabilis Excellent Germplasm Resources Collection
and Breeding Technology Research (No. CAFYBB2018ZB001-11), the Biosafety and Genetic Resources
Management Project of State Forestry and Grassland Administration “Collection and arrangement of
genetic resources and genetic diversity evaluation of Q. acutissima (No. KJZXSA202111)”, the Subject
of Key R & D Plan of Shandong Province (Major Scientific and Technological Innovation Project)
“Mining and Accurate Identification of Forest Tree Germplasm Resources (No. 2021LZGC023)”,
and Project of National Forest Germplasm Resources Sharing Service Platform Construction and
Operation (No. 2005-DKA21003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: GenBank Accession Nos. MZ636519.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Zhang, H. Study on Population Genetics and Demographic History of the Three Closely Related Species of Section Aegilops Occurred in

China; Northwest University: Xi’an, China, 2018.
2. Zhang, X.; Li, Y.; Fang, Y. Geographical Distribution and Prediction of Potential Ranges of Quercus acutissima in China. Acta Bot.

Boreali-Occident. Sin. 2014, 34, 1685–1692.
3. Ge, L.; Cheng, X.; Duan, X.; Yu, M.; Liu, Z. Effects of fertilization on the carbon density of sawtooth oak plantations and the soil

respi-ration in dormant period. Chin. J. Ecol. 2012, 31, 248–253.
4. Li, Y. Genetic Structure and Evolutionary History of Chinese Oak Species in Quercus Section Cerris; Nanjing Forestry University:

Nanjing, China, 2019.

https://www.mdpi.com/article/10.3390/genes13081321/s1
https://www.mdpi.com/article/10.3390/genes13081321/s1


Genes 2022, 13, 1321 14 of 16

5. Tan, Z.Y.; Tang, H.F. Cultivation technology of native species of Quercus acutissima. For. Ecol. 2022, 1, 38–39.
6. Ye, N.; Wang, X.; Li, J.; Bi, C.; Xu, Y.; Wu, D.; Ye, Q. Assembly and comparative analysis of complete mitochondrial genome

sequence of an economic plant Salix suchowensis. PeerJ 2017, 5, e3148. [CrossRef] [PubMed]
7. Birky, C.W. Uniparental inheritance of mitochondrial and chloroplast genes: Mechanisms and evolution. Proc. Natl. Acad. Sci.

USA 1995, 92, 11331–11338. [CrossRef] [PubMed]
8. Ogihara, Y.; Yamazaki, Y.; Murai, K.; Kanno, A.; Terachi, T.; Shiina, T.; Miyashita, N.; Nasuda, S.; Nakamura, C.; Mori, N.; et al.

Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial
genome. Nucleic Acids Res. 2005, 33, 6235–6250. [CrossRef] [PubMed]

9. Kroemer, G.; Reed, J.C. Mitochondrial control of cell death. Nat. Med. 2000, 6, 513–519. [CrossRef] [PubMed]
10. van Loo, G.; Saelens, X.; van Gurp, M.; MacFarlane, M.; Martin, S.J.; Vandenabeele, P. The role of mitochondrial factors in

apoptosis: A Russian roulette with more than one bullet. Cell Death Differ. 2002, 9, 1031–1042. [CrossRef]
11. Bonora, M.; De Marchi, E.; Patergnani, S.; Suski, J.M.; Celsi, F.; Bononi, A.; Giorgi, C.; Marchi, S.; Rimessi, A.; Duszynski, J.; et al.

Tumor necrosis factor-α impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death Differ.
2014, 21, 1198–1208. [CrossRef]

12. Cheng, Y.; He, X.; Priyadarshani, S.V.G.N.; Wang, Y.; Ye, L.; Shi, C.; Ye, K.; Zhou, Q.; Luo, Z.; Deng, F.; et al. Assembly and
comparative analysis of the complete mitogenomes of Suaeda Glauca. BMC Genom. 2021, 22, 167. [CrossRef]

13. Wallace, D.C.; Singh, G.; Lott, M.T.; Hodge, J.A.; Schurr, T.G.; Lezza, A.M.S.; Elsas II, L.J.; Nikoskelainen, E.K. Mitochondrial DNA
mutation associated with Leber’s hereditary optic neuropathy. Science 1988, 242, 1427–1430. [CrossRef] [PubMed]

14. Bi, C.; Lu, N.; Xu, Y.; He, C.; Lu, Z. Characterization and Analysis of the Mitochondrial Genome of Common Bean
(Phaseolus vulgaris) by Comparative Genomic Approaches. Int. J. Mol. Sci. 2020, 21, 3778. [CrossRef] [PubMed]

15. Skippington, E.; Barkman, T.J.; Rice, D.W.; Palmer, J.D. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum
is extremely divergent and dynamic and has lost all nad genes. Proc. Natl. Acad. Sci. USA 2015, 112, E3515–E3524. [CrossRef]
[PubMed]

16. Sloan, D.B.; Alverson, A.J.; Chuckalovcak, J.P.; Wu, M.; McCauley, D.E.; Palmer, J.D.; Taylor, D.R. Rapid Evolution of Enormous,
Multichromosomal Genomes in Flowering Plant Mitochondria with Exceptionally High Mutation Rates. PLoS Biol. 2012,
10, e1001241. [CrossRef] [PubMed]

17. Mower, J.P.; Sloan, D.B.; Alverson, A.J. Plant Mitochondrial Genome Diversity: The Genomics Revolution; Springer: Heidelberg,
Austria, 2012; Volume 1, pp. 123–144.

18. Burger, G.; Gray, M.W.; Franz Lang, B. Mitochondrial genomes: Anything goes. Trends Genet. 2003, 19, 709–716. [CrossRef]
[PubMed]

19. Christiane, F.; Mark, C.; Yan, G.; Barry, M. The maize mitochondrial genome: Dynamic, yet functional. Trends Genet. 1995, 11,
228–235.

20. Wang, S.B.; Li, D.W.; Yao, X.H.; Song, Q.W.; Wang, Z.P.; Zhang, Q.; Zhong, C.; Liu, Y.; Huang, H. Evolution and diversification of
kiwifruit mitogenomes through extensive whole-genome rearrangement and mosaic loss of intergenic sequences in a highly
variable region. Genome Biol. Evol. 2019, 11, 1192–1206. [CrossRef]

21. Kozik, A.; Rowan, B.A.; Lavelle, D.; Berke, L.; Schranz, M.E.; Michelmore, R.W.; Christensen, A.C. The alternative reality of plant
mitochondrial DNA: One ring does not rule them all. PLOS Genet. 2019, 15, e1008373. [CrossRef]

22. Jackman, S.D.; Lauren, C.; Warren, R.L.; Heather, K.; Eva, T.; MacLeod, T.; Pleasance, S.; Pandoh, P.; Zhao, Y.; Coope, R.J.; et al.
Complete mitochondrial genome of a gymnosperm, Sitka spruce (Picea sitchensis), indicates a complex physical structure. Genome
Biol. Evol. 2020, 12, 1174–1179. [CrossRef]

23. Petit, R.J.; Csaikl, U.M.; Bordacs, S.; Burg, K.; Coart, E.; Cottrell, J.; Dam, B.; Deans, J.D.; Dumolin-Lapegue, S.; Fineschi, S.; et al.
Corrigendum to “Chloroplast DNA variation in European white oaks phylogeography and patterns of diversity based on data
from over 2600 populations”. For. Ecol. Manag. 2003, 176, 595–599. [CrossRef]

24. Meng, X. Study on Phylogeography and Population Genetics Structure in Quercus Acutissima Carr; Northwest University: Xi’an,
China, 2017.

25. Li, X.; Li, Y.; Zang, M.; Li, M.; Fang, Y. Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus acutissima.
Int. J. Mol. Sci. 2018, 19, 2443. [CrossRef] [PubMed]

26. Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; dePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de
novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [CrossRef] [PubMed]

27. Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics
2015, 31, 3350–3352. [CrossRef] [PubMed]

28. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef] [PubMed]

29. Michael, T.; Pascal, L.; Tommaso, P.; Elena, S.U.J.; Axel, F.; Ralph, B.; Stephan, G. GeSeq-versatile and accurate annotation of
organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11.

30. Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic
Acids Res. 1997, 25, 955–964. [CrossRef]

31. Chen, Y.; Ye, W.; Zhang, Y.; Xu, Y. High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Res. 2015, 43,
7762–7768. [CrossRef]

http://doi.org/10.7717/peerj.3148
http://www.ncbi.nlm.nih.gov/pubmed/28367378
http://doi.org/10.1073/pnas.92.25.11331
http://www.ncbi.nlm.nih.gov/pubmed/8524780
http://doi.org/10.1093/nar/gki925
http://www.ncbi.nlm.nih.gov/pubmed/16260473
http://doi.org/10.1038/74994
http://www.ncbi.nlm.nih.gov/pubmed/10802706
http://doi.org/10.1038/sj.cdd.4401088
http://doi.org/10.1038/cdd.2014.35
http://doi.org/10.1186/s12864-021-07490-9
http://doi.org/10.1126/science.3201231
http://www.ncbi.nlm.nih.gov/pubmed/3201231
http://doi.org/10.3390/ijms21113778
http://www.ncbi.nlm.nih.gov/pubmed/32471098
http://doi.org/10.1073/pnas.1504491112
http://www.ncbi.nlm.nih.gov/pubmed/26100885
http://doi.org/10.1371/journal.pbio.1001241
http://www.ncbi.nlm.nih.gov/pubmed/22272183
http://doi.org/10.1016/j.tig.2003.10.012
http://www.ncbi.nlm.nih.gov/pubmed/14642752
http://doi.org/10.1093/gbe/evz063
http://doi.org/10.1371/journal.pgen.1008373
http://doi.org/10.1093/gbe/evaa108
http://doi.org/10.1016/S0378-1127(02)00558-3
http://doi.org/10.3390/ijms19082443
http://www.ncbi.nlm.nih.gov/pubmed/30126202
http://doi.org/10.1186/s13059-020-02154-5
http://www.ncbi.nlm.nih.gov/pubmed/32912315
http://doi.org/10.1093/bioinformatics/btv383
http://www.ncbi.nlm.nih.gov/pubmed/26099265
http://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://doi.org/10.1093/nar/25.5.955
http://doi.org/10.1093/nar/gkv784


Genes 2022, 13, 1321 15 of 16

32. Lewis, S.E.; Searle, S.; Harris, N.; Gibson, M.; Iyer, V.; Richter, J.; Wiel, C.; Bayraktaroglu, L.; Birney, E.; Crosby, M.A. Apollo:
A sequence annotation editor. Genome Biol. 2002, 3, research0082. [CrossRef]
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