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Abstract: This paper introduces a new methodology for estimating the wind profile within the ABL
(Atmospheric Boundary Layer) using a neural network and a single-point near-ground measurement.
An important advantage of this solution when compared with others available in the literature is
that it only requires near surface measurements for the prognosis once the neural network is trained.
Another advantage is that it can be used to study the wind profile temporal evolution. This work
uses data collected by a lidar sensor located at the Universidad de León (Spain). The neural network
best configuration was determined using sensibility analyses. The result is a multilayer perceptron
with three layers for each altitude: the input layer has six nodes for the last three measurements,
the second has 128 nodes and the third consists of two nodes that provide u and v. The proposed
method has better performance than traditional methods. The obtained wind profile information
obtained is useful for multiple applications, such as preliminary calculations of the wind resource or
CFD models.

Keywords: neural network; wind vertical profile; lidar; atmospheric boundary layer

1. Introduction

The atmospheric boundary layer (ABL) is the region of the atmosphere that defines
the transition between the upper geostrophic winds and the static air layers in contact with
the earth’s surface. Most human activities take place in this region, thus our knowledge
and understanding of the ABL is critical for many important applications. Some of them
can be found in wind energy predictions [1,2], the construction and insurance industries [3],
simulations of pollutant and toxic gas release [4,5], and even Air Traffic Management (ATM)
automation [6,7]. Although these activities could be influenced by different atmospheric
parameters, wind speed and direction are the most critical ones and have attracted most of
the attention. However, measuring and/or predicting them is not an easy task.

When a precise knowledge of the vertical wind speed profile is needed, in-situ
measurement procedures are required. There is a broad range of available technolo-
gies (from well-known meteorological towers or light detection and ranging—lidar [8]—
to non-conventional techniques like bubble tracking [9,10]) with different capabilities
and limitations.

Thus, different research efforts have been made to produce accurate and reliable
ABL wind profiles avoiding the need of complex and expensive measurement systems.
Among the different studies, two main approaches can be found: physical and statisti-
cal. The former methods use atmospheric weather prediction models [11,12] while the
latter methods rely on linear time-series models [13,14], wavelet transforms [15], artifi-
cial neural networks [16,17] or hybrid methods [18,19] that unify the several techniques
previously mentioned.

However, none of the approaches presented until now is totally satisfactory, as most
of the times the vertical profile has not been studied or, when it is considered, its tem-
poral evolution is not addressed [20,21]. This paper presents a novel methodology for
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the prognosis of complete ABL wind profiles that only requires a limited set of surface
observations. The proposed approach comprises the use of a neural network that will be
trained with 60 days of lidar wind profile measurements (wind speed and direction). Lidar
sensors offer unique advantages for wind profiling [22] and are the preferred solution for
high-end applications. Nevertheless, they are really expensive instruments that make them
unaffordable for most applications. This is especially true when considering that wind
profiles are highly site-dependent thus, the characterization of the ABL over a certain area
(e.g., for the construction of a wind farm) would require the installation of multiple lidar
stations at several different locations.

This paper presents a more economical alternative. As it will be detailed, the devel-
oped neural network only requires 60 (non-consecutive) training days of profile measure-
ments per year and location. Such a model makes it possible to monitor up to 6 different
locations during a year with a single lidar station. Once the neural network has been
trained for a certain location, the lidar can be replaced by a cheaper instrument that takes
local wind measurements (e.g., ultrasonic anemometers which are 50 times cheaper). The
neural network will then use the data series provided by the anemometer to generate a full
ABL wind profile.

Although there are previous studies that use artificial neural networks (ANNs) to
interpolate wind profiles, they present several differences with the methodology proposed
in this one. Vassallo, Krishnamurthy and Fernando [23] measurements at multiple heights,
not just the lowest, for doing the interpolation. So, for example, in order to estimate the
wind at 120 m, they used the values observed at 100, 80, 60 and 40 m AGL (above ground
level). Thanks to that, the accuracy that their ANN can achieve is between 65% and 53%
better than that obtained by a log-law or power law vertical extrapolations.

Turkan et al. [24] analyzed seven ML algorithms and studied its accuracy in extrapo-
lating the wind resource from 10 m to 30 m AGL at a wind farm in Turkey. Between the
different methods, the support vector regression, the multilayer perceptron and the Ran-
dom Tree obtained good performance. They used training data collected during 11 months
to predict the values during December, so the lidar would not be able to monitor several
locations at the same time.

Mohandes and Rehman [25] also use different heights (i.e., the values at 10, 20, 30
and 40 m are required to compute the value at 120 m). Moreover, they only consider wind
magnitude, so the wind direction is not tackled. At 120 m height, the mean absolute percent
error achieved is 9.65%.

More recently, Bodini and Optis [26] used a random forest algorithm to extrapolate
the 30-min average wind speed at 143 m AGL using the values measured at 65 m AGL and
other physical parameters such as the turbulent kinetic energy and the Obkuhov length
measured at 4 m AGL. They found that their method improvement in mean absolute error
was 28% and 23% over the power law and logarithmic profile. However, they need to use a
lidar to obtained the wind value at 65 m AGL, so no cost reduction is obtained.

As it can be seen, previous studies have different objectives from the present one.
Here, the main objective is to establish a methodology which could reduce the number
of lidar required to monitored several locations. So, in the present study, the prediction
uses only one near ground sensor. Additionally, the training dataset required by the ANN
should be relatively small: to monitored one location all the year, it is only required to have
the lidar at that location 1–2 months.

This paper is organized as follows. Section 2 describes the artificial neural network
implementation, as well as the acquisition method and the statistical properties of the wind
datasets. Section 3 presents different sensitivity analysis performed in order to find the best
configuration for the neural network. Once this configuration is defined, the simulation
results are compared against real data using different scoring rules in Section 4. Finally, the
conclusions are summarized in Section 5.
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2. Materials and Methods

Two elements will be needed to successfully perform the prognosis of the ABL wind
profile relying on just near-surface observations. On the one hand the neural network that
shall extrapolate available data and, on the other hand, the required set of observations to
train it. Both are now presented.

2.1. Multi-Hidden Layer Neural Network

Multi-hidden layer neural networks (MHL-NN), also known as deep neural networks,
are widely used in different kind of tasks such as process monitoring, fault diagnosis and,
more relevant for this work, atmospheric modeling [27]. MHL-NN process works as a
black box, modeling the output variables as the results of the inputs through a systematic
method. Each of the network nodes are called neurons and are grouped in layers. Each
layer of l neurons applies an activation function over the weighted sum of its p inputs
following the equation [28]:

g = σ(Ws + b), (1)

in which s is the input vector, W is a matrix of dimensions l × p and b ∈ Rl . W and b
represent the training parameters. There are different choices for the mapping functions [29]
such as the sigmoid function σ(x) = 1

1+e−x , the hyperbolic tangent function σ(x) = ex−e−x

ex+e−x

or the rectified linear unit σ(x) = max(x, 0) being the variable x ∈ R.
The network is a stack of these neurons, from the input layer to the output one. For

the first layer, Equation (1) takes the form:

g1 = σ(W1X + b1), (2)

given a fixed matrix W1 ∈ Rli×n, vector b1 ∈ Rli and X ∈ Rn the input vector. Here, n
denotes the number of inputs of the neural network. Then, for the subsequent hidden
layers, its output vector can be found from the previous layer as:

gi = σ(Wihi−1 + bi), (3)

until the output layer is finally reached:

û = Wohk + b0, (4)

in which û is the final prediction.
The scale of inputs and outputs used to train the model is a relevant factor [30]. To

prevent a slow or unstable learning process the standardization of each of the input and
output variables x̂ is done according to the formula:

x̂ =
x− x

σx
, (5)

where x is the mean of x in the training set and σx is its standard deviation.
After the neural network architecture is determined, the training phase can be started.

In order to train the neural network, the weights {W0 . . . Wk} and b = {b0, . . . bk} need to
be modified such that a cost function is minimized. Usually, this cost function is defined as
the sum of squares of the network errors MSE:

MSE =
1
n

n

∑
i=1

(ûi − ui)
2. (6)

To obtain the optimal parameters, the cost function MSE is minimized by using
back propagation algorithms for the training dataset. Between the different options, the
Bayesian regularization [31], the scaled conjugate gradient method [32], and the Leven-
berg–Marquardt learning algorithms [33] stand out. The main advantage of using neural
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networks is their capability to automatically find an optimal way to combine the input
variables through a data-driven approach. In order to avoid over-fitting of the training
dataset an early stopping method is applied based on the validation loss [34].

For the present study, the algorithm was implemented using the open-source neural-
network library Keras [35] written in Python. Using Keras terminology, the neural networks
described in this section, also known as Feed Forward Networks (FFNNs), could be built
as a sequential model, i.e., plain stack of layers where each layer was of type “Dense”. As
the backend engine of Keras, the library TensorFlow [36] was selected. More information
about the library can be found in [35].

2.2. Wind Data

For any neural network application, the quality and availability of training data sets
are critical. Additionally, those data will be needed for the validation and performance
assessment of the neural network once it has been trained. In our problem, the wind data
(magnitude and direction) of the ABL profile were needed for the heights of interest and a
period of time large enough.

The dataset used in this paper was the 10-min averaged wind speed and direction
measurements produced by a wind lidar station located in a sub-urban area in León (Spain)
during the period 2018–2020 (more than 25,300 samples). Such a kind of long term and
high-quality measurements is really difficult to obtain, as the required equipment is very
expensive and highly demanded. Wind lidars determine the wind velocity components for
a specific range of altitudes using pulsed laser light and measuring the reflected pulses with
a sensor. The model used for the validations is the ZephIR300 lidar (Figure 1) validated in
previous works [37]. ZephIR300 is specialized in the optimization of eolic parks and its
main characteristics can be found in Table 1.

Figure 1. ZephIR 300 wind lidar.



Sensors 2021, 21, 3659 5 of 19

Table 1. Main lidar characteristics. The accuracy is computed as measured against a calibrated
moving target.

Range 10–300 m

Height measurements 10 User Configurable

Sampling rate 50 Hz

Wind speed range 1–70 m/s

Accuracy Wind speed: 0.1 m/s
Direction variation: <0.5◦

The lidar was similar to the one used by Kent et al. [20], it operated in Doppler Beam
Swinging (DBS) mode, whereby the measured Doppler shift between transmitted and
returned pulses provided horizontal wind speed and direction. The system was configured
to take measurements at eleven different altitude levels between 30 and 300 m AGL: 30 m,
50 m, 65 m, 90 m, 120 m, 150 m, 180 m, 220 m, 250 m, 280 m, 300 m. The lidar was located at
the University of León campus with coordinates 42◦36′ 54.1′′ N 5◦33′49.5′′ W (northwest of
Spain as can be seen in Figure 2). Following the Davenport roughness classification, the
roughness length of the terrain should be close to 2 m, typical of regions with mixture of
low-rise and high-rise buildings [38]. The exact value was calculated from measurements
in Section 3.

Figure 2. Localization of León (Spain) and the lidar position in an urban area within the campus of
the Universidad de León.

A brief statistical analysis of the data gathered during the sampling period was done
in order to study the spatial and temporal characteristics of the wind profile. This kind
of correlation analysis has been done traditionally with the wind speed modulus (V) and
direction (β), however, we also performed an additional study for the north (u) and west
(v) wind components aiming to look for a better correlation. Both presentations of wind
characteristics were related as:

V =
√

u2 + v2, (7)

β = arctan2(u, v). (8)

From previous studies, Velo et al. [39] determined that the linear correlation was a
critical criterion to determine the suitability of the dataset for the neural network. Thus,
the temporal cross-covariance between different heights was computed as:

Kxy(τ) = E
[
(x− x)[t + τ](y− y)T [t]

]
, (9)

in which x and y represents the measurements obtained at two different height, t is the time
and τ the time lag. E[·] and [·]T denote respectively the expected value and the transpose of
a given random vector. The results are shown in Figure 3 for V and β. The most interesting
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aspect of these graphs was the two peaks in the wind speed correlation at ±15 h which
seemed to suggest a dependence between diurnal and night values. These peaks were less
marked in the u,v-cases as is shown in Figure 4.
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Figure 3. Cross covariance function of V (left) and β (right) between different altitudes.
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Figure 4. Cross covariance function of u (left) and v (right) between different altitudes.

Another relevant parameter that has been traditionally used to study the correlation [39]
is the Pearson correlation coefficient, defined as:

CC =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1(xi − x)2
√

∑N
i=1(yi − y)2

(10)

where xi and yi are the variable values at two different altitudes and x, y are the average
values for a period of time. Figure 5 shows the results for V and β while Figure 6 shows
the results for u and v. In those figures black color denotes a very high correlation between
the heights indicated in horizontal and vertical axes. The correlation is 1 for the diagonal,
as it indicates the relationship between a certain height and itself. Measurements presented
a higher correlation with those taken at a closer location and decays when compared to
values measured higher or lower in the profile. That explains the white colour close to the
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corners. What is striking about these figures is that, in the case of the wind direction, the
correlation decayed faster than in the other three cases.

The temporal and spatial correlations suggested that useful results could be obtained
by means of neural networks. The capabilities of these networks will be tackled in the
next sections.
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Figure 5. Pearson correlation coefficient of V (left) and β (right) between different altitudes.
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Figure 6. Pearson correlation coefficient of u (left) and v (right) between different altitudes.

3. Optimal Configuration

Once the statistical analysis of the data indicated that the selected variables can be
used with a neural network, it was time to look for the best configuration of the tool e.g.,
training patterns, learning algorithm, input data, etc.

As it can be seen in Figure 7, once this optimal design was found, the lidar would
only be required for a relatively short period of time to train the ANN. Then, using just
near ground measurements, the ANN could estimate the complete wind profile without
requiring a expensive lidar sensor anymore.
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3.1. Numbers and Definition of the Training Patterns

At this point, it is worth remembering that the objective was to estimate the vertical
wind profile as function of the wind velocity near the ground. In order to achieve that
using MHL-NN, we could use as input/output variables the directional components of the
wind—u and v—or the wind speed V and direction β.

Although related works used the wind speed and direction [39], Figures 5 and 6 show
how the correlation was higher in the case of u and v, so it is not clear which option should
be the best. In addition, the number of patterns that had to be used to train the network
was also unknown a priori. As an activation function, the sigmoid function seemed to be
the best option for the wind prediction [40].

For determining which is the optimal configuration, the wind at an altitude of 180 m
was simulated using the measurements from 30 m. To compare the results, the scoring
rules used [41] were the root mean square error (RMSE), the mean absolute error (MAE)
and the mean absolute percentage error (MAPE):

RMSE =

√
∑n

t=1(yt − ŷt)2

n
, (11)

MAE =
1
n

n

∑
t=1
|yt − ŷt|, (12)

MAPE =
1
n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣× 100%, (13)



Sensors 2021, 21, 3659 9 of 19

where yt is the actual variable (u, v, V or β) and ŷt is the simulated value. n is the number
of samples. As characteristic wind speed, it is defined the root mean square (RMS) as:

V RMS =

√
∑n

t=1 V2
t

n
. (14)

This first sensibility analysis was done with a neural network of three layers: the input
layer, with six neurons that took the last three 10-min averaged measurements values (at
h = 30 m); the hidden layer, with 64 nodes; and the output layer, with two neurons that gave
us the wind variables at 180 m. The optimization algorithm used was the RMSProp [42].

The results are shown in Table 2 (using u and v as inputs) and Table 3 (using V and β).
The yellow color, from now on, highlights the best estimation in each column. The cases
tested were: (1) using as training data a full month of the year (January, February, August
or September); (2) using 5 days of each month (1st–5th or 6th–10th); (3) using 2 full months
(January and February or August and September); (4) using two different neural networks,
each one for 6 months and trained with a full month data per network (using the months
of January and September or February and August).

Table 2. Results of the neural network simulations performed to determine the best set of data to train the network. u and v
were used as input variables.

u RMSE v RMSE V RMSE β RMSE u MAE v MAE V MAE β MAE Simulated V RMS Real V RMS
Amount of Data Selection

(m/s) (m/s) (m/s) (rad) (m/s) (m/s) (m/s) (rad) (m/s) (m/s)

Jan 1.95 2.12 2.27 1.54 1.37 1.51 1.63 0.80 5.02
Feb 1.83 2.04 2.12 1.40 1.26 1.48 1.52 0.72 5.05
Aug 1.69 2.09 1.98 1.38 1.19 1.47 1.38 0.70 4.70

Full month

Sept 1.71 2.06 1.93 1.42 1.22 1.45 1.36 0.72 5.01

5.71

1 to 5 1.67 2.00 1.88 1.38 1.17 1.42 1.33 0.70 5.14
5 day/month

6 to 10 1.65 2.00 1.89 1.38 1.15 1.43 1.34 0.70 5.10
5.71

Jan and Feb 1.78 2.07 2.12 1.42 1.24 1.49 1.51 0.73 5.18
Two full months

Aug and sept 1.69 2.08 1.95 1.39 1.20 1.45 1.36 0.71 4.77
5.71

Jan and Sept 1.75 2.12 2.07 1.44 1.25 1.51 1.46 0.73 5.04
2 neuronal networks

Feb and Aug 1.72 2.06 2.01 1.37 1.20 1.47 1.40 0.70 4.84
5.71

According to the values shown, the best configuration was option (2) that trained
the network using 5 days of each month of the year. That was true for both the RMSE
and the MAE. This conclusion is in line with previous works as the result obtained
in [39]. The options (3) and (4) also achieved good results, with errors slightly higher than
those obtained by (2). Due to these small differences, they may be recommended in other
circumstances. On the other hand, option (1) seemed to rely heavily on the month chosen
for simulation. For example, if the month was January, the u RMSE reached a value of
1.95 m/s which was 12% higher than in any of the other options. Similar behavior could be
found in the other variables.

It may be seen that moving a lidar every 5 days is not pragmatic. That depends on
different aspects such as the lidar model or the geographic conditions. For example, the
lidar used in this study weighed 55 kg and could be connected via mobile networks. So, no
technical staff was required to reconfigure it, and it could be easily move by two workers
using the handles (as can be seen in Figure 2). Nevertheless, it might be more practical to
do 2-month training (Jan and Aug or Feb and Sep), thereby reducing the amount of time
required to move the lidar. The performance in that case was only slightly penalized as it
is shown in Table 2.

Although previous work in the literature has made use of a (V, β) definition of the
wind vector, the approach suggested in this work of using vector components (u, v)
demonstrated a better performance in terms of estimating u, v and β. The opposite was
true for the wind speed. Even though it would depend on each case, we considered that,
for most of the applications, the improvements achieved by (u, v) were worthwhile. For
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example, the u RMSE decreased from 2.8 m/s to 1.65–1.67 m/s which was a reduction of
40%. A relevant improvement could be also found in v (16%) and β (34%). On the other
hand, the value of V RMSE increased by 4%.

Therefore, the configuration used in this study consisted of using the variables u and
v as inputs and trained the network with 5 consecutive days of each month of the year.

Table 3. Results of the neural network simulations performed to determine the best set of data to train the network. V and
β were used as input variables.

u RMSE v RMSE V RMSE β RMSE u MAE v MAE V MAE β MAE Simulated V RMS Real V RMS
Amount of Data Selection

(m/s) (m/s) (m/s) (rad) (m/s) (m/s) (m/s) (rad) (m/s) (m/s)

Jan 5.26 3.44 1.93 2.34 3.06 2.17 1.40 1.50 5.69
Feb 3.32 2.80 1.83 2.01 2.26 1.93 1.33 1.21 5.34
Aug 3.54 2.66 1.88 1.99 2.33 1.85 1.37 1.20 5.06

Full month

Sept 2.76 2.32 1.86 1.84 1.90 1.77 1.39 1.05 5.25

5.71

1 to 5 2.79 2.44 1.80 1.85 1.86 1.75 1.33 1.05 5.49
5 day/month

6 to 10 2.80 2.37 1.78 1.85 1.89 1.76 1.33 1.06 5.39
5.71

Jan and Feb 3.60 3.12 1.87 2.02 2.42 2.05 1.38 1.22 5.76
Two full months

Aug and Sept 3.07 2.37 1.84 1.91 2.08 1.74 1.35 1.11 5.20
5.71

Jan and Sept 4.10 2.60 2.36 1.79 1.91 2.04 1.38 1.21 5.38
2 neuronal networks

Feb and Aug 3.21 2.50 1.87 1.91 2.12 1.78 1.35 1.12 5.09
5.71

3.2. Selection of the Number of Hidden Neurons, Learning Algorithm and Input Data

Once the training patterns were chosen, the optimal number of neurons and the best
learning algorithm for this case was the next step to solve.

The wind speed at an altitude of 180 m was simulated using, again, measurements
taken at 30 m. Firstly, different architectures of the neural network were used, with one or
two hidden layers. As can be seen from the results of the score rules presented in Table 4, it
seemed that using two layers instead of one did not achieve better results. Additionally,
neural networks with more than 128 nodes did not show a relevant increment in accuracy.

Table 4. Results of the neural network simulations performed to determine the optimal architecture.

u RMSE v RMSE V RMSE β RMSE u MAE v MAE V MAE β MAE Simulated V RMS Real V RMS
Nodes in 1º Layer Nodes in 2º Layer

(m/s) (m/s) (m/s) (rad) (m/s) (m/s) (m/s) (rad) (m/s) (m/s)
32 - 1.66 2.02 1.93 1.38 1.15 1.43 1.36 0.71 5.01
64 - 1.67 2.00 1.88 1.38 1.17 1.42 1.33 0.70 5.14
128 - 1.65 1.98 1.87 1.37 1.16 1.41 1.31 0.70 5.08
256 - 1.65 1.99 1.86 1.37 1.15 1.43 1.32 0.70 5.20

5.71

64 8 1.65 1.99 1.91 1.375 1.15 1.41 1.34 0.70 5.00
128 4 1.67 2.05 2.01 1.39 1.15 1.46 1.4 0.71 4.78

Although the objective was to estimate the vertical profile in real time, the neural
network may take advantage of previous wind measurements. Every 10 min a new reading
was available. As it is shown in Figure 3, the correlation was relatively high for temporal
windows of 3 h with peaks at ±12 h. Six different cases were analyzed using: (1) the
last three measurement (30-min); (2) the last six measurements (1-h); (3) only the last
measurement (10-min); (4) three measurements equispaced during the last 3 h; (5) three
measurements equispaced during the last 6 h, and (6) three measurements equispaced
during the last 12 h. In every case, each of the measurements used was a input node of the
neural network. It is apparent from Table 5 that no advantage could be found in including
more than the three last measurements. If we included only one measurement, the errors
grew between 2.5% (u RMSE) and 5.3% (V RMS). It is interesting to note how option
(6) achieved good results predicting the variable V. That can be related to the temporal
correlation showed in Figure 3 and its peaks at ±12 h.
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Table 5. Results of the neural network simulations performed to determine the best time period for the input data to use.

u RMSE v RMSE V RMSE β RMSE u MAE v MAE V MAE β MAE Simulated V RMS Real V RMS
Time Period

(m/s) (m/s) (m/s) (rad) (m/s) (m/s) (m/s) (rad) (m/s) (m/s)
30 min 1.65 1.98 1.87 1.37 1.16 1.41 1.31 0.70 5.08
60 min 1.64 2 1.89 1.41 1.17 1.41 1.33 0.72 4.99
10 min 1.69 2.04 1.93 1.41 1.19 1.46 1.38 0.73 4.10
3 h 1.65 2 1.95 1.41 1.16 1.43 1.38 0.72 5.20

5.71

6 h 1.67 2.01 1.92 1.42 1.16 1.42 1.34 0.74 4.98
12 h 1.67 2.04 1.87 1.45 1.17 1.45 1.31 0.75 5.18

Then, different optimization algorithms were compared to find the optimal. Between
the different options, the following were tested: RMSprop [42], SGD [43], the stochastic
solver Adam [44], Nadam [45] and Ftrl [46]. The results, as shown in Table 6, indicated
that the RMSprop slightly outperformed the other algorithms. It was the best option for V
and β and only the Nadam algorithm was better in terms of u MAE. However, it is worth
noting that the differences found between the algorithms were very small, lower than 3%.

Finally, the sensibility of the batch size, learning rate, hyperparameters, optimizer
algorithm and activation function were analyzed using the Keras Tuner [47]. As the optimal
configuration of the ANN depended on h, different designs were found for each height;
however, no substantial improvements were obtained (a reduction < 1% in the MAE). Due
to this, for simplicity’s sake, the same baseline configuration was used for all the levels.

Table 6. Results of the neural network simulations performed to choose the best optimization algorithm.

u RMSE v RMSE V RMSE β RMSE u MAE v MAE V MAE β MAE Simulated V RMS Real V RMS
Algorithm

(m/s) ( m/s) (m/s) (rad) (m/s) (m/s) (m/s) (rad) (m/s) (m/s)
RMSprop 1.65 1.98 1.87 1.37 1.16 1.41 1.31 0.70 5.08

SGD 1.68 2.02 1.91 1.39 1.18 1.44 1.35 0.70 5.06
Adam 1.66 1.99 1.90 1.38 1.17 1.41 1.35 0.70 5.20 5.71

Nadam 1.65 2.02 1.91 1.37 1.15 1.42 1.33 0.70 4.92
Ftrl 1.70 2.03 1.92 1.39 1.19 1.45 1.36 0.71 5.04

4. Results of the Wind Profile Prognosis

After the sensibility analysis performed in the previous subsections, the neural net-
work configurations were as follows:

• Six nodes in the input layer which took the 10-min average values of u and v from the
last three measurements at h = 30 m.

• The training data corresponded to 5 days of each month.
• 128 nodes in the hidden layer, using the sigmoid function as activation function.
• Two output neurons which gave the values of u and v for a certain altitude.
• There was one neural network for each of the altitudes.

At this point, the neural network was ready to be used to perform the wind profile
prognosis. In this section, the performance of the neural network is analyzed and compared
with other traditional methods. It will also be studied how that performance can be
improved by including daily and hourly information.

4.1. Global Performance

Table 7 shows some outstanding characteristics of the results obtained. The correlation
coefficients between the real wind speeds and those simulated by the neural network were
higher than 0.8 for all the cases. Furthermore, at the lower altitudes (below 180 m) the cor-
relation was even higher than 0.9, which represented a remarkably high value (notice that
correlation was, for example, 0.96 at 90 m; that was three times the measurement altitude).
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Figure 8 (left) shows the vertical profile of the different score rules. In the right image,
the mean velocity and its RMS value for different altitudes are shown. The difference
between both RMS curves showed again that prognosis capability was notably good up to
an height of 180 m. Over that the capabilities of the tool could be still considered as useful
but its accuracy notably deteriorated.
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Figure 8. Analysis of the accuracy for the estimated wind profiles. Left image: Values of the different
score rules at every height. Right image: Simulated and real mean and RMS velocity values at
every height.

Table 7. Performance of the vertical wind profile prognosis process when using the developed
neural network.

RMSE (m/s) MAE (m/s) MAPE (%) Pearson Coefficient

Objective h (m) u v u v u v u v

50 0.45 0.45 0.29 0.29 13.06 14.94 0.99 0.99
65 0.59 0.54 0.43 0.43 18.44 20.41 0.98 0.98
90 0.92 0.86 0.68 0.68 26.07 32.48 0.96 0.96
120 1.19 1.28 0.86 0.86 30.28 43.50 0.94 0.93
150 1.43 1.66 1.02 1.02 35.54 49.67 0.92 0.90
180 1.66 2.01 1.16 1.16 40.08 55.34 0.90 0.88
220 1.94 2.36 1.32 1.32 43.34 58.78 0.87 0.86
250 2.10 2.56 1.43 1.43 46.20 62.11 0.85 0.84
280 2.25 2.72 1.51 1.51 47.98 63.61 0.84 0.83
300 2.28 2.75 1.51 1.51 46.62 63.03 0.84 0.83

The good agreement between the simulation results and the measurements envis-
aged thanks to the high value of the Pearson coefficient could also be verified directly
by observing the simulated and real temporal series. For example, Figure 9 shows—for
h = 180 m—the 10-min temporal series of V and β—values reconstructed with the esti-
mated variables u and v using Equation (7) and (8)—for 5 days in February, 2019 which
were not part of the training data. In the same figure, the hourly-averaged temporal series
of the same variable for the whole month was also compared. The results for h = 90 m are
shown in Figure 10 in which a lower estimation error could be noted.
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Figure 9. Simulated and real temporal series of V and β for h = 180 m. Left image: 10-min averaged
values, 1st-5th February 2019. Right image: Hourly averaged values, February 2019.
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Figure 10. Simulated and real temporal series of of V and β for h = 90 m. Left image: 10-min
averaged values, 1st-5th February 2019. Right image: Hourly averaged values, February 2019.

For h = 90 m and in the case of 10-min averaged values, the errors were
V RMS = 0.32 m/s, V MAE = 0.27 m/s, V MAPE = 15.61%, β RMS = 28.6◦,
β MAE = 14.3◦ while, in the case of the hourly averaged values, the values were
V RMS = 0.88 m/s, V MAE = 0.69 m/s, V MAPE = 29.75%, β RMS = 25.7◦,
βMAE = 16.0◦. Similarly, the errors were V RMS = 1.58 m/s, V MAE = 1.14 m/s,
V MAPE = 44.80%, β RMS = 39.0◦, β MAE = 28.0◦ in the case of 10-min averaged val-
ues and V RMS = 0.52 m/s, V MAE = 0.41 m/s, V MAPE = 24.47%, β RMS = 44.5◦,
β MAE = 30.9◦ in the case of the hourly averaged values.
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Figure 11 shows the scatter plot of the measured and estimated wind components at
h = 180 m. The plot shows a constant scatter for all the values of u and v. The behavior was
similar for every height. However, the scatter increased for higher h values and diminished
for lower ones.
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Figure 11. Results for estimation of wind speed at 180 m. Left image: u, CC = 0.90, right image: v,
CC = 0.88.

4.2. Validation against Alternative Methods

Finally, an additional exercise was done in order to determine if the complexity of
the proposed methodology, based on neural networks, made it possible to overperform
more conventional approaches. Four other models were used for comparison. The first one
estimated the wind speed at certain altitude following the log law [38]:

V1

V2
=

log h1−d
z0

log h2−d
z0

, (15)

where the parameter d is known as the displacement length and z0 as the roughness
parameter. We calculated the value of z0 and d using least squares adjustment to the same
measurements that were used to train the neural network. The value of z0 is 1.91 m which,
as we mentioned before, was typical of regions with a mixture of low-rise and high-rise
buildings. It can be assumed also that it was the worst case scenario for boundary layer
estimation. Then, method performance would probably improve when more homogeneous
terrain was selected.

The second method assumed that the mean profile—the temporal mean of all the
observations—was always the best estimation, so it did not consider any ground
measurements.

The third was a power law extrapolation given by:

V1 = V0

(
h1

z0

)α

, (16)

where α is a power-law coefficient determined by the shear between h1 and z0, and it is
also calculated using least squares adjustment.

Finally, another machine learning algorithm was implemented. From previous works,
the Random Forest was applied following the method described by Bodini and Optis [26].

The results are shown in Figure 12. The neural network outperformed the others for
every height. Even for low heights (up to 90 m), the differences between the three models
were smaller, we could find that the reduction in MAE achieved by the MHL-NN method
oscillated between the 17% (h = 250 m) and 24% (h = 90 m) compared to traditional
methods. Regarding to RMSE, the reduction yielded between 7% (h = 250 m) and 22.5%
(h = 65 m). The Random Forest algorithm also outperformed the traditional algorithms
although to a lesser extent. However, the main advantage of the proposed method was its
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capability to predict the wind direction (see Figures 9 and 10) for which a simple analytical
method could not be found.
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Figure 12. Comparison of the RMSE and MAE for the method described in this work (MHL-NN),
the log law (log), the power law (PL), the random forest (RF) and the one that estimates always the
mean profile (const).

The forecasting accuracy was compared against the other method conducting a sta-
tistical test known as a Wilcoxon signed-rank test [48,49]. The test results can be seen in
Table 8 showing statistical significance.

Table 8. Wilcoxon signed-rank test. N = 1000. One-sided test, with hypothesis that the errors of
ANN are smaller compared against the other methods.

Model Statistic p Value

ANN vs. Random Forest 238,018 0.09
ANN vs. Power Law 100,668 10−6

ANN vs. Constant Model 110,970 10−6

ANN vs. Logarithmic Law 233,676 0.03

4.3. Flexibility and Growth Capacity

The current study has focused on analyzing the feasibility and advantages of combin-
ing lidar sensors and neural networks. Nevertheless, the basic configuration of the neural
network can be easily modified to include other relevant effects.

For example, Vassallo, Krishnamurthy and Fernando [23] suggest that the atmospheric
stability plays a key role in the estimation of wind speed. Between the different meteoro-
logical parameters that influence the atmospheric stability, it can be found the temperature
and radiation, which are directly related to the day of the year and time of measurement.

To study their effects, two new nodes can be added to the input layer of the neural
network, one for the hour and one for the day of the measurements. In addition, the data
were split into two sets according to whether the measurements were taken during the
day (8:00 AM–20:00 PM) or at night (20:00 PM–8:00 AM). Therefore, for each altitude, two
neural networks were created: one trained using the hours between 8:00 AM–20:00 PM and
one using the interval 20:00 PM–8:00 AM. The results can be seen in Figure 13, in which
all the methods are readjusted using the same time intervals. The most obvious finding to
emerge from the analysis is that the error was much smaller at day, when the ANN clearly
outperformed the other methods. The wind speed RMSE and MAE were further reduced
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between a 20% and 25% for h > 120 m when compared with the error values obtained in
Section 4.2. At night, all methods decreased in their performance. Just behind the ANN,
the random forest achieved the second-best mark. The results suggested that temperature
and radiation played an important role in the wind dynamics of the region for h > 90 m.
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Figure 13. Comparison of the RMSE and MAE for the method described in this work (MHL-NN),
the log law (log), the power law (PL), the random forest (RF) and the one that estimates always
the mean profile (const). Left image: using only daily measurements. Right image: using only
nightly measurements.

Another important variable affecting the ABL is precipitation and its associated
downdraft [50]. However, in this particular case, including the precipitation data into
the neural network did not improve the accuracy of the method. In fact, to check if the
interpolation errors were related to the precipitation, the Pearson coefficient between these
errors and the amount of precipitation was computed. For the case of the MAE, CC = 0.08.
Similarly, low values were also found for the RMSE and MAPE. It is worth mentioning
that in other locations, the precipitation may play a key role.

5. Conclusions

Within this work we constructed a novel methodology to estimate the vertical wind
profile of the atmospheric boundary layer that only requires a single point measurement
close to the terrain. The methodology makes use of a neural network and its configuration
and training process has been evaluated and optimized along the paper. All this work
has been possible thanks to the ABL wind data collected by a lidar measurement station
located at the Universidad de León (Spain) for up to two years.

In order to have an operational neural network, we firstly analyze the amount of data
required for the training process. The conclusion is that selecting 5 consecutive days of
observations for each month of the year is the best option. Additionally, the definition of
the wind vector seems to play a role in the process. Although the works available in the
literature have used a definition based on the modulus of the vector and its direction, the
analysis carried out in this work proved that better results can be achieved in the prognosis
process if wind vector is defined by its components (north and west). Apart from the
training process, the architecture of the neural network has been also defined looking for
the optimal performance. It was determined that the optimal architecture for the neural
network consists of one hidden layer with 128 nodes. The input layer has 6 nodes, for the
last three measurements (u and v wind components) taken at the reference altitude. Finally,
the neural network could employ a wide range of optimization algorithms. Some of the
most common ones were tested looking for the best option, the RMSprop was selected as it
presented the higher accuracy.

Once the neural network was fully defined and trained, it has been able to show it
capabilities to estimate ABL wind profiles for altitudes up to 300 m above the ground.
When compared with more traditional (but simpler) methods like the logarithm and power
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laws, it has exhibited a better performance at every height. For example, the mean absolute
error (MAE) is reduced between 17% and 24%, depending on the considered height. Fur-
thermore, the proposed neural network is able to also outperform other complex techniques
used for wind estimation, such as the random forest method. However, differences are
notably smaller in that case (MAE is reduced by about 5%).

Although moving from a quite simple analytical approach (like the logarithm law) to
a more complex one (like the one here proposed) requires a certain effort, it is compensated
by the higher accuracy of the prognosis process. Additionally, it should be noticed that the
notable performance of the logarithm and power laws has been possible thanks to the avail-
ability of a large set of wind profile measurements required for the training of the neural
network. This made possible to accurately define the terrain aerodynamic roughness.

The neural network architecture of the present study can be used as a blueprint to
develop a more complex network. That will make possible to include relevant meteorologi-
cal parameters such as the date, the time of the day or the precipitation, improving even
more the model performance (as envisaged in Section 4.3). Once the information about
the time of the day is made available, it is possible to train two different networks: one for
the day and another for the night. The analysis of the results has demonstrated that wind
estimation process during the day time using neural networks is much more accurate than
during the night. This is probably due to the ABL wind flows influenced by the thermal
effects during the day. On the other hand, no seasonal effects could be found producing
differences between summer and winter period.

The proposed methodology makes possible to optimize the usage of lidar measure-
ment stations, which are usually a very expensive and relatively scarce resource. Thanks to
the neural network, the lidar is only needed for the collection of the training data, and it
can be replaced after that by a much cheaper local sensor (e.g., a rotating cup anemome-
ter). Thus, it is possible to use a single lidar station to monitor wind profiles at different
locations, moving it from one place to another and avoiding the need of a single station for
each location.
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Abbreviations
The following abbreviations are used in this manuscript:

a Sound speed
ABL Atmospheric boundary layer
AGL Above ground level
ANN Artificial neural networks
ATM Air traffic management
CC Pearson correlation coefficient
d Displacement length
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DBS Doppler beam swinging
h Height
Kxy Temporal cross-covariance
lidar Light Detection and Ranging
MAE Mean absolute error
MAPE Mean absolute percentage error
MHL-NN Multi-hidden layer neural networks
RMS Root mean square
RMSE Root mean square error
SSE Sum of squares of the network errors
u North wind component
v West wind components
V Wind speed modulus
z0 Roughness parameter
β Wind speed direction
σ Mapping function
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