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After spermatogenesis, testicular spermatozoa are not able to fertilize an oocyte, they must undergo sequential maturational
processes. Part of these essential processes occurs during the transit of the spermatozoa through the male reproductive tract.
Since the sperm become silent in terms of translation and transcription at the testicular level, all the maturational changes
that take place on them are dependent on the interaction of spermatozoa with epididymal and accessory gland fluids. During
the last decades, reproductive biotechnologies applied to bovine species have advanced significantly. The knowledge of the bull
reproductive physiology is really important for the improvement of these techniques and the development of new ones. This paper
focuses on the importance of the sperm interaction with the male reproductive fluids to acquire the fertilizing ability, with special
attention to the role of the membranous vesicles present in those fluids and the recent mechanisms of protein acquisition during
sperm maturation.

1. Introduction

In mammalian species, fertilization is a complex process that
occurs in the oviduct of the female reproductive tract [1]. In
bovine, since the ovulation is not synchronized with the time
of the sperm arrival at the site of fertilization (18–20 hours or
more before) and the oocyte fertilization temporal window is
narrow, reproductive strategies have been developed in both
sexes. The male produces a heterogeneous population of
spermatozoa, with different sperm subpopulations available
to fertilize an oocyte at any time during the female ovulation
window. On the other hand, the female selects and retains
attached to the oviductal epithelium the most suitable sperm
subpopulation arrived at the oviduct, keeping them with
a high fertilizing potential until the ovulation time, when
they will be released [2, 3]. From the male side, the testis
is the organ in charged of the continuous production of
spermatozoa, and the epididymis is the organ that ensures
the production of a heterogeneous sperm population capable
of fertilizing an oocyte and also acts as a reservoir of the male
gametes.

After completing spermatogenesis and spermiation in
the testis, the spermatozoa are not capable of fertilizing an
oocyte. The fertilizing ability will be acquired in a tem-
porally controlled manner during different stages towards
the encounter with the female gamete: (1) along the transit
through the epididymal duct, (2) at the encounter with
the seminal plasma during the ejaculation, (3) during the
transit through the female reproductive tract, (4) during the
interaction with oviductal epithelial cells, and (5) during
the interactions with the different female gamete structures.
Sperm changes occurring in the male reproductive tract have
been defined as maturational changes whereas those occur-
ring in the female counterpart are known as capacitation-
associated changes. Epididymal maturation processes need
around 10 days to be completed, a relatively long time
comparing to the processes that occur from the ejaculation
that takes between minutes to hours. This is an indicator of
the level of complexity in the events that take place in the
epididymis.

During maturation, the spermatozoa undergo many
biochemical and morphological modifications. Some of
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them include the addition of epididymal proteins to the
maturating sperm, a process that has been specially studied
[4–6], and also some molecular reorganizational changes
at the cell membrane level. It is interesting to note that
those are common mechanisms between maturation and
capacitation events [7]. Among them, the movement of some
enzymes [8, 9], membrane lipids [10], and cholesterol [11]
can be cited. In addition, changes in membrane fluidity as
a consequence of cholesterol efflux and protein dissociation
from raft domain seems to be also a mechanism that
occurs both in capacitation [12, 13] and in the maturational
processes occurring at the time of ejaculation [14].

Since the spermatozoa must complete all those physio-
logical processes to be able to fertilize an oocyte, a better
understanding of the mechanisms involved has a great
impact in the development of bovine reproductive biotech-
nologies. This paper focuses on the events associated with the
acquisition of the sperm maturation along the epididymal
duct and the postejaculatory sperm modifications with
emphasis on the role of the membranous vesicles present in
the epididymal fluid (epididymosomes) and seminal plasma
(prostasomes) on those processes.

2. The Epididymis

The epididymal duct is a long convoluted tubule tightly
coiled over the testicular surface that connects the efferent
ducts to the vas deferens embryologically originated from the
anterior Wolffian or mesonephric duct [15]. Three different
regions are anatomically distinguished: the head (caput),
the body (corpus), and the tail (cauda) (Figure 1) [16].
All along the epididymal tubule, the lumen is bordered by
an epithelium that is very active in protein synthesis and
secretion [17] under androgenic stimulation [18, 19]. The
pseudostratified epithelium is composed mainly of principal
(85%) and basal cells, accompanied by other specialized
cells distributed in a segment-specific manner including
apical, narrow, clear, and halo cells. Between important
known functions of these cells, secretion, absorption, endo-
cytosis, acidification of the luminal fluid, immune defense,
phagocytosis, and antioxidant production can be mentioned
[20]. The epithelium forms an epididymal barrier by the
presence of tight junction between epithelial cells [20].
Fluid composition in each epididymal segment shows great
variability from one epididymal segment to the other [21, 22]
as well as the pattern of gene expression [23, 24].

The epididymis is the organ responsible for the sperm
transport, concentration, storage, and maturation. The epi-
didymal sperm maturation function involves the acquisition
of the forward motility and the fertilizing ability [4]. The
latter is defined as the acquisition of the many physiolog-
ical properties by the spermatozoon including the ability
to bind the zona pellucida, an extracellular glycoprotein
coat surrounding the oocytes, and to fuse with the egg
plasma membrane. The fertilizing ability is acquired by
the spermatozoa during the epididymal transit, since it
has been demonstrated that spermatozoa collected from
the proximal segments are unable to fertilize an oocyte in
artificial insemination or in vitro fertilization procedures
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Figure 1: Photography taken from a bull epididymis. Different
anatomical sections are identified: caput (b), corpus (c), and cauda
(d). Vas deferens is also indicated (e). Reproduced from [16] with
permission of the Editorial.

[25] but, in the majority of species, they start to acquire
fertilizing potential in the middle corpus [26].

When spermatozoa reach the elongated spermatid stage
in the testis, their DNA starts to be progressively condensed,
and as a consequence, the DNA transcription will be arrested.
At the time the spermatozoa initiate the epididymal transit,
the synthesis of new proteins is then at a very low range.
Because of this, the sperm maturational process depends
on the sequential interactions of sperm with different
intraluminal fluids [27].

During this transit, spermatozoa undergo many bio-
chemical modifications including the nucleus chromatin
condensation, increases in total surface negative charges
and in disulfide bounds, changes in the plasma membrane
protein and lipid composition (phospholipids composition,
cholesterol/phospholipids ratio), relocalization of surface
antigens, elimination and modifications of surface proteins
[5, 28], structural modifications of the cytoplasmic perin-
uclear theca (PT) [29], and the ability to respond to hypo-
osmotic stress [30].

Spermatozoa are transported through the caput and
corpus epididymal regions by continuous peristaltic contrac-
tions originated in the smooth muscles present in the wall of
the duct, whereas the cauda is maintained quiescent unless it
can be stimulated to contract. The cauda is the main region
responsible for the sperm storage and survival [31]. In bulls
and stallions, the number of sperms stored in the cauda is
sufficient for ten successive ejaculates [32]. The epididymal
cauda environment also keeps spermatozoa in a metabolic
quiescence by preventing premature activation.

The epididymal gene expression and secretion are reg-
ulated by the intraluminal and circulating androgens [33,
34]. Those androgens come from the enzymatic reduction
of the testicular testosterone in the epididymal proximal
regions [35]. Estrogens synthesized by Leydig cells [36]
and epididymal spermatozoa [37] have also a function in
the epididymis, they are involved in water reabsorption
specially in the proximal regions [36, 38–40]. Not only
hormones influence the epididymal function but also the
scrotal temperature [41–44], between 35 and 37◦C in the bull
[45], and the presence of epididymal spermatozoa in close
contact with the epididymal cells [44].
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Figure 2: Schematic representation of apocrine secretion in principal cells of the epididymis. The inset shows electron micrograph of
epididymosomes. AB, apical bleb; EP, epididymosomes; ILC, intraluminal compartment; MV, microvilli. Reproduced from [32] with
permission of the Editorial.

3. Epididymal Fluid and Epididymosomes

Different electrolytes and organic compounds were identi-
fied in bull epididymal fluid. From proximal to distal, there is
a decrease in sodium and chloride with a consequent increase
in organic constituents [46].

Since there is a variation in the gene expression and
the resultant protein expression profile along the epididymal
tubule [5, 23], the spermatozoa must undergo a sequential
maturational process by interaction with different segment
intraluminal fluid and its macromolecules [23]. As it was
mentioned above, the male gamete undergoes many mod-
ifications during the epididymal transit in order to acquire
the fertilizing ability [5, 28], and protein acquisition is
one of the most studied aspects [6]. The acquired proteins
can behave as coating [47], bound trough electrostatic
interactions, or integral plasma membrane proteins [6].
Those integral proteins are mainly glycosylphosphatidylinos-
itol (GPI) anchored to sperm plasma membrane [48] or
integral proteins that lack an N-terminal signal peptide in
their deduced amino acid sequence [49, 50], suggesting that
these proteins cannot be translocated to the endoplasmic
reticulum. On the other hand, it has been demonstrated that
there are epididymal proteins that can be also incorporated
to the sperm intracellular subcompartments [51–53]. All
together these evidences suggest that besides the existence
of a merocrine secretion mechanism, by which the secreted
proteins are expected to be soluble in the intraluminal
fluid, in the epididymal epithelium, there is another unusual
mechanism of secretion [54].

In 1985, Yanagimachi [55] described for the first time the
presence of membranous vesicular structures in the Chinese
hamster epididymal lumen, and he suggested a possible
sperm plasma membrane cholesterol transport function.
Later, the same structures were described in rat [51, 56],
bovine [57–59], and hamster [55, 60].

Membranous vesicles are secreted to the intraluminal
compartment by apocrine secretion (Figure 2) [32]. This

type of secretion is characterized by the formation of blebs
in the apical pole of the epithelial cell that are detached
later, probably by the involvement of cytoskeleton proteins
like actin [61]. Those structures contain selected organelles
and vesicles of various sizes, and there is one hypothesis that
argues that upon detachment they undergo fragmentation
[20]. This process was first described in different tissues in
the rat [62]. Later on, it was described also in epididymal
epithelium of different species (monkey [63], bovine [64],
mouse [65], and cat [66]). Recent studies have confirmed the
existence of this specialized type of secretion [61, 67].

As a result of fragmentation of the apical blebs, these
membranous vesicles called epididymosomes are released in
the epididymal intraluminal compartment. These membra-
nous particles have a diameter of 50 to 500 nm and a highly
complex protein pattern composition [54, 68]. Some of these
proteins are important in the acquisition of sperm-fertilizing
ability [57], whereas others have been proposed to modulate
the acquisition of the sperm forward motility [16, 69], to
protect sperm against reactive oxygen species [70], or to be
involved in the elimination of defective spermatozoa [58].

4. Epididymosomes and Epididymal
Sperm Protein Transfer

In different species, some of the proteins present in the
spermatozoa during their transit through the epididymal
duct have been identified in the epididymosomes. Those
proteins have a wide range of functions. CD52 (HE5)
is a GPI-anchored lymphocyte surface antigen involved
in the modulation of immunological fertility in human,
cynomologus monkey, and rat [71, 72]. The Murine Sperm
Adhesion Molecule 1 (SPAM1)/PH-20 is a GPI-anchored
protein (one of testicular and one of epididymal origin)
that plays a role in sperm-egg cumulus complex interaction
[73]. SPAM1 homologous has been reported in human
[74], cynomologus monkey [75], bovine [76, 77], and rat
[78]. GPX5, a member of the glutathione peroxidase family,



4 Veterinary Medicine International

is added to the spermatozoa in the proximal epididymal
regions and participates in the sperm protection against
oxidative stress [70, 79]. Membranous vesicles found in the
bovine epididymal caput were found responsible for the
transfer of ubiquitin to the spermatozoa [58], suggesting that
this mechanism can be involved in the elimination of defec-
tive spermatozoa. More recently, ADAM7, an epididymal-
expressed disintegrin and metalloproteases lost in sperm
from ADAM2 or ADAM3 knock-out mice [80] with critical
roles in the fertilization process [81], was demonstrated to
be added to the spermatozoa during the epididymal transit
by epididymosomes [82].

P26h is a GPI-anchored protein transferred to the
hamster spermatozoa by epididymosomes involved in the
acquisition of zona pellucida binding ability [83]. It is
localized in the plasma membrane covering the sperm
acrosomal region [60] and participates in sperm-zona pel-
lucida interactions [84]. Its orthologs have been described in
human (P34H [85]), mice (P25m [86]), bovine (P25b [87,
88]), and cynomologus monkey (P31m [89]) with the same
subcellular localization. In the bovine, the amount of P25b in
spermatozoa increases from the corpus to the cauda epididy-
mal regions and the protein seems to be added by epididy-
mosomes since the pattern of expression in those structures
that maintain the same profile and coincubation experiments
revealed that they are able to transfer it to spermatozoa [57].
These observations are in accordance with those observed in
the hamster model with its ortholog p26h [60].

4.1. Mechanism of Interaction between Epididymosomes and
Spermatozoa. In the bull, the proteins associated to the
epididymosomes represent only a low proportion of all the
proteins found in the epididymal fluid, and this association is
characterized by being very strong [50]. From these proteins,
only a selected group can be transferred to the sperm
suggesting that the epididymosomes are not fused to the
sperm plasma membrane but transfer selected molecules
in a regulated manner. Interestingly, those proteins are
transferred to the midpiece and/or the acrosomal cap [59],
regions with important functions in motility and female
gamete interactions, respectively. Indeed, P25b was localized
in the acrosomal cap [87] as well as its ortholog P26h,
involved in the sperm-zona pellucida interactions [84].

The amount of biotinylated cauda epididymal proteins
transferred to the bovine caput spermatozoa in in vitro coin-
cubation experiments increases with the time until reaching
a plateau after 120 to 150 minutes [59]. After this incubation
time, the addition of unbiotinylated proteins to the coincu-
bation experiments is unable to displace the already acquired
biotinylated proteins, suggesting that the transferred proteins
are tightly bound to the sperm membrane [69]. The transfer
is more efficient at physiological epididymal environment
conditions [46, 90, 91]: temperature of 37◦C, pH of 6.0 to
6.5, and in presence of zinc [59]. In accordance with these
observations, the optimum pH for the transfer of P25b was
also slightly acidic [57].

Further studies demonstrated that epididymosomes col-
lected from caput or cauda epididymal fluid have a different
protein composition. Although they have many proteins in

common, as beta-actin, aldose reductase, and MIF, there
are many others whose expression is restricted to one
or the other population. As an example, HSPA5 is more
expressed in caput, and P25b was only found in cauda
epididymosomes [69]. In addition, biotinylated proteins
associated with caput and cauda epididymosomes showed
differences, suggesting that they have a distinctive group of
proteins exposed in the membrane surface and, therefore,
different proteins to interact with the male gamete and in
a different way. This idea is supported by the fact that
whereas caput epididymosomes transfer a different pattern
of biotinylated proteins to the caput than to the cauda
spermatozoa, cauda epididymosomes can transfer the same
biotinylated protein pattern to both sperm populations.
Thus, it was demonstrated that caput epididymosomes
are unable to compete with cauda epididymosomes in
coincubation experiments [69]. In summary, it is proposed
that each epididymosome population has a different protein
composition, capable to transfer a different set of protein to
the maturating spermatozoa and interacting with them in a
different way.

Those interactions could be regulated by the presence of
different functional membrane domains. It is well known
that the plasma membrane of both somatic [92] and
sperm cells [93] is compartmentalized in different struc-
tures. Cholesterol- and sphingolipid-enriched detergent-
resistant membrane domains or “rafts” are special mem-
brane domains with an important role in the compart-
mentalization of specific lipids and proteins, driving also
cell signal transduction and vesicular trafficking events [94].
These microdomains are enriched in GPI-anchored and
transmembrane signaling molecules like protein tyrosine
kinases [95, 96]. In the bull epididymal spermatozoa, it has
been reported that some proteins are excluded from rafts
(aldose reductase and MIF) and others are detected in rafts
domains (P25b and AK1). However, along the epididymal
transit, they can undergo important compositional modifi-
cations [97] and a topographical reorganization of different
components [10, 11]. This is the case of AK1 that, distally
in the epididymal duct, can be found equally associated to
the raft and nonraft sperm plasma membrane domains [14].
Based on these findings, it is proposed that the raft domains
have a role in the mechanism of protein transfer from the
epididymosomes to the spermatozoa. In agreement with
this hypothesis, it was demonstrated that raft and nonraft
domains also exist in cauda epididymosomes and that the
raft surface-associated P25b protein can be transferred to
the same localization and membrane domain to the caput
spermatozoa [98].

As it was discussed above, there exist different epididy-
mosomes populations according to the epididymal segment
where they are secreted. It has been also reported the
presence of two different populations of vesicles in the rat
cauda epididymal fluid according to their ultrastructure
and enzymatic composition [99]. In bovine, it has also
been recently reported the existence of two different cauda
epididymosomes populations, not differentiated by their
size but by their density, protein and lipid composition,
and ultrastrutural appearance. The low-density population
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is characterized by having a higher cholesterol/phospholid
ratio than the high-density one. They also have a higher
amount of proteins associated to lipid rafts, like P25b, in
contrast to the high-density population, that are enriched
in beta-actin. Despite these differences, they are capable of
transferring the same biotinylated protein pattern, suggest-
ing that those differences could have played a role in other
aspects of the interaction mechanisms [100].

5. The Role of Epididymis in Sperm Survival and
the Acquisition of Sperm Motility

Under androgen control, the epididymal epithelial cells
secrete many factors to the lumen of the tubule involved in
the spermatozoa survival and storing processes [19]. It has
been described that the cauda epididymal secretions have
the ability to store sperm cells for several days maintaining
their fertilizing ability [31]. It was observed that spermatozoa
establish specific interactions with epididymal principal cell
cultured in vitro [101], including the observation of a
high percentage of spermatozoa anchored to the epididymal
cell membranes [102]. In bovine, the presence of cauda
epididymal cells or their secretions can improve the sperm
motility [102–104]. Those effects were also observed in the
human model [101, 105]. However, the same response is
observed when spermatozoa are coincubated with cells from
different tissue origin, including oviductal epithelial cells
[106, 107]. Studies carried out in bovine demonstrated that
several protease inhibitors [108] and a 42-kDa protein are
secreted and are capable of maintaining the sperm motility.
The later is adsorbed to the sperm surface during incubation
with epididymal cells culture medium, and this protein
was identified as the bovine estrogen sulfotransferase (EST).
This protein was also found in the acrosomal region of the
hamster spermatozoa, acquired along the epididymal transit
[109]. One of the possible functions suggested was to inhibit
the activation of the acrosomal protease acrosin [109, 110].

Estrogen sulfotransferase (EST) is a cytosolic enzyme
that catalyzes a specific sulfonation with high substrate affi-
nity for estrogens (estrone and estradiol) [111]. It is present
in the acrosomal region of epididymal caput spermatozoa
as well as in caput epididymal tissue and epididymosomes.
Recombinant EST was able to add a sulfate group to
cholesterol on epididymal spermatozoa. Even EST has a high
affinity for estradiol, the concentration of this compound
decreases dramatically in the proximal segments of the
epididymis, favoring other sterols present in the sperm
membrane to be sulfated [112].

It has been demonstrated that other molecules prob-
ably involved in the regulation of the sperm motility are
transferred from epididymosomes to spermatozoa; this is the
case for enzymes belonging to the polyol pathway and the
cytokine, macrophage inhibitor factor (MIF).

The enzymes aldose reductase (AKR1B1) and sorbitol
dehydrogenase (SODH) are members of the polyol pathway
and their presence has been reported in rat [113], human
[114], and bovine epididymis [16]. AKR1B1 is an enzyme
that reduces glucose into sorbitol using NADPH as an elec-
tron donor. On the other hand, SODH can oxidize sorbitol

into fructose by using NAD as an electron acceptor [115].
Since both, sorbitol and fructose, are energy sources for the
spermatozoa [116], it is proposed that those molecules could
play a role in the modulation of sperm motility. Both proteins
have been identified in the spermatozoa and the principal
cells of the epididymal epithelium and epididymosomes,
suggesting that they are being secreted by apocrine secretion.
In fact, this statement is enforced by the absence of the
signal peptide in AKR1B1 sequence [50]. Aldose reductase
expression and activity are maximal in the proximal and
middle segments of the epididymis and decreasing to distal
[50] while for SODH are higher in the proximal and distal
segments of the epididymis compared to the middle segment
[16]. Interestingly, the optimal pH for aldose reductase
maximal enzymatic activity is 6.5, the physiological pH of
the epididymal milieu, whereas for SODH, the enzymatic
activity is higher at pH 7.0, closer to the pH that the
spermatozoa encounter after ejaculation. Those observations
suggest that in proximal segments the polyol pathway could
collaborate to maintain a sperm transient immobilization.
This could be explained by the hyperosmolarity of the
epididymal milieu generated by sorbitol and the deprivation
of energy sources to the sperm intracellular compartment,
since sorbitol is poorly permeable to the sperm plasma
membrane. But at the end of the epididymal transit, sorbitol
is oxided in fructose, a permeable energy source that now can
be used by spermatozoa.

Macrophage migration inhibitory factor (MIF) is a T-
cell cytokine [117], whose presence has been also reported in
many other tissues including the male reproductive tract [50,
51]. In the rat, it was found in small vesicles secreted by the
epididymal epithelium that interact with the spermatozoa
in the epididymal lumen. Later in the epididymal transit,
MIF was found associated with the sperm dense fibers
suggesting a role of MIF in the sperm motility acquisition
[51]. In the bovine, MIF is also present in the epididymal
spermatozoa and epididymosomes. The localization of MIF
in the principal cells of the epididymal epithelium and the
lack of the signal peptide in the MIF sequence reinforce
the idea that MIF is secreted in an apocrine way. Another
possible role for MIF in the acquisition of the sperm motility
is the fact that MIF has a thiol-protein oxydoreductase
catalytic property that can participate in the thiol status of
the maturating epididymal spermatozoa [51].

The control of sperm motility is a complex process
involving different pathways. Protein phosphorylation is
another mechanism implicated on the motility startup.
The signaling kinase, glycogen synthase kinase-3 (GSK-3),
regulated by serine and tyrosine phosphorylation [118], and
the protein phosphatase PP1γ2 are present in the epididymal
spermatozoa and are critical for the regulation of sperm
motility and fertility [119].

6. Seminal Plasma Proteins and Prostasomes

Seminal plasma is composed of mixed secretions of the male
accessory reproductive glands. Vesicular structures similar
to epididymosomes have been also found in the seminal
plasma. Those structures were first described in the human
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semen as a prostate secretion, and due to this, they were
called prostasomes [120, 121]. Prostasomes-like vesicles were
found in seminal plasma from many other species [122–
125], including bovine [57]. Whereas in bovine, those are
secreted by seminal vesicles [126]; in human, seminal vesicles
do not seem to be the accessory gland responsible for
the production of this secretion [127]. Those particles, as
epididymosomes, have also a diameter of 50 to 500 nm,
a cholesterol/phospholipid ratio of 2, a high content of
sphingomyelin, and many proteins associated with them, like
many enzymes [128], aldose reductase, P25b, MIF, and PDC-
109 [14]. Recently, the presence of chromosomal DNA in
those structures was demonstrated, suggesting its possible
transfer to the spermatozoa [129]. However, the mechanism
by which they are produced is slightly different. They are
formed in the cytoplasm of the prostatic cells in storage
vesicles and then, by exocytosis, their content is released into
the extracellular lumen [121]. It has been reported that the
fusion of prostasomes isolated from human semen to the
spermatozoa is favored at an acidic pH [130].

Their functions have been better studied in humans. It
is well known that prostasomes have immunosuppressive
activity via protection against complement attack [131–133],
increase the sperm motility [134, 135], and have a role in the
sperm capacitation process [136] and in the stabilization of
the sperm plasma membrane [54].

7. Changes in the Spermatozoa at the
Time of Ejaculation

Once in the female reproductive tract, spermatozoa start to
undergo changes directed to prepare the male gamete to
fertilize the oocyte. Those processes involve the formation
of the oviductal epithelium reservoir, designed to keep the
spermatozoa with fertilizing ability until the moment of
the ovulation, the molecular changes that occur to display
the hyperactivated motility, and the capacitating associated
changes that prepare the spermatozoa to penetrate the female
gamete.

At ejaculation, the spermatozoa are mixed with the
seminal plasma components. In the bovine, the seminal
vesicles secrete a family of proteins called bovine seminal
plasma or BSP proteins. They contain two fibronectin type
II domains in tandem [137–139] that bind to choline phos-
pholipids [140] on the sperm membrane and stimulate their
phospholipid and cholesterol efflux [141]. This is one of the
first events that occur during capacitation [142]. Cholesterol
efflux alters the lipid raft stability and the distribution of
these domains [93, 143] and, as a consequence, proteins
associated with lipid rafts are also disarranged [12].

Bovine cauda epididymal spermatozoa have proteins
associated to rafts (P25b and AK1) and nonrafts domains
(aldose reductase and MIF) [14]. When the localization of
those proteins is evaluated in spermatozoa recovered from
60-min postejaculated semen, P25b and AK1 proteins are
excluded from the raft domains. Whereas AK1 is displaced
to nonrafts domains as early as 15 minutes after ejaculation,
P25b completes its migration after 30 minutes. Those
changes were accompanied by a decrease in the cholesterol

content in ejaculated compared with cauda epididymal sper-
matozoa. Incubation of cauda epididymal spermatozoa with
seminal plasma without prostasomes or metabolites could
reproduce the same results, but not with the BSP proteins.
PDC-109, previously described as a protein responsible for
the cholesterol efflux in the bovine sperm at the ejaculation,
was capable of dissociating the P25b from the raft domains
after 4 hours of incubation. Instead, Niemann-Pick C2
(NPC2), also found in the seminal plasma of various species
[144, 145], was able to induce those changes earlier. The
ejaculated spermatozoa plasma membrane reorganization
could have an important role in the correct positioning of
molecules involved with the attachment to the oviductal
epithelium and female gamete interactions. In fact, AK
activity is important for biosynthesis of ATP and then for
flagellar motility [146], and P25b was demonstrated to be a
bull fertility marker [87].

8. Molecular Markers of Bull Fertility

All the maturational processes that the spermatozoa undergo
once they leave the testis prepare them to fertilize the oocyte.
As it was discussed above, in many of them, like protein
acquisition and molecular reorganization, epididymosomes
and prostasomes are involved. Since those mechanisms have
been well studied, their occurrence may be associated with
sperm maturation and the fertilizing ability acquisition. This
is the case of P25b, involved in the sperm maturation, since
it is a protein acquired by the spermatozoa in the epididymis
by epididymosomes transfer [57] and in the acquisition of
fertilizing ability, since it is present in a higher amount in
bulls with high fertility rates compared to those that are
subfertile [87]. This fact is confirmed for its role in human
(P34H), whose expression was decreased in a significant
proportion of men investigated for male infertility [85, 147].

Comparative analysis of the protein composition of
accessory glands fluid [148, 149], cauda epididymal fluid
[150], and ejaculated spermatozoa [151] between bulls with
high and low fertility rates allowed to associate some other
proteins to the sperm fertilizing ability whose mechanism of
acquisition has not been described yet.

In the accessory sex glands fluid of high fertility rates
bulls, it was found a higher amount of osteopontin and
phospholipase A2 than in the fluids coming from low fertility
rates bulls [148]. Osteopontin is a protein found in the
postacrosomal region of cauda epididymal and ejaculates
spermatozoa with a role suggested in fertilization and the
blocking of the polyspermy [152], and PLA2 is present in
the bull sperm plasma membrane [153], and it is related to
acrosome reaction events [154], sperm-egg fusion [155, 156],
and probable implications in sperm motility [157]. On the
other hand, a lower amount of spermadhesin Z13 was found
the protein extracts from those bulls, with a variable associa-
tion of BSP5 expression. Spermadhesin Z13 is a protein with
dual effects on bovine sperm motility, stimulating at average
concentrations, but inhibitory at high levels [158]. On the
contrary, a member of the spermadhesin protein family
from the boar seminal plasma, PSP-I, has been proposed as
candidate fertility marker [159]. BSP5 facilitates fertilization
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by cholesterol efflux induction, but higher amounts became
detrimental to fertility [160]. BSP5 was demonstrated to have
an inhibitory activity on PLA2 [161]; probable explanation
for the noncorrelated results is observed.

Fertility-associated antigen (FAA) is a heparin-binding
protein (HBP) whose presence was associated with high
fertility in bulls [149]. The protein is detected in seminal
vesicle, prostate accessory glands, and sperm membranes.

In the cauda epididymal fluids, α-L-fucosidase and
cathepsin D were more predominant in high-fertility bulls,
while 3 isoforms of Prostaglandin D synthase (PGDS) were
associated to low-fertility scored bulls [150]. α-L-fucosidase
may participate in the modification of carbohydrate moieties
of sperm membrane proteins during epididymal transit, and
it was absent in seminal plasma of bulls with elevated per-
centage of abnormal sperm [162]. Cathepsin D is synthesized
mainly in caput and corpus epididymal regions of the stallion
[145] and may participate in the proteolytic remodeling of
membrane components of sperm during epididymal transit.
The role of PGDS is not clear, but it was suggested that
they act on polyunsaturated fatty acid in the sperm [163],
regulating membrane fluidity [164].

D’Amours et al. [151] found three proteins more abun-
dant in sperm extracts from low fertility rates bulls: T-
complex protein 1 subunits 3 and q (CCT5 and CCT8),
proteasome subunit a type-6 (PSMA6), two isoforms of
epididymal sperm-binding protein E12 (ELSPBP1) and
BSP1, and two proteins significantly more associated to
high-fertility bulls: adenylate kinase isoenzyme 1 (AK1)
and phosphatidylethanolamine-binding protein 1 (PEBP1).
CCTs and AK1 explained 64% of the fertility scores. CCTs are
members of the class II chaperonins, and after working dur-
ing spermatogenesis it would be discarded in residual bodies
at spermiation [151]. PSMA6 is part of the proteasome
multicatalytic protease that degrades polyubiquitinated pro-
teins [151], and its presence has been associated with sperm
ubiquitination and DNA defects in bulls [151]. ELSPBP1
has epididymal origin [165] with structural similarities to
BSPs, suggesting that those proteins could stimulate lipid
efflux and destabilize the membranes, reason supported by
the finding of ELSPBP1 and BSP1 in immotile but still alive
sperm subpopulation. AK1 is an enzyme acquired during
the epididymal transit with functions in sperm motility
[146, 166], and PEBP1 is a GPI-anchored receptor [167] with
inhibitory effect on sperm capacitation [168], probably the
explanation for its negative correlation with BSP1.

9. Conclusion

The secretion of membranous vesicles by the epididymal and
accessory glands epithelia to the epididymal fluid or seminal
plasma, respectively, is one of the mechanisms by these cells
are capable to control the sperm posttesticular maturation.
These processes occur in a time and tissue sequential manner
under hormonal control. The experimental data summarized
in this paper support the important role of this mechanism
in the acquisition of the fertilizing ability by the spermatozoa.

The possibility of epididymosomes purification and the
demonstration of its ability to transfer proteins under in

vitro conditions to the maturating spermatozoa open a
possibility of its uses in reproductive biotechnologies like
semen freezing or in vitro fertilization.

It is also known that processes associated to cryop-
reservation can reduce sperm fertility by causing several
damages and capacitating-associated events on them [169–
171]. Lessard et al. [88] demonstrated that the loss of P25b
during the cryopreservation procedures could be one of the
responsible events that cause a decrease in the bull semen
fertility. In this case, coincubation of spermatozoa with
epididymosomes could be thought as a rescuing therapy.

Since some of the proteins acquired by the spermato-
zoa during the maturational processes have been already
described, these can be used as fertility markers, having the
possibility to select male with higher fertility performance.

All together, it can be concluded that the membranous
vesicles have an important role in the sperm physiology
and it is, at the moment, the main process involved in
the acquisition of the sperm fertilizing ability. Its use in
reproductive technologies is still an area to explore.
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[29] A. Mújica, F. Navarro-Garcı́, E. O. Hernández-González,
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[155] M. S. Riffo and M. Párraga, “Role of phospholipase A2
in mammalian sperm-egg fusion: development of hamster
oolemma fusibility by lysophosphatidylcholine,” Journal of
Experimental Zoology, vol. 279, no. 1, pp. 81–88, 1997.

[156] Y. Y. Yuan, W. Y. Chen, Q. X. Shi et al., “Zona pellucida
induces activation of phospholipase A2 during acrosomal
exocytosis in guinea pig spermatozoa,” Biology of Reproduc-
tion, vol. 68, no. 3, pp. 904–913, 2003.

[157] S. Bao, D. J. Miller, Z. Ma et al., “Male mice that do not
express Group VIA Phospholipase A2 produce spermatozoa
with impaired motility and have greatly reduced fertility,”
Journal of Biological Chemistry, vol. 279, no. 37, pp. 38194–
38200, 2004.
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