
Frontiers in Immunology | www.frontiersin.

Edited by:
Neeltje van Doremalen,

Rocky Mountain Laboratories (NIAID),
United States

Reviewed by:
Axel T. Lehrer,

University of Hawaii at Manoa,
United States

Sofia A. Casares,
Naval Medical Research Center,

United States
Katie Louise Flanagan,

RMIT University, Australia

*Correspondence:
Christine Dahlke
c.dahlke@uke.de

Specialty section:
This article was submitted to

Vaccines and Molecular
Therapeutics,

a section of the journal
Frontiers in Immunology

Received: 31 August 2020
Accepted: 30 November 2020
Published: 08 January 2021

Citation:
Fathi A, Addo MM and Dahlke C

(2021) Sex Differences in
Immunity: Implications for the

Development of Novel Vaccines
Against Emerging Pathogens.
Front. Immunol. 11:601170.

doi: 10.3389/fimmu.2020.601170

MINI REVIEW
published: 08 January 2021

doi: 10.3389/fimmu.2020.601170
Sex Differences in Immunity:
Implications for the Development
of Novel Vaccines Against
Emerging Pathogens
Anahita Fathi 1,2,3, Marylyn M. Addo1,2,3 and Christine Dahlke1,2,3*

1 University Medical Center Hamburg-Eppendorf, 1st Department of Medicine, Division of Infectious Diseases, Hamburg,
Germany, 2 Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg,
Germany, 3 German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany

Vaccines are one of the greatest public health achievements and have saved millions of
lives. They represent a key countermeasure to limit epidemics caused by emerging
infectious diseases. The Ebola virus disease crisis in West Africa dramatically revealed the
need for a rapid and strategic development of vaccines to effectively control outbreaks.
Seven years later, in light of the SARS-CoV-2 pandemic, this need has never been as
urgent as it is today. Vaccine development and implementation of clinical trials have been
greatly accelerated, but still lack strategic design and evaluation. Responses to
vaccination can vary widely across individuals based on factors like age, microbiome,
co-morbidities and sex. The latter aspect has received more and more attention in recent
years and a growing body of data provide evidence that sex-specific effects may lead to
different outcomes of vaccine safety and efficacy. As these differences might have a
significant impact on the resulting optimal vaccine regimen, sex-based differences should
already be considered and investigated in pre-clinical and clinical trials. In this Review, we
will highlight the clinical observations of sex-specific differences in response to
vaccination, delineate sex differences in immune mechanisms, and will discuss the
possible resulting implications for development of vaccine candidates against emerging
infections. As multiple vaccine candidates against COVID-19 that target the same antigen
are tested, vaccine development may undergo a decisive change, since we now have the
opportunity to better understand mechanisms that influence vaccine-induced
reactogenicity and effectiveness of different vaccines.

Keywords: vaccine, hormones, genetic, X-linked gene products, X-chromosome inactivation, miRNAs, emerging
infections, sex differences
INTRODUCTION

Vaccination has been one of the most successful public health interventions to date. Every year,
vaccines prevent millions of deaths worldwide (1). Despite this remarkable achievement, recent
outbreaks of emerging viruses such as Ebola, Zika, and the coronaviruses (CoV) SARS-CoV, MERS-
CoV, and SARS-CoV-2 underline the importance of a more rapid and systematic vaccine
org January 2021 | Volume 11 | Article 6011701
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development. In this context, a deeper understanding of host-
specific mechanisms that influence vaccine-induced immunity is
urgently needed to rapidly develop optimal vaccine strategies for
heterogeneous populations.

Classic vaccine development has been rather empirical and
employs three vaccine types: i) live attenuated, ii) inactivated,
and iii) subunit vaccines. They represent “one bug, one drug”
approaches as their respective safety and immunogenicity
profiles are pathogen-specific. Their development is both time-
and cost-intensive. To accelerate the response to emerging
pathogens, so-called “plug-and-play” vaccine platforms have
been generated, in which e.g. a carrier system can be adapted
to express antigens of interest. These platforms can serve as
blueprints to swiftly create vaccine candidates against emerging
infectious diseases (EID).

Vaccine development traditionally follows a “one-size-fits-all”
approach, although it is well understood that host factors like age,
co-morbidities, co-infections, the microbiome and sex influence
individual responses to vaccination. With regard to sex, a growing
body of evidence indicates its significant role: Women generally
develop stronger innate and adaptive immune responses thanmen
(2–4), which can lead to a more rapid clearance and control of
infection (5). They often express higher antibody levels and greater
T-cell activation, and are thus likely to be more resistant to
infections (6). While the trend toward an elevated vaccine-
induced humoral and/or cellular immunogenicity in women (7,
8) may be beneficial with regard to efficacy, this may on the other
hand lead to increased reactogenicity and negatively impact
vaccine safety (6).

Here, we will provide insights gained from clinical trials with
regard to sex-specific responses to vaccination and delineate
underlying hormonal and genetic mechanisms that are described
to affect immunity.
INFLUENCE OF SEX ON OUTCOMES
OF VACCINATION

Findings from clinical trials have underlined that sex might have a
crucial influence on the vaccine response. A higher magnitude of
immune responses in adult women has been observed for a variety
of vaccine candidates, including vaccines against influenza, yellow
fever, rubella, measles,mumps, hepatitis A andB, herpes simplex 2,
rabies, dengue and smallpox (6).Generally, adverse events aremore
common in adult females than males, which has been shown for
influenza, hepatitis B, and yellow fever vaccines (9). The inactivated
trivalent influenzavaccine (TIV)has, for example, beendescribedas
more reactogenic in women, who reported more adverse events
such as injection site pain, myalgias and headaches than men after
vaccination (10). Simultaneously, TIV was more immunogenic in
women, and half a dose of TIV already induced humoral responses
comparable to those in men who received the full dose (10). The
importance to take sex into account as a biological variable when
assessing vaccine efficacy was further depicted in a phase 3 trial of a
glycoprotein D herpes simplex vaccine candidate (8, 11). This
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vaccine had shown no efficacy in the pre-specified overall analysis
of both sexes. However, in a post-hoc sex-stratified analysis, the
vaccinewashighly protective against genital herpes in femaleswhile
showing no protective effect in male vaccinees (11). Notably,
humoral and cell-mediated immune responses did not differ
between sexes, which illustrates the complexity of this issue.
NON-SPECIFIC EFFECTS
OF VACCINATION

Vaccination may also modulate immune responses that are not
antigen-specific, and experts have raised awareness for non-
specific effects (NSE) of vaccination on immunity. These NSE
may impact subsequent morbidity and even mortality from non-
vaccine-related infectious diseases. It is assumed that these can
be sex-specific (2). In areas where childhood mortality was high,
clinical trials of high-titer measles vaccine and subsequent
administration of diphteria-tetanus-pertussis or inactivated
poliovirus vaccine found that mortality in girls was elevated as
compared to boys who received the same vaccination regimen
(12). A post-hoc analysis of a phase 3 malaria vaccine trial testing
the recombinant protein vaccine RTS,S has also described a sex-
differential mortality after receipt of the vaccine (13). Here, an
increase in all-cause mortality was observed in girls who had
received RTS,S compared to a control group of girls. Those
differences were not observed in boys. The results were
interpreted with caution and the possibility that they were
incidental was raised. The WHO shared this interpretation and
recommended the vaccine for use (14), however, others indicate
that the findings were highly significant and may be due to NSE
and emphasize that the observed safety signals need to be further
monitored in phase 4 post-licensure studies, and should also be
investigated in preclinical studies (15).
VIRAL VACCINES

Findings fromclinical trials assessing viral vaccines are of particular
interest in the field of EID vaccine research, since an array of
recombinant viral vectors arenow indevelopment for novel vaccine
candidates. These candidates include replication-deficient vectors
that deliver the antigenic insert into the cell and thereby induce
antigen-specific immune responses. In comparison, replication-
competent vectors do replicate and, therefore, may induce a
stronger immune response to the vector and tend to be more
reactogenic and immunogenic.

Modified Vaccinia virus Ankara (MVA) is a replication-deficient
viral vector, has been licensed as a smallpox vaccine (ImvamuneⓇ/
ImvanexⓇ), andhasbeenextensively tested.Males showedonaverage
27% higher anti-MVA titers (16), and stronger T-cell responses to
DryvaxⓇ, another poxvirus vaccine than females, in addition to
statistically significant sex-related differences in interleukin (IL)-2,
IL-1b, and IL-10 secretion (17). There was no reported sex difference
in adverse events toDryvaxⓇvaccination (18).During the last decade,
MVA has been further developed as a promising recombinant viral
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vector for a multitude of pathogens (19–21). A MVA-based vaccine
candidate against MERS-CoV has successfully completed phase 1
testing (22) and theMVA-basedfilovirus vaccineMVA-BNFiloⓇhas
beenapproved in2020aspart of aheterologousprime-boost regimen
against Ebola virus (EBOV) (23). MVA-vectored vaccine candidates
are currently also evaluated against Coronavirus Disease 2019
(COVID-19), and the candidate MVA-SARS-2-S has recently
entered clinical trials (NCT04569383). So far, these studies have
not reported on sex differences.

Adenoviruses (Ad) are widely used as recombinant vaccine
vectors and both chimpanzee and human adenovirus vectors,
including different serotypes like Ad5 and Ad26, have entered
clinical trials (24–27). In a clinical trial of the anti-EBOV vaccine
Ad5-EBOV, fever was significantly more prevalent in men than in
women (28). For another Ad5-vectored vaccine expressing HIV-
antigens, a study that assessed predictors of cellular immune
responses against this vaccine revealed that female sex was
correlated with a higher number of vaccine responders (29). The
most developed viral vector vaccine candidates against COVID-19
areAd-based (30); these include thechimpanzeeadenovirus (ChAd)-
vectored vaccine ChAdOx1 nCoV-19, a heterologous Ad26/Ad5-
vectored vaccination regimen, as well as an Ad5-vectored candidate;
and phase 1/2 (ChadOx1,Ad26/Ad5) and phase 2 results (Ad5) have
beenpublished (27, 31, 32). The clinical studies of these candidates all
included both sexes and the candidates were found to have an
acceptable safety profile and to be immunogenic. Sex-differences
could not be inferred from the phase 1/2 trials, which are small by
design. However, the phase 2 trial, assessing a single dose of Ad5
vectored vaccine against placebo, included 508 participants with a
balanced sex ratio. Humoral and cellular immunogenicity outcomes
did not differ betweenmen andwomen, but feverwasmore common
in women post-vaccination (27).

The yellow fever virus strain 17D (YF-17D) is a live-attenuated
virus vaccine that is highly effective against YF, but has a rather
reactogenic profile. In rare cases, YF-17D can cause serious adverse
events (SAE). Local and early reactions after YF-17D vaccination
have been reported more often in women than in men (33). It has
been postulated that this observation may be due to an enhanced
innate immune response, as a higher number of TLR-associated
genes that activate interferon pathways have been found to be
upregulated in women post-YF-17D immunization (6). Notably,
YF-17D vaccine-associated neurotropic disease (YF-AND) and YF
vaccine-associated viscerotropic disease (YF-AVD)—both rare but
highly lethal SAE—have occurred more frequently in men than in
women (33). The underlying reasons remain to be elucidated.
Currently, YF-17D is also under investigation as a carrier for EID
vaccines, like the dengue virus vaccine candidate Dengvaxia® (34)
and as a COVID-19 vaccine candidate (30).
SEX-SPECIFIC MECHANISMS
IN IMMUNITY

Hormonal Factors
Clinically observed sex-differential responses to vaccination may
partially be explained by hormonal factors. Women exhibit
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higher levels of estrogen and progesterone, while testosterone
is more highly expressed in men, and circulating hormones are
assumed to play a relevant role in immunity (35). Sex steroid
hormone levels do not only vary greatly between the sexes, but
also throughout the life span. The quality and magnitude of
immune response may, therefore, vary between men and women,
pre- and post-menopausal women, or adults compared to
children. Pre-menopausal adult women generally have stronger
immune responses than children, men or women during the
post-menopause (36). Hormonal levels also fluctuate during the
menstrual cycle: estrogen levels increase during the follicular
phase, and progesterone remains low, while the luteal phase is
characterized by high estrogen 17ß-oestradiol (E2) and
progesterone plasma concentrations (37). While data are
scarce, there is evidence that the menstrual cycle might affect
immune cell numbers and modulate their activity throughout the
4-week period (38). Regulatory T-cells have been observed to be
expanded during the follicular phase (38), while B-cell numbers
and activity might increase in the periovulatory period.
Monocyte numbers and their Tumor Necrosis Factor (TNF)a
production increase during the luteal phase, while their IL-1
levels develop in opposing fashion. Data on Natural Killer (NK)
cell number and activity have been conflicting, but a study by
Souza and colleagues observed no correlation between
progesterone and NK cell activity, while cytotoxicity was
higher in the follicular than in the luteal phase of the
menstrual cycle (38). However, the question whether and to
what extent hormonal fluctuations are relevant for the vaccine
response has not been comprehensively investigated so far.

The mechanisms of sex steroids that influence immune
responses are generally driven by their binding to receptors,
which in turn directly influence pro- and anti-inflammatory
signaling pathways (39). Numerous immune cells express
estrogen (ERs), androgen (ARs) and progesterone receptors
(PRs) to varying degrees. The binding of sex steroids can
directly affect the immune cell. Estrogens have been implicated
in plasmacytoid dendritic cell (pDC) homeostasis, which is a key
cell in antiviral immunity. pDCs produce large amounts of
interferon (IFN)-a in response to a wide range of viruses, but
also other microbial stimuli (40), and probably vaccines (41, 42).
The induction of type I IFN drives the activation and anti-viral
effector functions of immune cell populations and plays a pivotal
role in inducing adaptive immunity. Human female peripheral
blood mononuclear cells (PBMCs) and pDCs produce
significantly more IFN-a in response to viral nucleic acids or
synthetic Toll-like receptor (TLR)7 ligands than PBMCs and
pDCs in men (43, 44). The precise functional mechanisms by
which sex hormones regulate the IFN-a response of pDCs are
unknown, but are thought to involve ERa signaling (45), and an
increased level of estrogen may lead to an increased amount of
TLR7-mediated IFN-a secretion by pDCs (46).

The E2 has a strong influence on the functional activity of innate
immune cells, and it can greatly influence the quality and extent of
adaptive immune responses (47). Elevated E2 levels strengthen
type 2 helper T-cell (Th2) reactions, augment humoral immunity
and regulate pro-inflammatory responses (5, 6, 48). In comparison,
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low E2 concentrations may result in Th1-type and cell-mediated
responses (5, 49). Notably, E2 levels correlated with the number of
antibody-secreting cells andantibody levels, as theyarehighest before
ovulation in females (50). An in vitro study could further show that
estrogen enhanced antibody production and increased the survival
rate of B-cells (51).

In comparison to estrogen, several studies reported that
testosterone induces rather immunosuppressive effects. The Y-
chromosome includes the sex-determining region (SRY), which
is responsible for gonad development and the main driver for
higher levels of androgens such as testosterone in men. This
immunosuppressive effect has been observed in the context of
the seasonal TIV. Higher serum testosterone concentrations
correlated with reduced neutralizing antibody responses
following influenza vaccination (52). In particular, males with
elevated levels of serum testosterone and high expression of
genes participating in lipid metabolism were significantly less
likely to respond to TIV.

Genetic and Epigenetic Factors
Sex differences in vaccination can already be observed in children,
which suggests that not only hormonal but also genetic and
epigenetic factors may influence outcomes of vaccination. For
example, vaccines against hepatitis B, diphtheria, pertussis,
pneumococcus, rabies, malaria and human papillomavirus
induced a greater immune response in female than in male
children (3).

An important effect is mediated through the gene dosage
between male and female cells. Dosage compensation for X-
linked gene products may occur via random epigenetic silencing
of one of the two X-chromosomes in females. However, 15-23% of
X-linked human genes escape X-chromosome inactivation (XCI)
resulting in simultaneous expressionofbothalleles (53). Sincemany
genes encoded on the X-chromosome regulate immune functions,
including TLR7, TLR8, IL-2, IL-3, Forkhead-box-P3 (FOXP3), and
C-X-C chemokine receptor 3 (CXCR3), distinct gene expression
levels may influence immune- and hence vaccine-specific
responses (54).

Interestingly, the key immune receptor TLR7 is linked to the
pathophysiology of the autoimmune disorder systemic lupus
erythematosus (SLE) (54). In addition to pDCs, TLR7 is also
present on monocytes/macrophages and B-cells. The gene
encoding for TLR7 can escape from XCI and be biallelically
expressed on B-cells, which then display higher TLR7-driven
functional responses. This may increase susceptibility to TLR7-
dependent autoimmune syndromes in females.

In a mouse model for leishmania infection, biallelic expression
was likewise observed forCXCR3.XCI escape led to increased levels
of CXCR3 in T-cells that consequently producedmore IFN-g, IL-2,
and expressed more CD69 compared with T-cells that expressed
CXCR3only fromone allele (55). XCI escape byCXCR3potentially
contributes to enhancedTh1 responses in females, whichmay affect
the sex-associated bias observed during leishmania infection (55).
Notably, the importance of the CXCR3 ligand CXCL10 (IP10) in
response to a vaccine has been shown by our group in a first-in-
human trial testing the recombinant viral vector vaccine against
Frontiers in Immunology | www.frontiersin.org 4
EBOV rVSV-ZEBOV (now renamed VSV-EBOV; tradename:
Ervebo®) (56), as increased CXCL10 levels in the blood correlated
with higher antibody titers. Whether a sex-bias toward CXCL10 in
VSV-EBOV vaccinees exists is unknown, as studies with large
cohorts including a balanced male:female ratio to evaluate innate
immune responses and CXCL10 expression have not yet
been performed.

Sex-differential expression ofmicroRNAs (miRNAs) represents
another gene-related factor that affects immunity. The X-
chromosome contains 10% of the 800 miRNAs, whereas the Y
chromosome encodes for only two miRNAs (57). MiRNAs are
important regulators of messenger RNA (mRNA) stability and
translation, and it is assumed that expression of about 60% of
protein-coding genes are regulated by miRNAs (58). In the last
decade, the role of miRNAs on the innate and adaptive immune
response has been discussed extensively [reviewed in (59)]. Due to
the high density of miRNAs encoded by the X-chromosome, it can
be concluded that females may express more miRNAs due to
incomplete XCI. The expression level of miR-223, for example,
which is encoded on the X-chromosome, differs between men and
women, either due to a skewed inactivation or an escape of gene
silencing. High levels of miR-223 can limit recruitment of innate
immune cells due to downregulation of CXCL2 and CCL3 and
thereby modulate the magnitude of downstream adaptive immune
responses (60). Of note, in a study that evaluated measles
vaccination, the expression of miR-223 in B-cells was correlated
to the induction of neutralizing antibodies, highlighting the
potential impact of miRNAs on vaccine efficacy (61).
DISCUSSION

Hormonal and genetic differences between men and women
might be the main drivers of sex-specific responses to vaccines
affecting safety, immunogenicity and efficacy. Results from
clinical trials, however, generally may not explain the factors
that account for observed sex-specific differences due to their
non-mechanistic nature and bear significant limitations, as they
often originate from post-hoc analyses, and include a heterogeneous
group of vaccine products and regimen.

The importance to gain insight intooptimal vaccination strategies
for men and women has been increasingly recognized and was
recently addressed by the European Union’s Horizon 2020 expert
group that emphasized the need to analyze sex-specific side effects in
the context of SARS-CoV-2 vaccine research (62). In EID vaccine
development, the investigation of sex-differential outcomes of
vaccination can be challenging, as early clinical trials evaluate
vaccines in small and often homogeneous groups and little data
exist on sex-specific immunity induced by the novel platform
technologies. However, with more than 200 vaccine candidates
against SARS-CoV-2 currently underway, of which over 45 have
advanced to clinical trials—up to phase 3 (30) – we now have the
unique opportunity to comprehensively investigate sex-specific
immune responses induced by various vaccine candidates in pre-
clinical and clinical trials (Figure 1). In this context, the impact of
hormonal cycling on vaccine response should be further investigated.
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FIGURE 1 | Sex-specific immune responses can lead to vaccine responses that differ in safety, immunogenicity or efficacy. To evaluate the impact of sex on the specific
vaccine candidate, we need to include both sexes as early as during the preclinical development stage and aim for a balanced sex ratio in clinical phase 1-3 trials.
A detailed snapshot of immune responses to the vaccine can be achieved by frequent blood sampling following vaccination (1) and the application of various technologies
(2). Here, we can evaluate responses to the vaccine on the transcriptome, epigenome and proteome level. Using bioinformatic tools (3), we may gain a comprehensive
insight into multiple levels of immune responses that may be different in men and women (4). By comprehensively studying innate and adaptive immune responses in men
and women, we may better understand how genetic or hormonal differences affect the number and functionality of immune cells.
FIGURE 2 | A better understanding of the effect of vaccines in men and women can result in a balanced vaccine response. While NSE of vaccination may improve
immune responses to pathogens, negative effects on immunity have also been described in females in specific contexts. In addition, reactogenicity is generally
increased in females and may affect the safety profile of vaccines for women and girls. Immunogenicity, however, seems to also generally be increased in females
and may therefore affect vaccine efficacy in this population. To achieve an equally beneficial vaccine for men and women, we may administer different doses (1),
different intervals (2) or different vaccine candidates (3) (viral vector, nucleosid vaccines, inactivated viruses, proteins).
Frontiers in Immunology | www.frontiersin.org January 2021 | Volume 11 | Article 6011705
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Frequent blood sampling during clinical trials and the
implementation of an array of technologies such as multiple
bead assays, flow cytometry, single cell RNA and transposase-
accessible chromatin sequencing, multiplex mass, or chip
cytometry will allow us to assess sex-differences at multiple
levels like the transcriptome, epigenome, and proteome. We
can achieve a detailed snapshot of immune responses upon
vaccination (Figure 1) and correlate these data with measures
of outcome. The findings may then guide future vaccine
strategies resulting in potentially different dosage levels,
different prime-boost intervals or specific vaccine platforms for
men and women (Figure 2).

We are now at a critical point in time, with an array of new
vaccine candidates on the way and state-of-the-art technologies
at hand to evaluate host factors influencing vaccine response. If
we use this moment right, we may be able to revolutionize
vaccine development and strategically design vaccination
regimens for distinct populations. Ultimately, this will enable
us to optimize vaccination outcomes for the individual.
Frontiers in Immunology | www.frontiersin.org 6
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