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Abstract 

Background:  Uterine cervical cancer (UCC) was the fourth leading cause of cancer death among women worldwide. 
The conventional MRI hardly revealing the microstructure information. This study aimed to compare the value of 
amide proton transfer-weighted imaging (APTWI) and diffusion kurtosis imaging (DKI) in evaluating the histological 
grade of cervical squamous carcinoma (CSC) in addition to routine diffusion-weighted imaging (DWI).

Methods:  Forty-six patients with CSC underwent pelvic DKI and APTWI. The magnetization transfer ratio asymmetry 
(MTRasym), apparent diffusion coefficient (ADC), mean diffusivity (MD) and mean kurtosis (MK) were calculated and 
compared based on the histological grade. Correlation coefficients between each parameter and histological grade 
were calculated.

Results:  The MTRasym and MK values of grade 1 (G1) were significantly lower than those of grade 2 (G2), and those 
parameters of G2 were significantly lower than those of grade 3 (G3). The MD and ADC values of G1 were signifi-
cantly higher than those of G2, and those of G2 were significantly higher than those of G3. MTRasym and MK were 
both positively correlated with histological grade (r = 0.789 and 0.743, P <  0.001), while MD and ADC were both 
negatively correlated with histological grade (r = − 0.732 and - 0.644, P <  0.001). For the diagnosis of G1 and G2 
CSCs, AUC (APTWI+DKI + DWI) > AUC (DKI + DWI) > AUC (APTWI+DKI) > AUC (APTWI+DWI) > AUC (MTRasym) > AUC 
(MK) > AUC (MD) > AUC (ADC), where the differences between AUC (APTWI+DKI + DWI), AUC (DKI + DWI) and AUC 
(ADC) were significant. For the diagnosis of G2 and G3 CSCs, AUC (APTWI+DKI + DWI) > AUC (APTWI+DWI) > AUC 
(APTWI+DKI) > AUC (DKI + DWI) > AUC (MTRasym) > AUC (MK) > AUC (MD > AUC (ADC), where the differences 
between AUC (APTWI+DKI + DWI), AUC (APTWI+DWI) and AUC (ADC) were significant.
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Introduction
Uterine cervical cancer (UCC) was the fourth most 
commonly diagnosed malignancy and the fourth lead-
ing cause of cancer death among women worldwide 
in 2018 [1]. Cervical squamous carcinoma (CSC) is the 
most common pathological type of UCC, accounting for 
75–80% of the total number of cervical cancer patients 
[2]. Poorly differentiated CSCs can easily cause local 
invasion and distant metastasis, affecting the choice of 
treatment and prognosis of patients [3, 4]. Therefore, it 
is important to accurately assess the grade of CSC before 
treatment. The clinical diagnosis and evaluation of the 
pathological features of UCC are conducted through 
puncture biopsy, but the size of lesions, accuracy of sam-
pling, and other factors [5] tend to cause differences 
between the results and the final pathology. Therefore, 
imaging methods are used as a complement for CSC 
grading.

Magnetic resonance imaging (MRI) has the charac-
teristics of high-resolution soft tissue and multidirec-
tional imaging [6, 7] and plays an important role in the 
staging and evaluation of cervical cancer. However, the 
conventional MRI scan sequence can only reflect the 
anatomical features of soft tissue, hardly revealing the 
microstructure information. Diffusion models, such as 
Gaussian distribution-based diffusion-weighted imaging 
(DWI) and non-Gaussian distribution-based diffusion 
kurtosis imaging (DKI) [8, 9], can noninvasively detect 
the diffusion motion of water molecules in living tissue 
and reflect changes in biological microstructure. Several 
studies have reported the utility of DWI in predicting the 
histologic type and tumor recurrence of UCC [10, 11]. 
However, its value in identifying the pathological grade 
of CSC is still controversial. DKI, a new MR technology 
developed based on DWI, can more accurately reflect the 
complexity of organizational microscopic environments. 
The clinical application of DKI in evaluating the grade of 
gliomas and prostate cancers [12–14] has been reported. 
Wang et  al. [15] reported that DKI based on the non-
Gaussian diffusion model can be used to distinguish the 
stage and grade of UCC according to a pilot study. Amide 
proton transfer-weighted imaging (APTWI) is a molec-
ular imaging technology developed based on chemical 
saturation transfer (CEST) that can noninvasively detect 
the exchange process between amide protons and water 
molecules, revealing information on cell metabolism and 

pathophysiology [16–18]. APTWI shows clinical applica-
tion value in evaluating the pathological grading of brain 
tumors, prostate cancer, and endometrial cancer [19–21]. 
Preliminary studies [22–24] have shown that APTWI can 
be used to diagnose and predict the pathological type of 
UCC and evaluate the histological grade of CSC, pro-
viding certain reference values for clinical diagnosis and 
treatment decisions.

The purpose of this study was to compare the value of 
APTWI and different diffusion models (DWI, DKI) in 
differentiating the histological grades of CSCs. In par-
ticular, in addition to routine DWI, these two techniques 
are more suitable for future CSC diagnosis.

Materials and methods
Patients
This prospective study was approved by the ethics com-
mittee of the hospital, and all subjects signed an informed 
consent form before the examination. From June 2017 to 
March 2019, a consecutive series of 83 female patients 
were enrolled for pelvic MRI in this study due to suspi-
cion of EC according to computed tomography (CT) or 
ultrasound (US). The exclusion criteria were as follows: 1) 
pathological results showed cervical adenocarcinoma or 
did not meet the diagnosis of cervical cancer (n = 11); 2) 
clinical results were consistent with CSC, but the patho-
logical grade was unclear (n = 6); 3) radiotherapy, chemo-
therapy, or medication were applied before MRI (n = 3); 
4) there were large artifacts in the scanned image or the 
scan was incomplete. (n = 7); and 5) the maximum diam-
eter of the lesion was < 1 cm (n = 10). Ultimately, a total of 
46 patients with CSC were included (aged 35 ~ 70 years). 
A summary flowchart is presented in Fig. 1.

MRI technique
Data were acquired on a 3.0 T MRI scanner (Discovery 
MR750, GE Healthcare, Milwaukee, WI) with a 32-chan-
nel body phased-array coil. Before the examination, the 
patient’s bladder and vagina were moderately filled with 
bladder and vaginal tamponade for better observation 
and scanning of lesions. The examination ranging from 
the anterior superior iliac spine to the pubic symphysis 
were sequentially taken with conventional MRI, DWI, 
DKI, and APTWI. Patients did not receive any form of 
enhanced imaging 24 h before APTWI examination to 

Conclusion:  Compared with DWI and DKI, APTWI is more effective in identifying the histological grades of CSC. 
APTWI is recommended as a supplementary scan to routine DWI in CSCs.

Keywords:  Cervical squamous cell carcinoma, Amide proton transfer-weighted imaging, Diffusion kurtosis imaging, 
Diffusion-weighted imaging
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avoid interference with the APTWI signals. Parameters 
details for each sequence are shown in Table 1.

Postprocessing and analysis
The DWI, DKI, and APTWI images were transferred to a 
workstation (Advantage Workstation 4.6, GE Healthcare) 

for postprocessing. The formula of the DWI model is as 
follows:

where S0 refers to the signal intensity (SI) without the 
diffusion gradient applied, S(b) refers to the SI when the 
diffusion gradient is applied, and the b value refers to the 

S(b) = S0 × exp (−b× ADC)

Fig. 1  Flow diagram of the patient selection process

Table 1  Imaging protocol parameters

FSE fast spin echo, SS-EPI single Shot Echo Planar Imaging, TR/TE repetition time/echo time, FOV field of view, NEX number of excitations. The number of DKI diffusion 
gradient directions is 30

Parameters T1WI T2WI DWI DKI APTWI

Sequence FSE FSE SS-EPI SS-EPI EPI

Orientation Axial Axial Axial Axial Axial

FOV (cm2) 36 × 36 36 × 36 36 × 36 36 × 36 36 × 36

Matrix 320 × 224 320 × 224 128 × 128 128 × 128 128 × 128

TR/TE (ms) 605/8 5455/109 6000/60.5 2500/58.9 3000/12

Slice thickness 5 5 5 5 5

Slice gap (mm) (mm) 1 1 1 1 1

NEX 1 1 1, 4 2 1

b-values (s/mm2) / / 0, 800 0, 500,1000,1500,2000 /

saturation pulse/time / / / / 2.0 μT, 500 ms

Frequency list (only APTWI) 52 frequencies in total: 5000, 5000, 5000, ±600, ±575, ±550, ±525, ±500, ±475, ±450, ±425, ±400, ±375, 
±350, ±325, ±300, ±275, ±250, ±225, ±200, ±175, ±150, ±125, ±100, ±75, ±50, ±25 Hz

Scan time 1 min 57 s 1 min 33 s 1 min 24 s 5 min 28 s 2 min 36 s (Single layer)
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diffusion weight [25]. The formula of the DKI model is as 
follows:

where mean diffusivity (MD) represents the apparent 
diffusion coefficient (ADC) after correction and mean 
kurtosis (MK) represents the degree to which the disper-
sion deviates from the Gaussian distribution [26]. The SI 
of APTWI can be obtained by measuring the magneti-
zation transfer rate by calculating the difference in SI at 
±3.5 ppm on both sides of the water center frequency in 
the Z-spectrum. The formula is as follows:

where MTRasym (or magnetization transfer ratio asym-
metry) (3.5 ppm) is the asymmetric magnetization trans-
fer rate at 3.5 ppm downfield from the water signal, So is 
the SI without the saturation pulse applied, and Ssat is the 
SI after the saturation pulse is applied [27].

While blinded to the postoperative pathology, two radi-
ologists with 5 and 10 years of experience in MR diag-
nosis independently completed the measurement of the 
DWI, DKI and APTWI parameters, including ADC, MK, 
MD, and MTRasym values. Conventional T1WI, T2WI, 
and DWI images were used to determine the parenchy-
mal portion of the tumor. The regions of interest (ROIs), 
excluding areas with necrosis, obvious signals or artifacts 
from a hemorrhage, cystic degeneration, and blood ves-
sels, were drawn along the edge of the parenchymal por-
tion of the tumor at all slices of the tumor tissue. The 
final value of each lesion parameter was the average value 
of the corresponding parameter on all slices. The calcula-
tion formula of tumor volume based on T2WI images is 
as follows: tumor volume = the sum of the tumor area of 
each slice × (slice thickness + interslice gap).

Histopathologic analysis
A pathologist (with 8 years of experience) who was 
blinded to the MRI data analyzed all surgically resected 
specimens of each patient. Hematoxylin/eosin (HE) 
staining was used to determine the histological grade. 
With reference to the International Federation of Gyne-
cology and Obstetrics (FIGO) grading system [23], the 
specimens were classified into grade 1 (G1, n = 13), grade 
2 (G2, n = 21) and grade 3 (G3, n = 12) groups.

Statistical analysis
MedCalc (Version 15.0; MedCalc Software) and SPSS 
(Version 23.0; IBM) software were used for statistical 
analysis. Intraclass correlation coefficients (ICCs) were 
used to evaluate the consistency of the results calcu-
lated by 2 experienced radiologists (r ≥ 0.75, excellent; 

S(b) = S0 × exp
(

−b×MD + b2 ×MD
2
×MK/6

)

MTRasym (3.5ppm) =
[

Ssat(−3.5ppm) − Ssat(+3.5ppm)
]

∕S0

0.60 ≤ r <   0.75, good; 0.40 ≤ r <   0.60, fair; and r <   0.40, 
poor). The Shapiro-Wilk test was used to evaluate 
whether the measurements were normally distributed. 
The obtained parameters were compared by one-way 
analysis of variance with Bonferroni’s honestly significant 
difference post hoc test. Receiver operating character-
istic (ROC) analysis was used to evaluate the diagnostic 
performance of the obtained parameters, and the Delong 
test was utilized to determine whether the area under 
the ROC curve (AUC) of each parameter was different. 
Spearman correlation analysis was performed to analyze 
the correlation between the parameters and the grade 
differentiation of CSCs (r ≥ 0.75, good; 0.50 ≤ r <   0.75, 
moderate; 0.25 ≤ r <   0.50, mild; and r <   0.25, little or 
none). P <  0.05 was considered statistically significant.

Results
Interobserver agreement
The MTRasym, MK, MD, and ADC values measured by 
the two observers had an excellent agreement (P <  0.001), 
with ICC values of 0.85, 0.86, 0.78, and 0.90, respectively. 
Therefore, we chose the averages of the parameter val-
ues measured by the 2 observers for further analysis. The 
original images generated by DWI, DKI, and APTWI and 
maps derived from the data are shown in Fig. 2.

The value of parameter changes in the three CSC grades
The MTRasym and MK values of grade 1 were sig-
nificantly lower than those of G2, and those param-
eters of G2 were significantly lower than those of G3 
(G1 < G2 < G3, all P <  0.001). The MD and ADC values of 
G1 were significantly higher than those of G2, and those 
parameters of G2 were significantly higher than those 
of G3 (G1 > G2 > G3, all P <   0.001). MTRasym and MK 
were both positively correlated with histological grade 
(r = 0.789 and 0.743, P <   0.001), while MD and ADC 
were both negatively correlated with histological grade 
(r = − 0.732 and - 0.644, P <  0.001). The details are shown 
in Table 2 and Figs. 3 and 4.

ROC analysis
For the diagnosis of G1 and G2 CSCs, AUC 
(APTWI+DKI + DWI) > AUC (DKI + DWI) > AUC 
(APTWI+DKI) > AUC (APTWI+DWI) > AUC (MTRa-
sym) > AUC (MK) > AUC (MD) > AUC (ADC), where 
the differences between AUC (APTWI+DKI + DWI), 
AUC (DKI + DWI) and AUC (ADC) were signifi-
cant (Z = 2.282, 2.230; P = 0.023, 0.026, respec-
tively). For the diagnosis of G2 and G3 CSCs, AUC 
(APTWI+DKI + DWI) > AUC (APTWI+DWI) > AUC 
(APTWI+DKI) > AUC (DKI + DWI) > AUC (MTRa-
sym) > AUC (MK) > AUC (MD > AUC (ADC), where 
the differences between AUC (APTWI+DKI + DWI), 
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AUC (APTWI+DWI) and AUC (ADC) were significant 
(Z = 2.278, 2.004; P = 0.023, 0.045, respectively), (Tables 3 
and 4, Fig. 5).

Discussion
The value of diffusion techniques in the diagnosis of CSC 
grades
In this study, we found that the MK values of the G2 and 
G3 CSC groups were higher than those of the G1 and G2 
CSC groups (P <   0.05), while the MD and ADC values 
of the G2 and G3 CSC groups were lower than those of 
the G1 and G2 CSC groups (P <  0.05), respectively. These 
results are consistent with those of previous studies [8, 

15], indicating that DKI and DWI have positive value 
for the preliminary assessment of the pathological grade 
of CSCs for the following reasons. MK is related to the 
heterogeneity of the diffusion environment [28], which 
means that the more heterogeneous the microenviron-
ment of the tissue is, the greater the MK value. MD and 
ADC can detect the degree of blocking of water diffusion 
in the microenvironment of the tissue, which means that 
the greater the value is, the lower the degree of restric-
tion of water diffusion. Compared with the G1 and G2 
CSC groups, the G2 and G3 CSC groups often exhibit a 
more compact tissue structure, more significant cellular 
atypia, and greater tissue necrosis [29]. These features 

Fig. 2  Grade 3 of CSC in a 42-year-old woman (arrowheads), ADC = 0.94 × 10− 3/mm2, MK = 0.90, MD = 1.03 × 10− 3/mm2, and MTRasym = 3.07%. a 
Map of T2WI, b Map of DWI (b = 1000 s/mm2), c Pseudo colored maps of MK, d Pseudo colored maps of MD, e Pseudo colored maps of MTRasym, f 
Pathological images (original magnification, × 100)

Table 2  Comparisons of MTRasym, MK, MD and ADC Among Three Histologic Grades

Parameters Grade1 Grade2 Grade3 F-value P-value P-value 
(Grade 1vs.2)

P-value 
(Grade 1vs.3)

P-value 
(Grade 2 
vs.3)

Volume (cm3) 46.46 ± 17.14 54.24 ± 12.37 54.42 ± 15.61 1.331 0.275 0.422 0.549 0.973

MTRasym (%) 2.96 ± 0.04 3.03 ± 0.04 3.09 ± 0.03 16.974 <  0.001 <  0.001 <  0.001 0.001

MK 0.85 ± 0.03 0.89 ± 0.03 0.94 ± 0.04 26.402 <  0.001 0.002 <  0.001 <  0.001

MD (×10−3 mm2/s) 1.08 ± 0.03 1.04 ± 0.03 0.99 ± 0.04 22.938 <  0.001 0.004 <  0.001 <  0.001

ADC (× 10− 3 mm2/s) 0.95 ± 0.04 0.91 ± 0.02 0.88 ± 0.02 32.354 <  0.001 0.003 <  0.001 0.016
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increase the complexity of the microstructure of diseased 
tissues and further restrict the diffusive motion of water 
molecules, resulting in higher MK values and lower MD 
and ADC values for the G2 and G3 CSC groups than for 
the G1 and G2 CSC groups.

The value of APTWI in the diagnosis of CSC grades
In the comparison of APTWI in different grade groups, 
we found that the MTRasym values of the G1 and G2 
CSC groups were significantly lower than those of the 
G2 and G3 CSC groups, respectively, which is similar to 
the findings of previous studies [23, 24], indicating that 
APTWI has positive value for the preliminary assessment 
of the pathological grading of CSC. Possible reasons for 
this finding are as follows. The role of APTWI in tumors 
is primarily correlated with the tissue contents of mobile 
proteins and peptides [30, 31]. According to previous 
literature, an increase in cellular density, nuclear atypia, 
microvessel density (MVD), and microscopic necrosis 
can increase the contents of mobile proteins and peptides 
in tissues [32, 33] Regarding CSCs, compared with low-
grade tumors, high-grade tumors usually have a higher 
cellular density, more significant nuclear atypia, greater 

MVD, and more microscopic necrosis [34]. Therefore, 
high-grade tumors have a higher MTRasym.

Diagnostic efficacy analysis
The AUCs of MK and MD were higher than that of ADC 
in differentiating grades, suggesting that the DKI model 
has an advantage over the traditional DWI model in eval-
uating the histological grade of CSCs, which is similar to 
the findings of previous studies [15]. The traditional DWI 
model is based on the assumption that water molecule 
diffusion in the tissue is subjected to a Gaussian distri-
bution [35], which makes it difficult to accurately reflect 
the true movement of water molecules in diseased tissue. 
However, DKI is based on a non-Gaussian distribution 
model, which can reflect the microstructure information 
in terms of the degree to which the dispersion of water 
molecules deviates from the Gaussian distribution [10]. 
Therefore, DKI can more accurately reflect the micro-
structure information of the organization, and the MD 
value derived from DKI refers to the diffusion coefficient 
after modeling modification, showing a higher accuracy. 
Yue et al. [36] also found that DKI was superior to con-
ventional DWI in the classification of endometrial cancer 

Fig. 3  Plots show individual data points, averages, and standard deviations of ADC (a), MD (b), MK (c), and MTRasym (d) in different groups. 
Individual points are averages of values calculated by 2 readers. *P <  0.05, **P <  0.01, and ***P <  0.001



Page 7 of 10Hou et al. BMC Cancer           (2022) 22:87 	

and could more effectively evaluate the pathological and 
physiological characteristics of endometrial cancer.

Among all the parameters in this study, MTRasym 
showed the highest differential diagnostic efficiency in 
CSC grading, indicating that APTWI can reflect the 
microscopic features of tumors better than diffusion 

imaging models. The possible reasons for this are dis-
cussed below. First, the change in diffusion was greater 
than the change in free protein/polypeptide content in 
different CSC grades. Second, there are some modeling 
imperfections of DKI, such as high b values (2000 s/mm2) 
affecting the signal-to-noise ratio (SNR) [37] and limited 

Fig. 4  The correlation between histological grading and different parameters. The ADC (a) and MD (c) are also well correlated with grades 
(r = − 0.644, − 0.732, P <  0.001), while MTRasym (d) and MK (b) are strongly correlated with pathological grade (r = 0.789, 0.743, P <  0.001)

Table 3  Comparison of ROC curve between Grade 1 and Grade 2 CSC

APTWI + DWI = MTRasym +ADC; DKI + APTW = MD + MK + MTRasym; DKI + DWI = MD + MK + ADC; APTWI + DKI + DWI = MTRasym + MD + MK + ADC

Parameters AUC​ Threshold P-value Sensitivity(%) Specificity (%) 95% CI

MTRasym (%) 0.883 3.000 <  0.001 76.9% 90.5% 0.726–0.967

MK 0.852 0.875 0.001 84.6% 66.7% 0.688–0.950

MD (×10−3 mm2/s) 0.828 1.065 0.002 76.9% 81.0% 0.660–0.935

ADC (×10−3 mm2/s) 0.799 0.955 0.004 53.8% 100% 0.626–0.916

APTWI+DWI 0.949 / <  0.001 90.5% 92.3% 0.814–0.995

DKI + DWI 0.982 / <  0.001 100.0% 95.2% 0.865–1.000

DKI + APTW 0.967 / <  0.001 100.0% 80.95% 0.841–0.999

APTWI+DKI + DWI 0.993 / <  0.001 100.0% 95.2% 0.884–1.000
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Table 4  Comparison of ROC curve between Grade 2 and Grade 3 CSC

APTWI + DWI = MTRasym +ADC; DKI + APTW = MD + MK + MTRasym; DKI + DWI = MD + MK + ADC; APTWI + DKI + DWI = MTRasym + MD + MK + ADC

Parameters AUC​ Threshold P-value Sensitivity(%) Specificity (%) 95% CI

MTRasym (%) 0.871 3.065 <  0.001 76.2% 83.3% 0.708–0.962

MK 0.855 0.925 0.001 85.7% 66.7% 0.689–0.953

MD (× 10− 3 mm2/s) 0.845 1.015 0.001 81.0% 75.0% 0.677–0.947

ADC (×10−3 mm2/s) 0.794 0.905 0.006 76.2% 75.0% 0.617–0.914

APTWI+DWI 0.964 / <  0.001 91.7% 95.2% 0.834–0.999

DKI + DWI 0.948 / <  0.001 90.5% 91.7% 0.811–0.995

DKI + APTWI 0.956 / < 0.001 80.95% 100.0% 0.822–0.997

APTWI+DKI + DWI 0.984 / < 0.001 95.2% 100.0% 0.866–1.000

Fig. 5  Curves show MTRasym, ADC, MD, MK, APTWI+DWI, APTWI+DKI, DWI + DKI, and APTWI+DWI + DKI by using ROC analysis for differentiation 
of different groups. Details of the area under the curves and 95% CIs of each index are shown in the Results section and Tables 3 and 4
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directions in detection [38], which may lead to deviation 
in the measurement, while APTWI imaging, based on 
the detection of endogenous protein and peptide, is not 
affected by the above factors.

The AUCs of the combination of APTWI and DWI, the 
combination of DKI and DWI, and the combination of 
APTWI, DKI, and DWI were all higher than that of DWI. 
DWI is important for CSC diagnosis and is commonly 
used as a routine scan sequence. From our results, add-
ing APTWI, DKI, or both to DWI scans may, to varying 
degrees, improve the diagnostic accuracy in evaluating 
the histological grade of CSCs. For clinical usage, consid-
ering the scanning time, we recommend APTWI as the 
first choice for supplementary scans of routine DWI in 
CSC detection. If time permits, users can also add both 
DKI and APTWI scans.

There are some limitations of this study. 1) Both the 
DKI and APT sequences we used were based on echo 
planar (EPI) acquisition, which is susceptible to motion, 
metal, and air artifacts and subjected to low SNR and 
distortions, leading to low-quality images for some small 
lesions, which may affect the accuracy of this experi-
ment to some extent. 2) The optimal b value of DKI and 
DWI remains to be explored since a publicly recognized 
standard has not yet been introduced. 3) The manually 
selected ROI avoided cystic and necrotic tissue areas 
while reducing the heterogeneity of tumor tissue, affect-
ing the accuracy of some parameters. In the future, we 
will seek solutions to further improve the accuracy of 
parameter measurement.

Conclusion
APTWI and DKI can be used in grading CSC. Compared 
with DWI and DKI, APTWI is more effective in identifying 
the histological grades of CSCs. For clinical usage, in addi-
tion to routine DWI, APTWI is recommended as the first 
choice for supplementary scans in CSC detection in the 
future when pursuing higher diagnostic accuracy.
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