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Abstract 
Brain-fingerprinting is a neuroimaging approach that is expanding the neuroscientific perspective 
on inter-individual diversity in health and disease. In the present study, we used brain-
fingerprinting to advance the neurophysiological characterization of Parkinson's disease (PD). We 
derived the brain-fingerprints of patients with PD and age-matched healthy controls from the 
rhythmic and arhythmic spectral features of brief and task-free magnetoencephalography 
recordings. Using this approach, the individual differentiation of patients against healthy controls 
is 81% accurate, with the differentiability of patients scaling with the severity of their cognitive 
and motor symptoms. We show that between-patient differentiation is more challenging (77% 
accurate) than between healthy controls (90%) because the neurophysiological spectral features 
of patients with PD are less stable over time. The most distinctive features for differentiating 
healthy controls map to higher-order regions in the brain functional hierarchy. In contrast, the 
most distinctive features for patient differentiation map to the somatosensori-motor cortex. We 
also report that patient brain-fingerprints coincide with the cortical topography of the 
neurotransmitter systems affected in PD. We conclude that Parkinson’s disease affects the 
spectral brain-fingerprint of patients with remarkable heterogeneity between individuals, and 
increased variability over short periods of time, compared to age-matched healthy controls. Our 
study demonstrates the relevance of neurophysiological fingerprinting to clinical neuroscience, 
and highlights its potential in terms of patient stratification, disease modeling, and the 
development and evaluation of personalized interventions.  
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Lay summary: 

Brain fingerprinting is a novel approach that advances the neuroscientific understanding of 
differences between individuals. Recent work has shown that brief recordings of our brain 
activity differentiate us from each other, just like the fingerprints of our hand. The present study 
investigates how brain-fingerprints can help evaluate patients affected by a chronic neurological 
disorder like Parkinson’s disease and advance the understanding of the physiology of the 
disease. The authors discovered that the brain regions involved in the sense of touch and motor 
functions, whose functions are impaired by the disease, are the most prominent for 
differentiating between patients. In contrast, regions that support abstract thoughts are more 
typical of the healthy brain fingerprint. They also found that the more severe the motor 
symptoms, the more distinctive the patient’s brain-fingerprint. However, they also report that in 
Parkinson’s disease, brain activity tends to be more variable over short periods of times, which 
makes patients’ brain-fingerprints more elusive to differentiate. Nevertheless, the study shows 
that the brain-fingerprint of patients is related to the cortical topography of the 
neurotransmitter systems affected by Parkinson’s disease. Overall, this study demonstrates the 
potential of brain-fingerprinting as a tool to advance clinical neuroscience towards improved 
understanding and future interventions against neurological disorders.  
 

Keywords:  
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Introduction 
The neurophysiological origins of the characteristic, yet highly variable, motor and non-motor 
symptoms of Parkinson’s disease (PD) are still debated 1–3. The disease manifests a disparate 
range of structural, hemodynamic, and electrophysiological brain changes: from abnormal 
patterns of cortical thickness4–7, to increased frequency-specific transients (beta band: 15 to 35 
Hz)8–10, and chronic slowing of brain activity1,11,12. Altered ongoing brain activity in PD also affects 
patients’ brain-network characteristics (connectomes), which are related to the hallmarks of 
motor and cognitive impairments of the disease13–16. 
 
Recently, connectomes have been used to derive so-called brain-fingerprints, which enable the 
biometric differentiation of individuals based on their neuroimaging phenotypes17–20. Brain-
fingerprinting posits that components of functional magnetic resonance imaging (fMRI) data or 
electrophysiological recordings of an individual remain relatively unchanged across data 
instances, and therefore are characteristic of the person17,18,21. When associated with behavioral 
and complex individual traits across large data repositories, the brain-fingerprinting approach 
promises to advance the understanding and characterization of the biological nature of personal 
health and disease trajectories17,21–24.  
 
In patients, however, there is early evidence that connectome brain-fingerprints tend to be more 
variable over time, such as in mental-health syndromes and related at-risk groups25,27,28. When 
the variability of brain-fingerprint features over time is high, the differentiation accuracy of the 
individual is low. In patients, such variability may confound which brain-fingerprint features 
differ between health and disease and limit the identification of how brain-fingerprint features 
are changed by treatment interventions.  
 
In PD, the hemodynamic signals of fNIRS show increased temporal variability in patients with 
severe symptoms29. These temporal inconsistencies may also negatively affect the stability of 
individuals’ connectome brain-fingerprints derived from fMRI. By extension, neurophysiological 
activity may also express greater temporal variability in patients with PD, especially in unimodal 
regions of the brain functional hierarchy where their coupling with hemodynamic signals is the 
strongest30. The individual differentiation of patients using connectome brain-fingerprints 
derived from neurophysiology is therefore expected to be particularly challenging, as previously 
observed with magnetoencephalography (MEG)31 .  
 
An additional issue to consider with connectome brain-fingerprints is that several types of brain 
connectomes can be derived from different derivatives of the neuroimaging or 
neurophysiological time series. This issue is particularly current with EEG and MEG32. It is 
therefore unclear whether the variability of connectome brain-fingerprints reported so far in PD 
research does originate from alterations of local brain activity caused by the disease, which 
would secondarily affect patients’ connectomes. Moreover, electrophysiological brain activity 
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comprises both periodic and aperiodic signal components33,34. Indeed, little is known about the 
contribution of arhythmic/ aperiodic brain activity to the multi-spectral abnormalities reported in 
PD.  
 
In a recent study involving healthy young adults, we demonstrated that frequency-specific 
measures of neurophysiological activity across the cortex from brief, task-free MEG data define 
spectral brain-fingerprints that remain specific of each individual over remarkably extended 
periods of time21. Here, we extend this spectral brain-fingerprinting approach to older healthy 
participants and patients with Parkinson’s disease to ascertain their within and between-group 
inter-individual differentiability. Through this procedure, we sought to identify distinctive 
neurophysiological features of spectral brain-fingerprints in Parkinson’s disease, and probe their 
possible association with clinical traits, functional brain organization35, and cortical atlases of 
neurotransmitter systems that are relevant to the neuropathophysiology of the disease36. 
 

Results 
We collected a minimum of 10 minutes of task-free MEG data from 79 patients with PD and 54 
healthy age-matched controls (HC; demographic data in Table S1). We then source-imaged the 
MEG sensor data constrained to each individual’s T1-weighted structural MRI37. We estimated 
the power spectral density (PSD) of the MEG source signals within each parcel of the Desikan-
Killiany atlas38 to derive the spectral brain-fingerprints of all participants21 (see Methods).  
 
Spectral brain-fingerprinting of patients with Parkinson’s disease.  
The brain-fingerprinting procedure consisted in assessing the similarity between the cortical 
spectral features derived from two approximatively 4-minute-long non-overlapping MEG 
recording segments from each participant, against the same features derived from the other 
participants21. The spectral features were determined across the [0, 150Hz] Hz frequency range 
(broadband spectral brain-fingerprint). We validated the approach by first extending our original 
fingerprinting results obtained with young-adult participants3 to a group of older healthy 
individuals (age range: 40-78 years-old). We then proceeded to differentiate between patients 
with PD using spectral brain-fingerprinting (Figure 1). As a final challenge to the approach, we set 
to differentiate every patient with PD from healthy participants (i.e., patients vs controls). We 
computed bootstrapped confidence intervals (CI) around the differentiation accuracy scores 
obtained in these three brain-fingerprinting challenges (see Methods). 
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Figure 1: Spectral brain-fingerprinting pipeline and study design. 
(a) The spectral power of MEG source time series is estimated from each parcel of the Desikan-
Killiany atlas, from each data segment (dataset 1 and dataset 2) recorded from each participant 
(each approx. 4-min long). The resulting power spectra define the two spectral brain-fingerprints 
(b-fp1 and b-fp2) derived from each dataset38. A confusion matrix of the auto- and cross-
correlation statistics of the spectral brain-fingerprints between participants determine their 
respective identifiability, as shown in (c). (b) We used the resulting spectral brain-fingerprints to 
differentiate i) between healthy controls, ii) between patients with PD, and iii) between each 
patient with PD against healthy controls. (c) We defined individual differentiability as the 
autocorrelation between the two spectral brain-fingerprints obtained from each participant, z-
scored with respect to their cross-correlation with the spectral brain-fingerprints from the other 
study participants.  
 
We found that the differentiation accuracy between older healthy participants (89.8%, [88.0, 
94.0] CI; Figure 2a) is similar to the 96-% differentiation accuracy previously reported in younger 
health participants21. The differentiation between patients with PD is substantial, but less 
accurate than between age-matched controls (77.2%, [74.7, 81.7] CI). The differentiation of 
individual patients from healthy controls falls in a similar range of accuracy (81.1%, [81.0, 83.5] 
CI).  
 
We then tested the respective relevance to PD neurophysiopathology of the rhythmic (band-
limited, oscillatory) and arhythmic (broadband, scale-free 1/f) signal components of 
electrophysiological brain activity 33,34. We parametrized the regional MEG-source power spectra 
into arhythmic and rhythmic components33 and assessed individual differentiability from the 
resulting arhythmic brain-fingerprints.  
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We found that overall, the inter-individual differentiation performances using arhythmic brain-
fingerprints were lower, but qualitatively similar to those from using the entire spectral brain-
fingerprints: 74.1% (CI [72.0, 78.0]) between older healthy participants, 66.5% (CI [62.9, 71.4]) 
between patients with PD, and 71.5% (CI [69.6, 75.9]) between individual patients and age-
matched healthy controls (see Figure S1 and Supplemental Information).  
 
We repeated the same analyses using spectral brain-fingerprints defined only from the rhythmic 
components of neurophysiological power spectra, approximated as the residuals of the original 
spectral brain-fingerprints after their arhythmic components were removed (see Methods). We 
found that individual differentiation was more accurate with the rhythmic than with the 
arhythmic brain-fingerprints: 92.6% (CI [90.0, 96.0]) between older healthy participants, 86.7% 
(CI [82.9, 91.4]) between patients with PD, and 90.5% (CI [89.9, 92.4]) between individual 
patients and age-matched healthy controls (Figure S2).  
 
We quantified the respective contributions of each cortical region to the spectral brain-
fingerprints18,40 by deriving intraclass correlation (ICC) scores. ICC scores enable the 
identification of the neurophysiological features that are the most consistent across individuals, 
between their respective spectral brain-fingerprints. 
 
Frontal and medial cortical regions were the most salient features of the spectral brain-
fingerprints of age-matched healthy participants (Figure S3a). In patients with PD, a set of 
cortical regions distributed bilaterally over the pre- and post-central gyri were the most 
prominent features of their spectral brain-fingerprints (Figure S3b-c and Figure 4b right panel). 
 
Our previous work demonstrated that spectral brain-fingerprints that enable inter-individual 
differentiation of young adults can be derived from data lengths as short as 30 seconds21. We 
therefore tested the replicability of the approach with the present groups of older healthy 
participants and patients with PD (see Methods). We observed qualitatively similar performances 
in differentiation accuracy from these brief recordings that those from longer recordings (scatter 
plots in Figure 2a): 84.9% between healthy participants (computed 95% CI [83.1, 86.7]), 77.2% 
between patients with PD (95% CI [74.4, 79.9]) and 81.2% between individual patients and 
healthy controls (95% CI [78.7, 83.7]).  
 
We propose that the differences in differentiation accuracy between groups can be visually 
appreciated using low-dimensional mapping of spectral brain-fingerprints with t-distributed 
stochastic neighbour embedding (t-SNE; see Figure 2b for a subset of 40 patient and control 
participants, and Figure S2 for all participants)41. The t-SNE qualitatively preserves the distances 
between data points in their native high-dimensional versions. We found that the 2-D Euclidian 
distances between each participant’s two spectral brain-fingerprints scaled linearly with the 
differentiability of the individual (r=-0.55, t(131)=-7.46 p=1.05e-11; Figure 2c): the smaller the 
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distance between low-dimensional representations of the individual’s spectral brain-fingerprints, 
the more differentiable they are.  
 
 

 
Figure 2: Individual differentiation of patients with Parkinson’s disease and age-matched healthy 
controls. 
(a) Differentiation accuracy using (broadband) spectral brain-fingerprints derived from 4-min 
data lengths (bar plots) and 30-sec data lengths (scatter plots). The scatter plots show the 
differentiation accuracy between all pairs of spectral brain-fingerprints derived from all 30-s 
segments extracted from the two original 4-min data segments. For control purposes, the grey 
segments at the foot of each bar plot indicate the differentiation accuracies from using empty-
room MEG recordings around the participants’ visits (see Methods). The error bars show 
bootstrapped 95% confidence intervals. (b) t-SNE mapping of individual spectral brain-
fingerprints (sub-sample of 20 healthy controls and 20 patients with PD; see Figure S2 for display 
of all participants). Dotted lines connect between the two spectral brain-fingerprints derived 
from the two non-overlapping datasets used to produce the spectral brain-fingerprints of each 
participant. Note that dotted lines are not visible in participants with stable brain-fingerprints 
(plots overlap). (c) The (log-transformed) Euclidian distances between the two spectral brain-
fingerprints of each individual in the t-SNE map scale linearly with their differentiability. 
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Individual differentiability scales with motor impairments. 
We found that the individual differentiability of patients from their spectral brain-fingerprints 
was linearly related to the severity of their motor symptoms measured with the Unified 
Parkinson’s Disease Rating Scale (UPDRS) part III (β=0.03, SE=0.01, 95% CI [0.01, 0.06], p=0.009, 
Bayes factor BF01=0.14; with nuisance covariates: participant age, education, disease duration, 
and head motion; Figure 3b and Table S2).  
 
We then determined which brain regions contributed the most to this effect. To that end, we 
first derived reduced spectral brain-fingerprints by removing each cortical parcel in an iterative 
fashion (Figure 3c). We then evaluated the goodness of fit of the subsequent linear model of 
motor impairments scaling with individual differentiability from these reduced brain-fingerprints. 
We measured the contribution of the removed cortical region to the differentiability effect by 
measuring the resulting change in Akaike’s information criterion (ΔAIC) between the original 
(Figure 3a) and reduced linear regression models (see Methods).  
 
We found that only the left superior parietal cortex contributes to the association between 
individual differentiability and the severity of motor symptoms, based on a minimum absolute 
change of ΔAIC above 242.  
 
Declining cognition in Parkinson's disease is associated with changes in brain structure and 
function 5,7,11,16. We thus hypothesized that higher cognitive scores would moderate the 
association between the motor symptoms of patients with PD and their individual 
differentiability from spectral brain-fingerprints.  
 
Our data do show an interaction between motor symptoms and cognition (β=0.05, SE=0.02, 95% 
CI [0.01, 0.10], p=0.025; after removal of age, education, disease duration, and head-motion 
nuisance effects; Figure 3b) in the linear regression model of individual differentiability, after the 
patient group was split based on MoCA scores (high vs. low MoCA; threshold 24; see Methods). 
Bayesian post-hoc analysis corroborated this finding (interaction effect: BF01=0.28; see 
Supplemental Table S3).  
 
We illustrate in Figure 3d this interaction between motor symptoms and cognition, with the 
power spectra extracted from the left superior parietal cortex, where the effect relating 
individual motor symptoms to the differentiability of brain-fingerprints is the most salient. The 
figure shows the respective regional spectra of low- and high-MOCA participants with lower and 
higher UPDRS III scores. Patients show increased spectral power in the lower frequency range 
(<10 Hz) with respect to healthy controls. The patients with lower motor and cognitive functions 
further show a marked decrease of faster brain activity (>15Hz; right panel Figure 3d). 
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Figure 3: Individual differentiability and the impairment of motor and cognitive functions in PD. 
(a) The differentiability of patients from their brain-fingerprints relates to the severity of motor 
symptoms measured by the UPDRS part III scale. We obtained the histogram of regression 
coefficient (betas) under the null hypothesis of no group effect from n=1000 random 
permutations of individual differentiability scores (bottom right). (b) Cognitive impairment 
measured by MoCA scores interacts with motor symptoms in their association with the 
differentiability of patient brain-fingerprints. (c) The relative changes of Akaike’s information 
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criterion (DAIC) determine which region(s) of the spectral brain-fingerprint contributes the most 
to the association between individual differentiability and PD motor symptoms. (d) Power 
spectra of neurophysiological signals in the left superior parietal cortex show the interaction 
between motor symptoms and cognitive functions. The data were derived from patients 
presenting high vs. low MoCA scores (different colors), and high vs. low UPDRS III scores (left vs. 
right graphs) using median splits of the cohort, for visualization. Shaded region depicts the 
standard error on the mean. 
 
We verified that the individual differentiability of arhythmic brain-fingerprints remains 
associated with motor symptoms (β=0.02, SE=0.01, 95% CI [0.00, 0.04], p=0.03; BF01=0.33; 
Supplementary Table 4 and Figure S7 & Figure S8). The salience analysis using the ΔAIC metric 
also confirmed that the left superior parietal cortex contributed the most to this association 
(Figure S7 & Figure S8). However, we did not find an interaction between motor and cognitive 
symptoms based only on arhythmic brain-fingerprints (β=0.02, SE=0.02, 95% CI [-0.02, 0.05], 
p=0.29; BF01=1.20; Supplemental Table 5). In a similar fashion, there is no linear association 
between the individual differentiability of rhythmic brain-fingerprints and motor symptoms 
(β=0.03, SE=0.02, 95% CI [-0.00, 0.06], p=0.06; BF01=0.49), with only limited evidence for a 
motor-cognitive interaction (β=0.06, SE=0.03, 95% CI [-0.00, 0.12], p=0.06; BF01= 0.47; 
Supplemental Tables 6 and 7).  
 
Decoding Parkinson’s disease stages from spectral brain-fingerprints. 
We tested whether spectral brain-fingerprints are related to the clinical stages of the disease. 
We designed binary classifiers to decode the disease stage of patients as “early” or “advanced” 
(as per their respective scores on the Hoehn & Yahr scale: HY< 2 or HY≥ 2, respectively)43,44 from 
the spectral brain-fingerprint features at each cortical parcel (see Methods).  
 
The resulting maps of regional decoding accuracy indicate that the decoding of the patients’ 
clinical stage is driven the most by a broad set of cortical regions, with the best decoding 
performances obtained from the right post- and pre-central gyri (63.7% and 62.3% respectively; 
Figure 4a right panel). In later stages of the disease, faster brain activity (>15Hz) and slower 
activity ([6,9] Hz) are respectively suppressed and increased in these regions (Figure 4a left 
panel). We noted that the cortical topography of disease-stage decoding is similar to the cortical 
distribution of the most salient cortical regions of the spectral brain-fingerprints of patients 
(Figure 4b; r= 0.43, p< 0.001, pspin= 0)—a robust finding regardless of the cross-validation 
method used for designing the binary classifiers (Figure S9). Note that reported effects (here and 
below) may be stronger than all observations from the spin tests from permuted data, yielding a 
null pspin value. 
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Figure 4: Decoding of Parkinson’s disease stages from features of the spectral brain-fingerprints.  
(a) Left: topography of decoding accuracies of Parkinson’s disease stages (binarized Hoehn & 
Yahr scores) from the spectral brain-fingerprint features of each cortical parcel. Right: power 
spectra of the neurophysiological resting-state signals generated in the right postcentral gyrus 
region, where decoding of Parkinson’s disease stages is the most accurate. Shaded areas show 
the standard errors on the mean across the respective groups. (b) Left: scatter plot of the 
decoding accuracy of Parkinson’s disease stages at each cortical parcel against the saliency of the 
brain-fingerprints of each cortical parcel (Δ ICC, right). Saliency of PD brain-fingerprints were 
obtained by subtracting the respective ICC topographies of between-patients and between-
controls differentiations. Note that the resulting cortical map is similar to that of panel (a) 
because the ability to decode early vs. advanced Parkinson’s disease stages from a cortical region 
is linearly associated with its saliency in the patient spectral brain-fingerprint.  
 
 
Parkinson's disease alterations of brain-fingerprints align with the brain’s functional hierarchy 
and the cortical topography of neurotransmitter systems.  
We explored whether the topography of the most salient features of PD spectral brain-
fingerprints (broadband Δ ICC; Figure 4b) is related to the hierarchical, unimodal-to-heteromodal 
gradient of functional brain organization35 (see Methods). Our analysis confirmed the spatial 
similarity between the two cortical topographies (r=-0.51, t(66)=-4.79, p< 0.0001, pspin=0; Figure 
5a).  
 
Transmodal regions colocalized with salient features of the spectral brain-fingerprints of older 
healthy adults. In contrast, the salient features of patients’ spectral brain-fingerprints aligned 
with the unimodal, primary sensorimotor regions of the cortex functional hierarchy. 
 
We also tested whether the most salient features of PD spectral brain-fingerprints were also 
topographically related to the cortical distribution of major neurotransmitter systems. We 
retrieved 19 normative cortical maps of 9 neurotransmitter systems from the neuromaps 
toolbox36 (Figure 5b) and computed their spatial cross-correlation with the saliency map of PD 
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spectral brain-fingerprints (Figure 4b; see Methods). The cortical distributions of serotonin-4 (r=-
0.38, pFDR=0.006, pspin=0.004), cannabinoid-1 (r= -0.49, pFDR=0.00041, pspin=0.00), and mu-opioid 
receptors (r=-0.40, pFDR=0.0048, pspin=0.005) are negatively correlated with the topography of PD 
spectral brain-fingerprints, and so is the cortical distribution of the norepinephrine transporter 
(r=0.43, pFDR=0.0026, pspin=0). 
 
We noted that the cannabinoid, opioid, and serotonin systems are topographically concentrated 
in temporal and frontal regions, which matched the most salient spectral brain-fingerprint 
features of healthy controls (Figure 5b & Figure S3a). In contrast, the high concentration of 
norepinephrine transporters in the somato-motor cortices is aligned with the most salient 
spectral brain-fingerprint features of Parkinson’s disease (Figure 5b & Figure S3b). 
 

 
Figure 5: Topographical alignment between spectral brain-fingerprints, the functional hierarchy 
of cortex, and neurotransmitter systems.  
(a) Top: The cortical topography of the first unimodal-transmodal functional gradient, retrieved 
from neuromaps36. Bottom: The respective weights of cortical regions in the functional gradient 
(neuromaps toolbox36) are linearly related to their saliency in the PD brain-fingerprint (Figure 4b 
right). (b) Top: Bayes factor analysis of the topographical alignment between PD brain-fingerprint 
features (Figure 4b) and the atlases of cortical neurochemical systems shows strong alignment of 
the serotonin, cannabinoid, mu-opioid, and norepinephrine systems. Bottom: selected 
neurochemical cortical atlases retrieved obtained from neuromaps36. 
 
 
Short-term moment-to-moment variability of spectral brain-fingerprints in Parkinson’s disease. 
Why are patients with PD differentiated with less accuracy than age-matched controls from their 
spectral brain-fingerprints? We tested how their two spectral brain fingerprints vary between 
datasets (autocorrelation) compared to how distinct they are from other participants (cross-
correlation). We found that the cross-correlation of spectral brain-fingerprint features between 
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healthy participants, and between patients are similar within their respective groups (Figure 6a). 
However, the autocorrelation of spectral brain fingerprints is significantly reduced between 
datasets in patients (t=2.24, p=0.02; permutation t-tests). We conclude that the reduced 
individual differentiation accuracy of patients with PD is due to the greater short-term variability 
of their brain activity, tested here within 10 minutes of the same recording session. 
 
To corroborate this point, we expanded the analysis of spectral brain-fingerprints derived from 
shorter (30-s) datasets. The premise was that if the short-term variability of patient brain activity 
is more pronounced, the accuracy of individual differentiation based on successive spectral 
brain-fingerprints would be expected to decrease with the gap duration between datasets, more 
rapidly in patients than in healthy controls.  
 
Our findings corroborate this hypothesis: patient differentiation accuracy decreases more rapidly 
with the gap duration between successive spectral brain-fingerprints, compared to age-matched 
controls (β=-1.29, SE=0.55, 95% CI [-1.94, -0.65], p<0.001, BF01=2.71 e-3; Table S8 and Figure 
6b).  
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Figure 6: Pronounced short-term variability of spectral brain-fingerprints in Parkinson’s disease. 
(a) Density plots of auto- (left) and cross-correlation (right) statistics between spectral brain-
fingerprints within (autocorrelation) and between (cross-correlation) participants. Left: empirical 
density of autocorrelation statistics between two consecutive brain-fingerprints of participants in 
the control and PD cohorts. The wider distribution of the distribution of PD cohort 
autocorrelation statistics indicates that consecutive spectral brain-fingerprints are more variable 
in patients. Right: the empirical densities of inter-individual cross-correlation statistics of spectral 
brain-fingerprints are similar in the patient and control groups. (b) Individual differentiation from 
brief brain data segments (spectral brain-fingerprints derived from 30-s datasets). Left: The 
individual differentiation accuracy decreases with the gap duration between the datasets used to 
derive the spectral brain-fingerprints. The decrease is faster in patients, as expected from the 
lesser intra-individual autocorrelation of patient spectral brain-fingerprints shown in (a). This is 
also confirmed in the right panel, showing how the intra-individual autocorrelation between 
consecutive spectral brain-fingerprints decreases faster in patients than in healthy controls. 
Shaded regions depict the standard error on the mean. 
 
Spectral brain-fingerprints are robust against data recording artefacts  
We verified the robustness of spectral brain-fingerprints against environmental and physiological 
artifacts. 
 
We found that individuals are not differentiable on the basis of environmental factors that would 
be specific of their respective days of recording, using the empty-room MEG recordings collected 
around each study visit. We pre-processed the empty-room recordings similarly to the 
participants data and mapped each session’s empty-room data onto the respective participant’s 
cortical surfaces, using the same imaging projectors as those for their original MEG data. The 
accuracy of empty-room individual differentiation was considerably lower the actual spectral 
brain-fingerprints (<5%; Figure 2a & Figure S4). 
 
Second, we tested the robustness of brain-fingerprinting against typical physiological artifacts, 
including head motion, heart-rate variability, and eye blinks. The accuracy of brain-fingerprinting 
differentiability was correlated with head motion in the PD-cohort (r= 0.24, p= 0.04), but not 
with cardiac nor ocular artifacts (r= -0.04, p= 0.71; r= -0.08, p= 0.46 respectively; Figure S6). This 
effect was, however, relatively weak: a Bayesian post-hoc analysis indicated weak evidence for 
the alternative hypothesis (BF= 2.04). Nevertheless, we included head motion as a nuisance 
covariate in all regression analyses reported herein of the relationship between patient brain-
fingerprint differentiability and symptoms (see Methods). We also note that healthy controls and 
patients showed no differences in terms of statistical measures of physiological artifacts (head 
motion: t(64.34)= 0.41, p= 0.68; EOG: t(123.88)= -0.91, p=0.36; ECG: t(64.41)= -1.24, p=0.22). 
 
Previous literature has reported cortical thickness abnormalities in PD across the cortex4–7. We, 
therefore, tested whether changes in cortical thickness related to PD accounted, in part, for the 
fingerprinting performances. We estimated cortical thickness from the structural MRI data using 
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Freesurfer (recon-all) in both groups of participants with available MRIs (n=134; see Figure S5a). 
We then used the healthy controls cortical thickness measures to standardize the patient’s 
cortical thickness maps via a z-score transform. There was no significant linear association 
between individual differentiability and the average standardized cortical thickness of patients 
with PD (b= -0.03, SE= 0.07, 95% CI [ -0.16, 0.11], p= 0.69; Figure S5b). Moreover, the 
topography of the most salient regions for PD brain-fingerprinting were not related to the 
topography of standardized cortical thickness of patients with PD (Pearson correlation: r=0.11, 
t(66)=0.88, p=0.38). We conclude that the individual differentiability of patients with PD from 
their spectral brain-fingerprints was not influenced by structural cortical alterations caused by 
the disease. 
 

Discussion 
Brain fingerprinting identifies individually differentiable patterns of brain activity that may also 
be associated with individual complex traits17,18,21,45. Here we demonstrate the relevance of the 
approach to the clinical neuroscience of Parkinson’s disease. We derived brain-fingerprints from 
short segments of ongoing neurophysiological (MEG) brain activity, recorded in task-free 
conditions. Our data show that patients with PD can be individually differentiated from each 
other and from other healthy individuals, from the spatial distribution of the spectral properties 
of their neurophysiological signals on the cortex. We further demonstrate that the individual 
differentiability of patients with PD scales with the severity of their motor and cognitive 
symptoms.  
 
Patients can be differentiated from healthy controls with 81% accuracy. Our data also show, 
however, that the differentiation between patients with PD is on average 15% less accurate than 
between age-matched healthy controls (Figure 2a) but remains considerably higher than from 
environmental noise on the day of the participants’ visits (Figure S4).  
 
Brain-fingerprints of the symptoms of Parkinson’s disease. 
We used a measure of differentiability between successive brain-fingerprints to differentiate 
between individuals in the tested cohorts. We found that differentiability relates to both motor 
and cognitive symptoms across patients with PD (Figures 3). Patients who were more 
differentiable from the cohort were also afflicted with more severe motor symptoms. This effect 
was mediated by preserved cognitive abilities, whereby patients with higher general cognitive 
scores showed a stronger relationship between their motor symptoms and the differentiability 
of their brain-fingerprint.  
 
Patients demonstrating cognitive decline may show greater moment-to-moment variability of 
their brain-fingerprint, thereby attenuating the relationship between motor dysfunctions and 
individual differentiability. Prior research has established the variability of behavioural 
assessments to the severity of cognitive symptoms in PD46–48. Recent PD research work further 
demonstrates a relationship between behavioural variability and abnormalities in cortical 
thickness in the temporal and parietal cortex49. While there is scant evidence linking behavioural 
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and neurophysiological variability in PD, previous fMRI studies have reported an association 
between the variability of brain activity across the lifespan and cognitive performance50–52. For 
these reasons, we can speculate that a declining cognition may induce greater variability of 
behavioural markers and of brain-fingerprints.  
 
In a similar vein, the aging research literature suggests that decreases in dopaminergic activity 
augments neural noise, with subsequent decreases in cognitive performances, increased 
behavioural variability and confusion between cortical representations53,54. Our results are 
aligned with these constructs and may inspire more research to specifically bridge between 
moment-to-moment variability of behaviour and the temporal variability of brain-fingerprints in 
Parkinson’s disease. 
 
Neurophysiological alterations of the brain-fingerprint in Parkinson’s disease. 
Previous studies of the neurophysiology of PD have reported alterations in frequency-specific 
signalling of motor and subcortical structures associated with motor symptoms55,56. Our results 
indicate that patients with PD can be individually differentiated, and their respective clinical 
features identified, from neurophysiological brain-fingerprint features across the cortex and 
across the neurophysiological frequency spectrum.  
 
Although neurophysiological activity in the pre and post central gyri was the most prominent 
fingerprint features in patients, the spectral features of the left superior parietal cortex showed 
the strongest association between patient differentiability and symptoms. Previous anatomical 
studies suggest that the superior parietal lobule and premotor/somatomotor regions are 
strongly inter-connected with one another57,58. Evidence from lesion studies also suggests that 
damage to the left superior parietal cortex impacts a variety of skills including visuo-spatial, 
working memory, cognitive, and motor functions57,59–62. Indeed, the left superior parietal cortex 
plays a role in sensory-motor integration of information63,64 for working memory65,66. These 
aspects support our observation that this region help differentiate between patients with PD, in 
accordance with their motor and cognitive symptoms. The biological (e.g., microstructural, 
genetic) underpinnings of neural signalling and their associations with PD motor and cognitive 
symptoms have yet to be explored.  
 
The regions that enable decoding of disease staging from neurophysiological signals colocalize 
with the topographical features of the PD brain-fingerprint. The pre and post central gyrus are 
the regions with the highest decoding accuracy of disease stages are also those that significantly 
contribute to the differentiation between patients (Figure 4a). This result held regardless of the 
strategy used to train the classifier (Figure S9). Further studies of the alterations of the spectral 
brain-fingerprint associated Parkinson’s disease will help bridge between the clinical 
presentation of the disease to its neuropathological mechanisms. 
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Recent studies have shown alterations of arhythmic brain activity in PD patients12,67,68. Here we 
show that the arhythmic component of the neurophysiological spectrum can differentiate 
between individuals and contributes to the association between inter-individual differentiability 
and motor symptoms. However, the contribution of arhythmic activity to the motor-cognitive 
interaction is more tenuous than when considering the entire neurophysiological spectrum, 
which emphasizes the role of its rhythmic components in the characterization of the disease 
manifestations. 
 
Parkinson’s disease alters large-scale neurophysiological signaling asymmetrically across the 
cortex   
We found that the most salient brain-fingerprint features for differentiating between patients 
with PD reside in the primary sensorimotor cortex (Figure 4b right panel & Figure S3c). This 
finding resonates with the wealth of literature that reports alterations of brain activity in 
sensorimotor regions in Parkinson’s disease10,69,70. Our results indicate that these functional 
aberrations may represent stable markers that are characteristic of individuals with PD and 
contribute to characterizing the neurophysiological signature of each patient’s case. We 
anticipate that these individual feature alterations in Parkinson’s disease become useful brain-
signal signatures of the patient’s clinical presentation.  
 
Brain-fingerprint features in regional components of the default-mode network (DMN) were 
most prominent in healthy participants (Figure 5a & Figure S3a). Previous work has reported 
functional decoupling of the DMN in PD during rest and tasks71–74. These abnormal 
manifestations of the DMN have been related to the dopaminergic system, as they can be 
normalized with levodopa treatment 75,76. Levodopa and dopamine agonists may therefore help 
normalize brain activity in DMN regions and consequently, contribute to standardizing 
neurophysiological signaling across patients. This may explain why the DMN regions, which sit 
higher in the brain functional hierarchy, contribute less to the individual differentiation between 
patients with PD (Figure 5a).  
 
Possible neurochemical foundations of the brain-fingerprint of Parkinson’s disease.  
Our data suggest that monoamine neurotransmitters are associated with the brain-fingerprint of 
PD (Figure 5b). In particular, we found that the cortical topography of serotonin-4 receptor 
density is associated with the reduced neurophysiological stability of the PD brain-fingerprint, 
with an opposite association with norepinephrine. This means that the most salient anatomical 
features of the PD brain-fingerprint co-localize with lower concentrations of serotonin-4 
receptors and higher concentrations of norepinephrine transporters. This observation aligns with 
previous report of degraded monoamines, and in particular dopamine, serotonin, and 
norepinephrine, in PD77. We note that we did not observe an association between features of 
the PD brain-fingerprint and dopamine concentrations, probably because the neuromaps data 
and our MEG analyses are both presently restricted to the cortical surface, while changes in 
dopaminergic signaling caused by PD primarily affect subcortical structures78. 
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We also found that the cortical topography of the cannabinoid receptor-1 (CB1) system is also 
negatively association with the topographical features of the PD brain-fingerprint (Figure 5b). 
Prior work has documented an elevated concentration of CB1 receptors in the striatum, and 
suggests that this receptor system may play a role in the long-term depression of synapses for 
motor learning61. This has revealed CB1 as a potential therapeutic target in PD81. Our present 
results also highlight the potential participation of the cannabinoid system in the 
neuropathophysiology of PD and encourage more research in this area.  
 
Taken together, we hope the present body of results inspires and serves continued efforts to 
define potential targets, and novel biomarkers for future treatments of Parkinson’s disease. 
  
Short-term variations of brain activity are more pronounced in Parkinson’s disease. 
We found that the brain-fingerprints of patients with PD are more variable over relatively short 
periods of time than those of age-matched healthy controls, which explained the slightly lower 
inter-individual differentiation accuracy observed in the patient group (Figure 6).  
 
This greater, moment-to-moment variability of brain activity was expected from previous 
observations of pronounced sequent variability of fMRI connectomes in individuals with or at risk 
of mental health disorders27, such as schizophrenia28, and in the brain-network fingerprints of 
patients with PD31 . Our data extend these observations to spectral derivatives of 
electrophysiological brain activity. These findings also align with reports of greater intra-
individual variability of patient performances on cognitive tasks in PD46,47,82.  
 
Implications for personalized medicine.  
Whether the brain-fingerprinting approach has potential for future clinical impact depends on its 
ability to stratify patients, identify novel disease features, and/or guide new treatment options.  
 
Here we show that brief, as short as 30-second brain recordings differentiate between 
individuals21. These results are in line with previous published observations that the estimation 
of the spectral contents of resting-state brain activity stabilizes within 30s to 120s of MEG 
recordings83. We believe this is a strong asset of the MEG brain-fingerprinting approach for 
potential clinical adoption in patient populations, over fMRI and EEG alternatives. 
 
Our data emphasize the increased variability of brain activity features in neurological and mental 
health disorders25,27,28,84. We foresee that patient trajectories may be delineated via future 
explicit measures of such variability of the brain-fingerprints features highlighted in the present 
study (see, e.g., Figure 6b). We also emphasize that the increased intra-individual variability of 
brain activity features in disease needs to be considered as a challenging, confounding factor in 
the design of emerging statistical and machine learning models to ensure their ability to 
generalize their patient stratification performances at scale. 
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To conclude, this study brings evidence for the clinical relevance of brain-fingerprinting based on 
the fast dynamics of neurophysiological brain activity. This approach captures meaningful clinical 
aspects of Parkinson’s disease, and highlights candidate brain regions where the moment-to-
moment stability of neurophysiological activity is altered by disease mechanisms. We anticipate 
that the data presented will pave the way for future research and discoveries in population 
neuroscience and personalized medicine of Parkinson’s disease and other neurodegenerative 
disorders. 
 
 

Methods 

Participants. Data from healthy controls and patients with mild to moderate idiopathic PD were 
aggregated from several sources (40-82 years-old): data from 79 PD patients with extensive 
clinical, neurophysiological, and biological profiling were collected from the Quebec Parkinson 
Network (QPN; https://rpq-qpn.ca/85) initiative. All patients enrolled in the QPN study were 
prescribed a stable dosage of antiparkinsonian medication and showed a satisfactory clinical 
response. PD patients were instructed to take their medication as prescribed prior to any data 
collection. We included data from all QPN participants with complete and usable MEG, clinical, 
and demographic data. A sample of demographically matched healthy participants was also 
included from the PREVENT-AD (N=50)86 and OMEGA (N=4)22 repositories. All participants had 
undergone resting-state eyes-open MEG recordings using a 275-channel whole-head CTF system 
(Port Coquitlam, British Columbia, Canada) at a sampling rate of 2400 Hz (600-Hz antialiasing 
filter), with third-order gradient filters applied. All recordings were conducted at the same site 
and lasted at least 10 minutes.  

MEG data preprocessing. MEG data were preprocessed using Brainstorm87; March 2021 
distribution, running MATLAB 2019b (Mathworks, Inc., Massachusetts, USA) following good-
practice guidelines88. The preprocessing pipeline followed previous published work performed 
on these data89. MEG sensor signals were bandpass filtered between 1–200 Hz to reduce slow-
wave drift and high-frequency noise. Line noise artifacts (60 Hz) along with harmonics were 
removed using a notch filter bank. We derived Signal-Space Projectors (SSPs) to remove cardiac 
and ocular artifacts based on electro-cardiogram and electro-oculogram recordings, using an 
automated procedure in Brainstorm87. The MEG recordings were then epoched into 6-s non-
overlapping segments and down-sampled to 600 Hz. Artifactual data segments with peak-to-
peak signal amplitude or maximum signal gradient exceeding ± 3 median absolute deviations 
from the median across all epochs were excluded.  

 

MEG source mapping. Brain source models were then derived from the individual T1-weighted 
MRI data available for each participant. The MRI volumes were automatically segmented and 
labeled using Freesurfer90. MEG was coregistered to the segmented MRI data using 
approximately 100 head points digitized on the day of the MEG session. Fourteen patients with 
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PD and 3 controls did not have useable MRI data—we consequently registered each of these 
participants to quasi-individualized anatomy created by warping the default Freesurfer anatomy 
to the available head digitation points and anatomical landmarks90. We produced MEG 
biophysical head models for each participant using the Brainstorm overlapping-spheres model 
(default parameters) applied to 15,000 elementary dipole sources constrained to the cortical 
surface (free orientation). Source maps for each participant and 6-s epoch were computed using 
dynamic statistical parametric mapping (dSPM; default parameters). The same processing 
pipeline was applied to two-minute empty-room recordings collected for statistical modeling of 
environmental noise around each participant’s visit. Individual source time series at each cortical 
location was obtained from the first principal component of the three elementary time courses 
of each triplet of elementary sources at each cortical vertex. The resulting 15,000 time series 
were then clustered according to Desikan-Killiany cortical parcellation into 68 regions of 
interest38 (ROIs), with one representative time series per parcel obtained from the first principal 
component of all source signals within each ROI. 

Derivation of the spectral brain-fingerprints. Brain-fingerprints were then derived from the 
power spectrum of these ROI source timeseries. Power spectrum density (PSD) at each parcel 
was obtained with the Welch’s method (time window of 3 s, 50% overlap). The resulting 
frequency range of PSDs was 0–150 Hz, with a frequency resolution of 1/3 Hz. Each individual’s 
spectral brain-fingerprint consisted of the PSDs of all 68 cortical parcels, averaged across 
multiple 6-s epochs. As reported in Results, we derived two spectral brain-fingerprints from 
epochs corresponding to either the first or second half of the entire MEG session. We also 
derived spectral brain-fingerprints from shorter datasets of 30-s non-overlapping segments. In 
total, the number of features in each spectral brain-fingerprint was 68x451. The rest of the 
analyses were performed using in-house code in Python (3.7.6) and R (V 4.2.1).  

Individual differentiation from spectral brain-fingerprints. We replicated the previously 
published fingerprinting approach based on the correlational differentiability of participants 
between data segments (Figure 1a-b)21. For each participant, we first compute all Pearson 
correlation coefficients between the first spectral brain-fingerprint of the participant and the 
second brain-fingerprint of all individuals in the same cohort, including the probe participant. 
Fingerprinting then consists of a simple lookup procedure along the row (or columns) of the 
(symmetrical) interindividual correlation matrix. The entry of the largest correlation coefficient 
indicates the match with the probe participant. This approach is repeated for all participants in 
the cohort, yielding a confusion matrix across all participants in the cohort based on the two 
instances of their respective brain-fingerprints. We defined the percent ratio of correctly 
differentiated individuals as the differentiation accuracy of the brain-fingerprinting procedure.  

In the present study, we considered three types of differentiation challenges: i) between healthy 
participants, ii) between patients with Parkinson’s disease, and iii) between each patient with PD 
against all healthy controls (i.e., patients vs controls; see Figure 1c). The purpose of the brain-
fingerprint differentiation between healthy participants was to replicate our previous study with 
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younger adults21 with a group of older participants and provided a benchmark differentiation 
accuracy for the age group of patient participants. 

In this framework, individual differentiability measures how a participant can be distinguished 
from other individuals in the cohort based on their brain-fingerprint. We defined this measure as 
the z-scored Pearson correlation between the two brain-fingerprints of a given participant, 
relative to the mean and standard deviation across the correlations between this participant first 
brain-fingerprint and all other participants’ second brain-fingerprints.  

Bootstrapping of differentiation accuracy scores. We used bootstrapping to derive confidence 
intervals around the average differentiation accuracy scores obtained from the above procedure 
across the tested cohorts. We randomly selected a sub-sample of participants representing 90% 
of the tested cohort and performed brain-fingerprinting of their data to derive a differentiation 
accuracy score from that sub-sample. This process was repeated 1000 times, from different 
random subsamples of participants in the tested cohort. A 95-% confidence interval was derived 
from the 2.5th and 97.5th percentiles of the resulting empirical distribution of differentiation 
accuracies. 

t-SNE visualization. We used the distributed Stochastic Neighbour Embedding (t-SNE) method as 
implemented in R (package M3C41) to project the two high-dimensional brain-fingerprints of 
each individual in a two-dimensional plane. The resulting plot across all participants is shown 
Figure S2; a subset of 20 individuals presenting the highest and lowest individual differentiability 
scores is shown Figure 2. From these 2-D maps, we estimated the correlation between the log-
transformed Euclidian distance between each participant’s brain-fingerprints and their 
respective individual differentiability scores. We performed an independent-sample t-test to 
determine if whether these distances are less in healthy controls than in patients with PD. We 
used ggplot with custom R scripts to produce these plots. All brain maps shown in Figure 3, 4 & 5 
and in Supplemental Information were generated using R (V 4.1.2; with the ggseg package). The 
shaded areas shown in Figure 2c, 3a, 3b, 4b, 5a, & 6b represent the 95-% confidence intervals 
obtained from stat_smooth, also in R. 

Ruling out possible biophysical and environmental artifacts. We investigated whether 
environmental noise and biophysical recording artifacts might have affected differentiation of 
individual participants. We related individual differentiability scores to the respective root-mean-
squares (RMS) of measured ocular, cardiac, and head movement signals collected 
simultaneously with MEG (ECG, HEOG, VEOG, head-coils triplet channels, respectively). We 
derived the correlation of the three measures obtained with the individual differentiability of 
each participant from the entire cohort. The head motion RMS measure was also included as a 
nuisance covariate in the regression model linking individual differentiability and motor 
symptoms. 

We also tested if environmental and instrument noise, which can vary from day to day, may have 
biased individual differentiation. We used the empty-room recordings collected around each 
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MEG session, to derive pseudo brain-fingerprints for each participant based on the cortical 
source maps of the noise recordings. We then estimated the differentiation accuracies obtained 
from these pseudo brain fingerprints, replicating our previously published approach21.  

Arhythmic/rhythmic spectral parametrization. We estimated how arhythmic and rhythmic 
spectral components of the brain-fingerprint contributed to individual differentiation. We first 
used specparam as available in Brainstorm to identify the best-fitting arhythmic components of 
the spectral features of each individual’s brain-fingerprint in the 2-40 Hz range. Parameters for 
specparam were set to: peak width limits: [0.5 - 12 Hz]; maximum number of peaks: 3; minimum 
peak amplitude: 3 a.u.; peak threshold: 2 standard deviations; proximity threshold: 2 standard 
deviations; aperiodic mode: fixed. We used the resulting arhythmic models to derive brain-
fingerprints based only on these features. Symmetrically, we then removed these arhythmic 
components from the original brain-fingerprints to assess how the rhythmic residuals of the 
brain-fingerprint contributed to inter-individual differentiation. 

Saliency of brain-fingerprint features. We calculated intraclass correlations (ICC) to quantify the 
contribution of each cortical region towards differentiating between individuals. ICC quantifies 
the agreement between two measures, whereby here, the higher the ICC of a given brain-
fingerprint feature, the more consistent it is across the two brain-fingerprints of each individual. 
The ΔICC maps depicted in Figure 4b and Figure S3 were obtained by first averaging ΔICC values 
within each of the canonical frequency bands and then across bands. Specifically, we averaged 
ΔICC within the delta 1–4 Hz, theta 4–8 Hz, alpha 8–13 Hz, beta 13–30 Hz, gamma 30–50 Hz, and 
high-gamma 50–150 Hz ranges to obtain six ΔICC maps, one per frequency band, and then 
averaged across all bands. The rationale is to weigh each frequency band equally in the 
derivation of the broadband ΔICC, regardless of their respective widths (e.g., the delta 
bandwidth is 4Hz; the high-gamma's is 100 Hz). 
 

Neuroanatomy. We verified that neuroanatomical features, including changes caused by 
Parkinson’s disease, did not confound the ability to differentiate participants based on their 
spectral brain-fingerprints. We measured z-scored deviations of cortical thickness (from 
FreeSurfer) for each cortical parcel and for each patient with PD, with respect to the mean and 
standard deviation observed across the age-matched healthy controls. We then fit linear 
regression models to test if: i) the most differentiable patients also showed greater deviations in 
cortical thickness, and ii) deviations in regional cortical thickness was related to regional ΔICC 
(Figure 4b right panel). 

 

Individual differentiability and clinical scores. We tested whether the ability to differentiate an 
individual based on their brain-fingerprints was related to their clinical scored evaluation. We 
used the Unified Parkinson’s Disease Rating Scale (UPDRS) part III91 and the Montreal Cognitive 
Assessment92 (MoCA) as scoring systems for motor and cognitive functions, respectively. 
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The UPDRS measures several facets of Parkinson’s disease symptomology, including both motor 
and non-motor symptoms. We used the motor symptom subscale (UPDRS part III)91, with the 
hypothesis that patients with more severe motor symptoms would also be more differentiable. 
We fit linear regression models in R (V 4.1.2) using the built-in lm() function to predict 
differentiability, including age, education, and disease duration as nuisance covariates.  

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	~	𝑎𝑔𝑒 + 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑑𝑖𝑒𝑎𝑠𝑒	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + ℎ𝑒𝑎𝑑	𝑚𝑜𝑡𝑖𝑜𝑛 + 𝑈𝑃𝐷𝑅𝑆	𝐼𝐼𝐼	 

We hypothesized that individual differentiability would also be predicted by the severity of 
cognitive symptoms. We used MoCA scores as measures of participant's general cognitive 
function. We categorized patients using a “low” vs. “high” MoCA scores based on a common 
clinical cut-off, such that patients with a MoCA score above (respectively below) 24 were rated 
as cognitively healthy (respectively impaired)92. We fit a linear regression model using all the 
above-mentioned predictors, and the MoCA, and the interaction between MoCA and motor 
symptoms.  

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	~	𝑎𝑔𝑒 + 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑑𝑖𝑠𝑒𝑎𝑠𝑒		𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + ℎ𝑒𝑎𝑑	𝑚𝑜𝑡𝑖𝑜𝑛 +
𝑈𝑃𝐷𝑅𝑆	𝐼𝐼𝐼 + 																																			𝑀𝑜𝐶𝑎 + 𝑈𝑃𝐷𝑅𝑆	𝐼𝐼𝐼 ∗ 𝑀𝑜𝐶𝑎  

We used the Bayesfactor package in R to obtain Bayes factors (BFs) weighing evidence of the null 
hypothesis (excluding a predictor) against the alternative hypothesis (including the predictor of 
interest, i.e., UPDRS and UPDRS*MoCA). BF< 1 indicates that evidence favours the alternative 
hypothesis of an effect of the predictor. 

We used Cook’s distance (outlier threshold > 1) and the check_model function from the 
performance package in R to identify outliers and check model assumptions, respectively93,94.  

We ran non-parametric permutations to compute a p-value for each of the tested symptom-
differentiability relationships. We permuted the association of patients' differentiability scores to 
their symptoms (i.e., permuted the rows of the differentiability vector), re-ran the above 
regression analysis and registered the value of the corresponding beta coefficient. From the 
empirical distribution of these beta values, we obtained a non-parametric p-value for the UPDRS 
III effect and the MoCA*UPDRS III interaction. 

Relative contribution of frequency bands and ROIs for the differentiability relationships to 
clinical features. We quantified the importance of a ROI for the differentiability relationships to 
clinical features (i.e., UPDRS and MoCA) using an adapted leave-one-out approach. Here, we 
iteratively left out each feature of interest, recomputed differentiability with this feature 
removed, and re-fit the regression model using these values. For example, to calculate how 
important the delta band is in a given relationship, we computed differentiability using spectral 
data from all frequencies except for the delta band. We then fit a linear regression model using 
these “delta-left-out” differentiability scores and compared the change in AIC (ΔAIC) between 
this model and the full model (i.e., using all the frequency bands), with higher ΔAIC values 
indicating a more substantial contribution to the overall effect. We repeated these steps for 
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every frequency band of interest and ROI, iteratively computing differentiability, fitting a linear 
regression model, and computing the ΔAIC. To determine which ROIs contributed meaningfully 
to the differentiability relationships, we used a standard criterion of ΔAIC > 2 as our threshold.  

Decoding disease staging from brain-fingerprints. We used the individual Hoehn & Yahr scores 
as indicators of individual disease staging in patients43,44. Here too, we binarized the scores 
around a value of 2 to stratify patients into two groups. This division distinguishes between 
patients with and without presentations of bilateral symptoms. We trained a linear support 
vector machine (SVM) classifier in R with default parameters, to identify each patient’s disease 
stage category from their respective spectral brain-fingerprint features. 

We ran SVM classification for each cortical parcel separately: data from a random sample of 80% 
of the patients was used to train the SVM classifier, which was subsequently tested on the 
remaining 20% of patients. We recorded the percent of held-out patients for whom the classifier 
correctly identified their Hoehn & Yahr category. We iterated this process 1000 times per 
cortical parcel to generate an empirical distribution of disease stage classification accuracy 
across the cortex.  

We then estimated the spatial correlation between the cortical topographies of disease stage 
decoding accuracy and the regional ΔICC values of the brain-fingerprints (see Saliency of brain-
fingerprint features). More specifically, we subtracted ICC values from the PD-cohort 
fingerprinting challenge and control-cohort challenge and correlated these differences in ICC 
across cortical ROIs to the decoding accuracies obtained from the decoding of Hoehn & Yahr 
scores. 
 
Correspondence of brain-fingerprint features with the functional hierarchy of the cortex. We 
aimed to determine if the brain-fingerprints of individuals with Parkinson’s Disease colocalized 
with the cortical topography of functional hierarchies35. 
 
We computed the Pearson’s spatial correlation of ΔICC brain-fingerprint topography with the atlas 
map of the first gradient of the cortical functional hierarchy35 available from neuromaps36 and 
parcellated in the 68 regions of the Desikan-Killiany atlas38. We computed the related Bayes factors 
using the correlationBF function in R. We also estimated associated p-values using permutation 
tests controlling for the spatial autocorrelation of the data96,97.  
 
Correspondence of brain-fingerprint features with cortical neurotransmitter systems. Using a 
similar approach as in the above subsection, we estimated the Pearson’s spatial correlation 
between the regional ΔICC values of the brain-fingerprints and each of the normative atlas maps 
(from neuromaps36) of 19 receptors and transporters from 9 neurotransmitter systems. These 
latter consisted of: dopamine (D1: 13 adults, [11C]SCH23390 PET; D2: 92, [11C]FLB-457, DAT: 
174, [123I]-FP-CIT), serotonin (5-HT1a: 36, [11C]WAY-100635; 5-HT1b: 88, [11C]P943; 5-HT2a: 
29, [11C]Cimbi-36; 5-HT4: 59, [11C]SB207145; 5-HT6: 30, [11C]GSK215083; 5-HTT: 100, 
[11C]DASB), acetylcholine (α4β2: 30, [18F]flubatine; M1: 24, [11C]LSN3172176; VAChT: 30, 
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[18F]FEOBV), GABA (GABAa: 16, [11C]flumazenil), glutamate (NMDA: 29, [18F]GE-179; mGluR5: 
123, [11C]ABP688), norepinephrine (NET: 77, [11C]MRB), histamine (H3: 8, [11 C]GSK189254), 
cannabinoid (CB1: 77, [11 C]OMAR), and opioid (MOR: 204, [11 C]carfentanil).  
Each map was parcellated using the 68 regions of the Desikan-Killiany atlas38. Statistical 
significance was determined after correction for multiple comparisons using a False Discovery 
Rate (FDR) as implemented in the R function p.adjust98. We derived Bayes factors to quantify the 
evidence in favour of the alternative hypothesis (i.e., a spatial correlation does exist) using the 
correlationBF function in R. For each significant spatial correspondence observed, we also 
estimated p-values based on spatially constrained permutation tests96,97. We performed 1000 
permutations of the labels of patients vs. controls, computed a corresponding null ICC matrix for 
the patients and controls groups, and estimated the correlation of the resulting random 
differences in ICC for these null models with each of the 19 neurotransmitter atlas maps. 
 

Data availability  

The data are available through the Clinical Biospecimen Imaging and Genetic (C-BIG) repository 
(https://www.mcgill.ca/neuro/open-science/c-big-repository)85, the PREVENT-AD open resource 
(https://openpreventad.loris.ca/ and https://registeredpreventad.loris.ca)86, and the OMEGA 
repository (https://www.mcgill.ca/bic/resources/omega)22. Normative neurotransmitter density 
data are available from neuromaps (https://github.com/netneurolab/neuromaps)36. 

 

Code availability  

All in-house code used for data analysis and visualization is available on GitHub 
https://github.com/jasondsc/PDneuralfingerprinting. 
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Supplemental Information 
 
Participants.  
The study participants are patients with Parkinson’s disease and age-matched healthy controls 
from the OMEGA, PREVENT-AD, and QPN data repositories1–3. Table S1 provides their 
demographics, which we tested for sample differences in terms of age and education, using an 
unpaired t-test and gender and handedness with a Chi-square test. No significant differences were 
found.     
 Patients Controls Uncorrected p-

values 
age 64.63 (8.66) 61.98 (8.89) 0.09 
gender (female) 23 24 0.13 
handedness (right) 67 48 1.0 
education 15.11 (3.11) 15.54 (3.58) 0.48 
Hoehn & Yahr score 1.97 (0.71) NA  
UPDRS III 32.55 (14.74) NA  
MoCA 24.43 (4.03) NA  

Table S1: Participant demographics. 
 
 
Individual differentiation from distinct spectral features of the brain-fingerprint. 
These individual differentiations accuracies between controls, patients and patients vs. Controls 
are reported in Figure S1, based on the original broadband spectral brain-fingerprints 
(“broadband”), their arhythmic components (“arhythmic”) and the arhythmic-corrected versions 
(“arhythmic corrected”).  
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Figure S1: Individual differentiation from distinct spectral features of the brain-fingerprint. 
Error bars are from bootstrapped estimates of individual differentiation accuracies (see Methods).  
 
 
 
Figure S2 depicts the t-SNE 2-D projection of each participant’ brain-fingerprints (two per 
participant). The dashed lines connect the two brain-fingerprints of each participant (see Figure 
2c for a subset of participants), which may not be visible in participants with highly consistent 
brain-fingerprints derived from two distinct datasets. 
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Figure S2: t-SNE map of all participants (N=133)  
t-SNE mapping of individual spectral brain-fingerprints for display of all participants. Dotted lines 
connect between the two spectral brain-fingerprints derived from the two non-overlapping 
datasets used to produce the spectral brain-fingerprints of each participant. Note that dotted 
lines are not visible in participants with stable brain-fingerprints (plots overlap). We found that 
the 2-D Euclidian distances between each participant’s two spectral brain-fingerprints in this 2-D 
space scaled linearly with the differentiability. The smaller the distance between low-
dimensional representations of the individual’s spectral brain-fingerprints, the more 
differentiable are the participants (see Figure 2c).   
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Figure S3: Relative contribution of features for fingerprinting  
Intra-class correlation coefficients (ICCs) plotted for (a) the within control cohort fingerprinting 
challenge, (b) the PD patient cohort challenge, and (c) the difference between the PD and control 
challenge.  
 
 
Environmental artifacts and possible neuroanatomical confounds.  

 
Figure S4: Differentiation accuracy from empty-room data. 
Differentiation accuracies from brain-fingerprints derived from empty-room recordings 
performed around the MEG visit of each participant. 
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Figure S5: (a) Average cortical thickness measured in control participants and patients with PD. (b) 
left panel: linear regression analysis showing no relationship between individual differentiability 
and the average standardized cortical thickness of each patient (averaged across ROIs) (see 
Methods). Right panel: brain maps of average standardized cortical thickness of patients with PD.  
 
 
Differentiability of patients with PD is correlated to head motion (r= 0.23, p= 0.04), but not to 
cardiac or ocular artifacts (r= -0.04, p= 0.71; r= -0.08, p= 0.46 respectively). There was, however, 
little evidence in favour of the relationship between head motion and differentiability (BF= 2.04; 
Figure S6).  
 

 
Figure S6: Individual differentiability does not relate to cardiac or ocular artifacts (middle and right 
panels). A moderate linear relationship exists between individual differentiability and head motion 
in the patient group. 
 
Individual differentiation relates to motor and cognitive symptoms 
We hypothesized that patient differentiation scales with the severity of motor symptoms. We fit 
linear regression models to predict individual differentiability from UPDRS III8 scores (Tables S2 & 
S3). Table S4 details the interaction between motor and cognitive symptoms in predicting 
differentiability.  
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Table S2: Differentiability and motor symptoms, with head motion as covariate. 

  differentiability 

predictors estimates CI p BF 

intercept 2.14 
-

0.93 – 5.02 0.174  

age -0.01 -
0.05 – 0.03 

0.503 2.02 

education 
coded 

0.06 -
0.04 – 0.16 

0.236 1.35 

disease duration -0.04 -
0.12 – 0.03 

0.231 1.33 

UPDRS 0.03 0.01 – 0.06 0.004 0.07 

observations 56  

R2 / R2 adjusted 0.187 / 0.123  
 
Table S3: Differentiability and motor-cognitive interaction. 

  differentiability 

predictors estimates CI p BF 

intercept -6.02 -12.50 – 6.44 0.523  

age -0.00 -0.05 – 0.05 0.998 2.16 

education coded 0.05 -0.05 – 0.15 0.307 1.41 

disease duration -0.04 -0.11 – 0.03 0.301 1.39 

head motion 0.05 -0.03 – 0.14 0.207 1.13 

UPDRS 0.00 -0.03 – 0.04 0.903 2.16 

MoCA  -2.25 -3.96 – -0.55 0.011 0.16 

UPDRS * MoCA  0.06 0.01 – 0.10 0.025 0.28 

observations 56  
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R2 / R2 adjusted 0.294 / 0.191  
 
 
Differentiation of patients from arhythmic brain activity relates to motor symptoms  
Individual differentiability from the arhythmic components of the brain-fingerprint is also 
associated with motor symptoms (Figure S7and Table S5). The left superior parietal cortex remains 
the most salient cortical region in this relationship (Figure S8). There was no interaction between 
the motor and cognitive symptoms in predicting individual differentiability from the arhythmic 
components of the brain-fingerprint (Table S6).  
 
Individual differentiability from arhythmic-corrected brain-fingerprints is not related to the 
severity of motor symptoms (Tables S7 & S8). 
 
 
Table S4: Individual differentiability from arhythmic spectral brain-fingerprints and association 
with motor symptoms. 

 differentiability  

predictors estimates CI p BF 

intercept 1.91 -4.61 – 8.44 0.558  

age -0.03 -0.06 – 0.00 0.055 0.47 

education coded 0.03 -0.04 – 0.10 0.407 1.52 

disease duration -0.01 -0.06 – 0.04 0.811 1.95 

head motion -0.00 -0.06 – 0.05 0.931 1.99 

UPDRS 0.02 0.00 – 0.04 0.033 0.34 

specparam fit 1.62 -0.75 – 3.99 0.176 0.97 

observations 56  

R2 / R2 adjusted 0.163 / 0.061  
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Figure S7: Individual differentiability from arhythmic and arhythmic-corrected spectral brain-
fingerprints and relations to motor symptoms. 
Left panel: the differentiability of patients from arhythmic spectral brain-fingerprints is associated 
with the severity of their motor symptoms measured on the UPDRS part III scale. Right panel: The 
relative changes of Akaike’s information criterion (DAIC) depict which region(s) of the arhythmic 
brain-fingerprint contributes the most to the association between individual differentiability and 
PD motor symptoms.  We found that only the left superior parietal cortex contributes to the 
association between individual arrhythmic differentiability and the severity of motor symptoms. 
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Figure S8: Parameterized spectra from left superior parietal cortex.  
Spectral power (solid lines) and arhythmic spectral power (dashed lines) in the left superior 
parietal cortex of participants with high and low MoCA9 scores and high and low UPDRS8 scores, 
respectively. Patients presenting high vs. low MoCA scores are shown with different colors, and 
with high vs. low UPDRS III scores (left vs. right graphs) using median splits of the cohort, for 
visualization. Shaded regions depict the standard error on the mean. 
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Table S5: Motor-cognitive interaction in the association of individual differentiability from 
arhythmic spectral brain-fingerprints and motor symptoms. 
 

  differentiability  

predictors estimates CI p BF  

intercept 0.66 -6.21 – 7.54 0.847   

age -0.03 -0.06 – 0.01 0.139 0.80  

education coded 0.03 -0.04 – 0.10 0.425 1.44  

disease duration -0.00 -0.05 – 0.05 0.898 1.83  

head motion 0.01 -0.05 – 0.07 0.703 1.74  

specparam fit 1.60 -0.91 – 4.11 0.206 0.99  

UPDRS 0.01 -0.02 – 0.03 0.526 1.84  

MoCA -0.77 -2.00 – 0.46 0.213 1.02  

UPDRS * MoCA 0.02 -0.02 – 0.05 0.287 1.19  

observations 56   

R2 / R2 adjusted 0.191 / 0.054   
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Table S6: Individual differentiability from arhythmic-corrected spectral brain-fingerprints not 
associated with motor symptoms. 

 differentiability  

predictors estimates CI p BF 

intercept 5.19 -6.50 – 16.88 0.377  

age -0.03 -0.09 – 0.03 0.298 1.24 

education coded 0.05 -0.08 – 0.18 0.456 1.51 

disease duration 0.02 -0.07 – 0.11 0.594 1.68 

head motion -0.03 -0.13 – 0.07 0.534 1.61 

UPDRS 0.03 -0.00 – 0.06 0.062 0.50 

specparam fit 2.55 -1.70 – 6.80 0.234 1.09 

observations 56  

R2 / R2 adjusted 0.097 /- 0.014  
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Table S7: Motor-cognitive interaction in the association of individual differentiability from 
arhythmic-corrected spectral brain-fingerprints and motor symptoms. 

  differentiability  

predictors estimates CI p BF  

intercept 1.38 -10.56 – 13.31 0.817   

age -0.02 -0.08 – 0.05 0.617 1.66  

education coded 0.05 -0.08 – 0.18 0.451 1.47  

disease duration 0.03 -0.06 – 0.12 0.472 1.50  

head motion 0.01 -0.10 – 0.12 0.850 1.80  

specparam fit 2.35 -2.00 – 6.71 0.282 1.18  

UPDRS -0.00 -0.05 – 0.04 0.861 1.82  

MoCA -2.31 -4.45 – -0.18 0.034 0.34  

UPDRS * MoCA 0.06 -0.00 – 0.12 0.058 0.47  

observations 56   

R2 / R2 adjusted 0.166 / 0.024   
 
 
Decoding of disease staging relates to salient features of the spectral brain-fingerprint.  
The ability to decode disease stages from regional brain-fingerprint features is correlated with the 
related changes in ICC between patients and controls differentiation (see Figure 5a-c).  
 
To verify that this result was not biased by the 80-20 cross-validation strategy, we replicated the 
approach using 90-10 and 70-30 cross-validations (e.g., using 90% of the data to train the decoder 
and 10% to test its performance) and found qualitatively similar results (Figure S9).  
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Figure S9: Decoding of disease stages does not depend on cross-validation strategy.  
Topography of decoding accuracies of Parkinson’s disease stages (binarized Hoehn & Yahr scores) 
from the spectral brain-fingerprint features of each cortical parcel. The observed topography 
remains similar regardless of the cross-validation method. The decoding accuracy of Parkinson’s 
disease stages at each cortical parcel remains correlated to the saliency of the brain-fingerprints 
of each cortical parcel (Δ ICC, right; Figure 4b right panel) regardless of the cross-validation 
method. 
 
 
Table S8: Differentiation accuracy derived from shorter (30-s) datasets exhibits pronounced short-
term variability of patient brain-fingerprints. 

 differentiation accuracy 

predictors               estimates CI p BF 

intercept 94.57 92.01 – 96.79 <0.001  

gap duration between brain-fingerprints -2.07 -2.53 – -1.62 <0.001 4.22e-56 

group [within PD] -0.73 -4.30 – 2.83 0.686 9.28e-11 

group [PD Vs HC] 2.32 -1.24 – 5.89 0.201 9.28e-11 

gap duration between brain-fingerprints 
* group [within PD] -1.48 -2.13 – -0.84 <0.001 2.86e-3 

gap duration between brain-fingerprints 
* group [PD vs HC] 

-1.29 -1.94 – -0.65 <0.001 2.86e-3 

observations 234  

R2 / R2 adjusted 0.721 / 0.715  
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