
International  Journal  of

Environmental Research

and Public Health

Article

Assessing Communicative Effectiveness of Public Health
Information in Chinese: Developing Automatic Decision
Aids for International Health Professionals

Meng Ji 1,* , Adams Bodomo 2 , Wenxiu Xie 3 and Riliu Huang 1

����������
�������

Citation: Ji, M.; Bodomo, A.; Xie, W.;

Huang, R. Assessing Communicative

Effectiveness of Public Health

Information in Chinese: Developing

Automatic Decision Aids for

International Health Professionals.

Int. J. Environ. Res. Public Health 2021,

18, 10329. https://doi.org/10.3390/

ijerph181910329

Academic Editors: Deborah J. Bowen

and Florian Fischer

Received: 25 August 2021

Accepted: 28 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Languages and Cultures, The University of Sydney, Sydney 2006, Australia;
rhua5035@uni.sydney.edu.au

2 Department of African Studies, The University of Vienna, A-1090 Vienna, Austria;
adams.bodomo@univie.ac.at

3 Department of Computer Science, City University of Hong Kong, Hong Kong 518057, China;
Vasiliky@outlook.com

* Correspondence: christine.ji@sydney.edu.au

Abstract: Effective multilingual communication of authoritative health information plays an im-
portant role in helping to reduce health disparities and inequalities in developed and developing
countries. Health information communication from the World Health Organization is governed by
key principles including health information relevance, credibility, understandability, actionability,
accessibility. Multilingual health information developed under these principles provide valuable
benchmarks to assess the quality of health resources developed by local health authorities. In this
paper, we developed machine learning classifiers for health professionals with or without Chinese
proficiency to assess public-oriented health information in Chinese based on the definition of effective
health communication by the WHO. We compared our optimized classifier (SVM_F5) with the state-
of-art Chinese readability classifier (Chinese Readability Index Explorer CRIE 3.0), and classifiers
adapted from established English readability formula, Gunning Fog Index, Automated Readability
Index. Our optimized classifier achieved statistically significant higher area under the receiver
operator curve (AUC of ROC), accuracy, sensitivity, and specificity than those of SVM using CRIE
3.0 features and SVM using linguistic features of Gunning Fog Index and Automated Readability
Index (ARI). The statistically improved performance of our optimized classifier compared to that of
SVM classifiers adapted from popular readability formula suggests that evaluation of health commu-
nication effectiveness as defined by the principles of the WHO is more complex than information
readability assessment. Our SVM classifier validated on health information covering diverse topics
(environmental health, infectious diseases, pregnancy, maternity care, non-communicable diseases,
tobacco control) can aid effectively in the automatic assessment of original, translated Chinese public
health information of whether they satisfy or not the current international standard of effective health
communication as set by the WHO.

Keywords: health translation; Chinese health resources; readability; health translation; Chinese
health resources; readability; accessibility

1. Introduction

Effective multilingual communication of authoritative health information plays an
important role in helping to reduce health disparities, inequalities in developed and devel-
oping countries. Currently, the evaluation of the quality of public-oriented health informa-
tion focused on readability assessment [1–7]. In 2013, the Agency for Healthcare Research
and Quality of the U.S. Department of Health and Human Services developed the Patient
Education Materials Assessment Tool (PEMAT) which extended the evaluation of the
quality of user-oriented health information from readability, understandability to include
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actionability [8,9]. PEMAT provided detailed guidelines for qualitative patient-oriented
health information understandability analysis: word choice and language style (use of
common, familiar terms, active voice), numeracy (use of easy-to-understand numbers and
measurements; no calculations), information organization (break chunks of information to
short sections; logical sequence of information; use of informative headers and summary),
layout, design and use of visual aids. Actionability is assessed through whether the mate-
rials contain clearly defined actions, break actions into manageable, explicit steps, use of
visual or graphical aids.

More recently, The World Health Organization developed The Strategic Framework
for Effective Communications [10–12]. The Framework significantly enriched the dimen-
sions of the evaluation of the quality of online health contents intended for health decision
makers at all levels including individuals and communities from diverse language, cultural,
educational, and socio-economic backgrounds. In this Framework, six large principles
are highlighted for developing effective health resources: information accessibility, under-
standability, actionability, credibility, relevance, and timeliness. Among these principles,
five are directly related to online health information quality assessment: understandability,
actionability, credibility, relevance, and timeliness. This represents a further extension of
the PEMAT guidelines focusing on the first two criteria: understandability, actionability.

Within the WHO Strategic Framework, understandability was assessed in terms of
use of plain, familiar language; actionability was associated with the use of messages
that are simple, easy to recall, repeated and attention getting; messages that can facilitate
the understanding of health risks, specify the steps needed to protect people’s health;
messages that help people to implement protective measures by describing the desired
action and explaining where to find information and resources that support implementation.
Information creditability mandates that fact sheets are updated to ensure technical accuracy
and that readers can identify whether they are at risk, understand the scale of the problem,
learn ways they can protect their health and safety, recognize the barriers to improvement,
recognize the barriers to improvement. Transparency is part of information credibility,
particularly for scenarios of high uncertainty. To ensure information credibility, public
health information needs to clarify what information is known and what is not known;
emphasize that interim public health recommendations could change as new information
becomes available, and let audiences know about the limitations of the conclusions from
preliminary research findings. Information relevance requires the tailoring of health
messages to make the content relevant to the specific audience; address the barriers people
may face when trying to take recommended action. This is to engage the target audience,
communicate risks effectively, and achieve the desired single overarching communications
outcome (SOCO). Lastly, timeliness requires that under public health emergencies, quick
release of health information should include symptoms, severity of the threat, where the
threat is located or spreading, who is at risk, how people can protect themselves, what is
being done to contain the threat, and how to get answers for questions.

2. Methods
2.1. Research Design

The general principles and implementation strategies for these principle in the WHO
Strategic Framework for Effective Communications lay the foundation for more integrated
assessment of online public-oriented health contents. However, without detailed guidelines
and quantitative tools, the use of the Framework in practical health information assessment
remains a real challenge, especially for languages which lack in standardized readability
assessment tools even for basic understandability check. Chinese is one of the two non-
European languages (with Arabic) among the six official languages of the WHO (English,
Spanish, Russian, French). Despite an increasing interest in quantitative readability as-
sessment of Chinese educational materials, currently there is no internationally validated
Chinese readability tools. As a result, the evaluation of the quality of health information
in Chinese remains largely understudied nor benchmarked against international health



Int. J. Environ. Res. Public Health 2021, 18, 10329 3 of 11

promotion resources in the same language. At the WHO, translations serve as an important
channel for the dissemination of public health information. To control for the variability
of translated contents, translation professionals at the WHO use enhanced translation
strategies (forward and backward translation) to produce multilingual contents of original
English health materials [13,14]. In our study, we collected high-quality WHO Chinese
translations of health contents intended for the public in sections of the WHO website
such as Health Topics, Fact Sheets, Q&As. The WHO Strategic Framework for Effective
Communications specifies and highlights that these materials have been developed un-
der the principles of effective health communication of accessibility, understandability,
actionability, credibility, relevance, and timeliness.

In our study, we collected and used these materials which have been developed to
reflect the principles of effective health communication by WHO health professionals
and then thoroughly translated to other official languages including Chinese as train-
ing materials to develop machine learning classifiers. The main function of these clas-
sifiers was to aid in the automatic evaluation of the communicative effectiveness of
health information in Chinese from non-WHO sources, mainly health authorities and
health research institutes in China. We trained and validated the classifier on WHO
and non-WHO exiting Chinese health materials on a range of diverse health topics
including environmental and occupational health, infectious diseases, pregnancy and
maternity care, non-communicable disease, tobacco control to ensure its wide appli-
cability. To validate our classifier, we further compared the performance of our clas-
sifier with that of the state-of-the-art Chinese readability classifier using Support Vec-
tor Machine (SVM, implemented in the Python scikit-learn package, available at https:
//scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) (accessed on 1 June
2021) [15,16] and Chinese Readability Index Explorer (CRIE 3.0), as well as SVM classifiers
using features from well-established English readability formula, Gunning Fog Index and
Automated Readability Index (ARI), as other English readability tools are not readily
adaptable to the Chinese language materials.

2.2. Study Materials Collection

A comparable corpus was constructed which contained a large number of health texts
of WHO and China health information from credible, authoritative Chinese sources such
as national and local research centers, and not-for-profit organizations of health promotion
in China (Appendix A). These Chinese health resources were however not developed
under the principles of Strategic Framework for Effective Communications. Chinese health
materials from the WHO were Chinese translations from original English materials. Efforts
were made to maintain the structural balance between the two sets of data in terms of
topical similarity. Some topics were well represented in both sources of Chinese health
information such as infectious diseases, pregnancy and maternity, environmental health,
non-communicable diseases, and some topics were absent from Chinese health sources such
as mental health, dementia, antibiotics, capacity building, accidents. This was partly due to
the global reach of the WHO and the diversity of health topics covered by the international
health organization, and partly due to the lack of relevant health educational materials on
topics such as mental health, dementia, disability from Chinese health authorities. After
screening for health texts which were present in both sources, the total number of health
texts collected for the corpus was 578: WHO resources (352) and non-WHO Chinese health
sources (226).

2.3. Related Work

Currently, the assessment of the quality of health resources for readers is based on
established readability tools and formula including Flesch Reading Ease Score [17], Gun-
ning Fog [18], Flesch-Kincaid Grade Level, Coleman-Liau Index [19], SMOG Index [20,21],
Automated Readability Index [22], Linseed Write Formula. The advantages of these tools
consist in their convenience and rapid assessment of the suitability of the written materials

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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for people with varying educational levels. These tools have been used extensively in the
quantitative evaluation of specialised and general health materials for many decades. How-
ever, a major limitation of these tools is that they have not been validated in non-European
languages and that some of the linguistic features such as average word length in syllables
used in these tools are not readily adjustable to languages using non-alphabetical writing
symbols like Chinese. In recent years, with the rapid development of natural language
processing techniques, research in the automatic assessment of Chinese written materials
has been developing rapidly. The Chinese Readability Index Explorer was used which was
developed by National Taiwan Normal University [23,24]. CRIE enables high-dimensional,
integrated linguistic analyses of Chinese texts, and ranks their readability (for Chinese
readers from Year 1 to 12 educational backgrounds) according to the assessment score of
individual linguistic items.

3. Results
3.1. Statistics

In our study of developing machine learning classifiers to diagnose and predict the
overall communicative effectiveness of Chinese health resources using existing WHO
Chinese information as benchmarks, we used the latest version of the Chinese Readability
Index Explorer (version 3.0). Table 1 shows the 29 word/lexical, syntactic, semantic
and cohesion features of the system. Mann Whitney U test was used to compare the
statistical significance of the differences between WHO and non-WHO Chinese public
health information.

Table 1. Mann Whitney U Test.

Feature
WHO Chinese Non-WHO Chinese

p
Mean SD. Mean SD.

Average sentences per paragraph 3.32 1.16 5.11 2.74 p < 0.001

Difficult words 70.87 35.99 100.94 65.30 p < 0.001

Middle-stroke characters 51.81 27.70 70.86 49.39 p < 0.001

Average strokes per character 7.71 0.34 7.87 0.31 p < 0.001

sentences 17.20 8.60 23.95 16.67 p < 0.001

Average words per sentence 11.89 1.96 10.61 2.02 p < 0.001

Single sentences 0.46 0.19 0.35 0.21 p < 0.001

Sentences with complex semantic categories 7.61 4.76 12.63 9.74 p < 0.001

Density of content words 0.81 0.03 0.84 0.04 p < 0.001

Positive conjunctions 9.00 5.19 7.69 5.51 p < 0.001

Ratio of noun phrases 0.41 0.20 0.35 0.17 p < 0.001

Content words 163.07 80.54 206.90 140.3 p < 0.001

3-Character words 8.30 6.37 11.01 8.55 p < 0.001

Paragraph numbers 5.57 3.08 4.78 2.12 0.001

Words 200.49 99.76 247.86 170.3 0.003

Characters 337.64 166.0 409.48 283.1 0.013

Low-stroke characters 284.71 140.9 337.45 236.5 0.059

Adverbs of negation 0.93 1.23 1.26 1.77 0.135

2-Character words 114.34 56.26 132.95 96.94 0.221

TTR 0.62 0.08 0.62 0.09 0.264

High-stroke characters 0.45 1.60 0.44 1.31 0.281

Conjunctions 11.52 6.41 11.82 8.44 0.357

Frequency of noun phrases per 10 K 314.66 37.00 315.61 40.08 0.428

Average idioms per sentences 0.01 0.03 0.01 0.03 0.453

Personal pronouns 0.70 1.14 1.04 2.62 0.714

Idioms 0.22 0.51 0.28 0.81 0.720

Negative conjunctions 1.44 1.39 1.57 1.95 0.733

Pronouns 1.47 1.65 1.91 3.25 0.819

Average logarithmic frequency of content words 1.34 0.18 1.34 0.20 0.903
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The mean of almost 55% (16) of the total linguistic features were statistically different.
The means of 11 linguistic features in non-WHO Chinese health resources were signifi-
cantly higher that of WHO Chinese health resources: average sentences per paragraph
(mean difference M = 1.79, p < 0.001); difficult words (M = 30.07, p < 0.001), middle-stroke
characters (M = 19.05, p,0.001), average strokes per character (M = 0.04, p < 0.001), number
of sentences (M = 6.75, p < 0.001), number of content words (M = 43.83, p < 0.001), sentences
with complex semantic categories (M = 5.02, p < 0.001), density of content words (M = 0.03,
p < 0.001), number of 3-character words (M = 2.71, p < 0.001), number of words (M = 47.37,
p = 0.003), and number of characters (M = 71.84, p = 0.013). The means of 5 linguistic fea-
tures in WHO Chinese resources were statistically higher than those of non-WHO Chinese
resources: average words per sentences (M = 1.28, p < 0.001), number of single sentences
(M = 1.28, p < 0.001), number of positive conjunctions (M = 1.31, p < 0.001), ratio of noun
phrases (M = 0.06, p < 0.001), number of paragraphs (M = 0.79, p < 0.001). The means of the
remaining linguistic features in the two sets of Chinese health texts were insignificant with
p larger than 0.05. These findings suggest that non-WHO original Chinese health resources
were more complex orthographically, lexically, and syntactically and information was
presented in larger chunks of paragraphs. By contrast, WHO Chinese resources developed
under the principles of information accessibility, actionability, understandability and rele-
vance were statistically less complex in terms of use of difficult words, the average number
of strokes (similar to English letters) per Chinese character (similar to English words),
the use of sentences containing semantically complex expressions such as polysemous
words which are likely to cause confusion or conceptual mistakes. The statistically higher
means of 3-character words (such as proper nouns, names of diseases, medicines, fixed
expressions), and higher ratios of content words in non-WHO original Chinese materials
suggests higher cognitive loads of original Chinese public health materials. By contrast,
the results demonstrated that WHO Chinese health materials were logically more coherent
(use of positive conjunctions). The potential barrier to understand WHO materials was the
statistically higher ratios of noun phrases, which could be explained partly by the impact
of the original English materials on the Chinese translations, and partly by the specialised
genre of medical and health materials.

Table 2 shows the effect sizes (Hedges’g) and common language effect size (CLES) [25]
of calcaulated for linguistic features which had statistically signifincant differnces in two
sets of Chinesa health materials following Mann Whitney U test. It shows that despite that
the means of 13 linguistic features were statistically significant (p < 0.05), the effect sizes
(Hedges’ g) of eight features were larger than 0.5 as medium effect sizes. Larger Hedges’ g
and CLES were indicators of the discrimination effectiveness of the features to separate
between WHO and non-WHO Chinese materials. Comparison of effect sizes helped us to
further reduce the number of features to be used in training machine learning classifier, i.e.,
SVM with linear kernel.

3.2. Classifier Optimisation
Stepwise Regression

After the examination of the effect sizes of linguistic features, we continued with fea-
ture optimisation using conditional stepwise logistic regression (software SPSS version 26).
Table 3 shows the schedule of forward stepwise modelling of 8 linguistic features which
had both statistifcally significant p values (<0.05) and medium to large effect size (Hedges’
g > 0.5, CLES > 0.6): density of content words, average sentences per paragraph, Sentences
with complex semantic categories (polysemeous words), average words per sentences,
difficult words, single sentences, middle-stroke characters, average strokes per character.
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Table 2. Computation of Effect Sizes Hedges’g and Common Language Effect Size (CLES).

Features p Hedges’ g CLES

Density of content words 0 −1.569 0.866

Average sentences per paragraph 0 −0.927 0.744

Sentences with complex semantic categories 0 −0.703 0.69

Average words per sentence 0 0.646 0.676

Difficult words 0 −0.607 0.666

Single sentences 0 0.555 0.653

Middle-stroke characters 0 −0.506 0.64

Average strokes per character 0 −0.477 0.632

Content words 0 −0.406 0.613

3-Character words 0 −0.371 0.604

Ratio of noun phrases 0 0.335 0.594

Ratio of noun phrases 0 0.335 0.594

Positive conjunctions 0 0.247 0.569

Table 3. Stepwise Regression (Variables in the Equation).

Variables in the Equation

Steps Features B S.E. Wald Sig.

Step 1 Average sentences per paragraph −0.578 0.066 76.713 p < 0.001

Constant 2.754 0.275 99.945 p < 0.001

Step 2 Average sentences per paragraph −0.667 0.074 80.136 p < 0.001

Density of content words −25.597 3.202 63.926 p < 0.001

Constant 24.269 2.753 77.726 p < 0.001

Step 3 Average sentences per paragraph −0.714 0.077 85.171 p < 0.001

Average strokes per character −1.873 0.346 29.287 p < 0.001

Density of content words −24.539 3.279 56.002 p < 0.001

Constant 38.172 4.004 90.896 p < 0.001

Step 4 Average sentences per paragraph −0.635 0.079 64.680 p < 0.001

Average strokes per character −2.061 0.356 33.506 p < 0.001

average words per sentences 0.254 0.063 16.143 p < 0.001

Density of content words −23.123 3.342 47.858 p < 0.001

Constant 35.318 4.087 74.659 p < 0.001

Step 5 Average sentences per paragraph −0.595 0.080 55.487 p < 0.001

Average strokes per character −2.012 0.358 31.633 p < 0.001

average words per sentences 0.218 0.064 11.561 0.001

Single sentences 1.821 0.566 10.353 0.001

Density of content words −24.416 3.412 51.203 p < 0.001

Constant 35.516 4.093 75.279 p < 0.001

The final model selected five features, as they contributed significantly to the model
and three linguistic features were eliminated for being statistically insignificant [26]. The
sequence of features entering the model was average sentences per paragraph, density
of content words, average strokes per character, average words per sentences, single
sentences.

Using statistical significance (two tailed p values and effect size Hedges’ g), and forward
stepwise regression modelling, we optimized the feature set by reducing the original 29 fea-
tures (Table 1) of the Chinese Readability Explorer Index (CRIE 3.0) to five linguistic features
(Table 3) contributing statistically significantly to the model. We compared the performance of
the two SVM classifiers using the original feature set (SVM_29) with the optimized classifier
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(SVM_5). To further validate our model, we adapted widely used readability formula to
machine learning classifiers: SVM_GFI (using linguistic features from the Gunning Fog Read-
ability Index) and SVM_ARI (using linguistic features from the Automated Readability Index
ARI). There were two features in SVM_GFI: Average Words per Sentences (AWS) and Average
Strokes per Character (ASC); and 2 features in SVM_ARI: Average Words per Sentences (AWS)
and percentage of difficult words (PDW). We compared the accuracy, sensitivity, specificity of
our model with the 3 referential classifiers on the testing dataset (Table 4), and the area under
the receiver operator curve (Figure 1).

Table 4. Validation performance of SVM with different feature sets on testing data.

Method Accuracy Mean (SD) Sensitivity Specificity

SVM_GFI 0.678 (0.055) 0.748 (0.057) 0.568 (0.052)

SVM_ARI 0.714 (0.054) 0.757 (0.056) 0.648 (0.050)

SVM_29 0.799 (0.048) 0.792 (0.053) 0.810 (0.041)

SVM_5 0.849 (0.043) 0.841 (0.048) 0.861 (0.036)
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Tables 5–7 show the results of paired sample t tests of the accuracy, sensitivity and
specific of the 4 classifiers on the testing dataset: SVM_5 for the optimize linear kernel SVM,
SVM_29 for the unoptimized classifier with the full feature set (29 in total) of CRIE 3.0
system, SVM_GFI adapted from Gunning Fog Readability Index and SVM_ARI adapted
from Automated Readability Index (ARI). We adjusted the significance level from 0.05 to
0.0083 using Bonferroni correction to counteract the problem of multiple comparisons, that
is, p value is statistically significant if smaller than 0.0083 only. It shows that the optimized
classifier SVM_5 achieved statistically higher accuracy than the unoptimized SVM_29
using full CRIE features (p = 0.0035), SVM_GFI (p = 0.0015) and SVM_ARI (p = 0.0020);
SMV_5 had statistically higher sensitivity than SVM_29 (p = 0.0038), SVM_GFI (p = 0.0031)
and SVM_ARI (p = 0.0032); and SVM_5 was statistically improved in specificity when
compared to SVM_29 (p = 0.0030), SVM_GFI (p = 0.0009) and SVM_ARI (p = 0.0014).
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Table 5. Paired sample t test of the accuracy of SVM classifiers.

Pair Classifiers
Paired Differences 95% C.I. of the Difference Sig.

(2-Tailed)Mean S.D. S.E. Lower Upper

1 SVM _5 vs. SVM_29 0.0496 0.0051 0.0029 0.0371 0.0622 0.0035

2 SVM _5 vs. SVM_GFI 0.1710 0.0115 0.0066 0.1424 0.1996 0.0015

3 SVM _5 vs. SVM_ARI 0.1345 0.0104 0.0060 0.1087 0.1603 0.0020

4 SVM_29 vs. SVM_GFI 0.1214 0.0065 0.0037 0.1053 0.1374 0.0009

5 SVM_29 vs. SVM_ARI 0.0849 0.0053 0.0031 0.0717 0.0981 0.0013

6 SVM_GFI vs. SVM_ARI −0.0365 0.0011 0.0007 −0.0393 −0.0337 0.0003

Table 6. Paired sample t test of the sensitivity of SVM classifiers.

Pair Classifiers
Paired Differences 95% C.I. of the Difference Sig.

(2-Tailed)Mean SD S.E. Lower Upper

1 SVM _5 vs. SVM_29 0.0487 0.0052 0.0030 0.0357 0.0616 0.0038

2 SVM _5 vs. SVM_GFI 0.0929 0.0089 0.0051 0.0708 0.1151 0.0031

3 SVM _5 vs. SVM_ARI 0.0841 0.0082 0.0048 0.0636 0.1045 0.0032

4 SVM_29 vs. SVM_GFI 0.0442 0.0037 0.0021 0.0350 0.0535 0.0023

5 SVM_29 vs. SVM_ARI 0.0354 0.0030 0.0017 0.0279 0.0429 0.0024

6 SVM_GFI vs. SVM_ARI −0.0088 0.0007 0.0004 −0.0105 −0.0072 0.0019

Table 7. Paired sample t test of the specificity of SVM classifiers.

Pair Classifiers
Paired Differences 95% C.I. of the Difference Sig.

(2-Tailed)Mean SD S.E. Lower Upper

1 SVM _5 vs. SVM_29 0.0511 0.0048 0.0028 0.0391 0.0632 0.0030

2 SVM _5 vs. SVM_GFI 0.2926 0.0156 0.0090 0.2539 0.3313 0.0009

3 SVM _5 vs. SVM_ARI 0.2131 0.0137 0.0079 0.1789 0.2472 0.0014

4 SVM_29 vs. SVM_GFI 0.2415 0.0107 0.0062 0.2148 0.2681 0.0007

5 SVM_29 vs. SVM_ARI 0.1619 0.0089 0.0051 0.1398 0.1840 0.0010

6 SVM_GFI vs. SVM_ARI −0.0795 0.0018 0.0011 −0.0841 −0.0750 0.0002

4. Discussion

The state-of-the-art machine learning classifiers for Chinese written materials is the
Chinese Readability Index Explorer (CRIE) which has been developed, tested in the classi-
fication of Chinese language educational materials. Recent studies by Sung, et al. [23,24]
developed machine learning algorithms to classify text materials for students from Year 1 to
Year 12 in the primary and secondary education in Taiwan. The best-performing machine
learning classifier developed in Sung, et al. was a support vector machine with radial basis
function (RBF) kernel. Using 31 linguistic features from the 75 features of the CRIE 1.0
system, the support vector machine (SVM_31) reported an average accuracy of 71.75% in
classifying Chinese language arts textbooks from Year 1 to Year 6 levels. The 31 features
included in the SVM model encompassed nine at word level to measure character, lexical
complexity, five measuring semantic complexity, six measuring syntactic complexity, and
21 measuring textual cohesion. We replaced RBF with linear kernel to reduce complexity
and increase the generalizability and computational efficiency of our SVM model, as the
size of our dataset doubled that of the earlier study. We adapted the SVM RBF model to
a linear kernel SVM using the refined feature set of the CRIE 3.0 system which had as
many as 29 features measuring orthographic complexity (average strokes per character,
2-character words, 3-character words, low-stroke characters, middle-stroke characters,
high-stroke characters), lexical complexity (average idioms per sentences, difficult words,
sentences with complex semantic categories), information load (single sentences, average
sentences per paragraph, average words per sentences), cognitive load (content words,



Int. J. Environ. Res. Public Health 2021, 18, 10329 9 of 11

density of content words, average logarithmic frequency of content words, ratio of noun
phrases, frequency of noun phrases per 10 K), information cohesion (positive conjunctions,
personal pronouns, negative conjunctions, adverbs of negation, conjunctions, pronouns).

Our optimized SVM classifier contained only five linguistic features to effectively
separate WHO Chinese health resources of higher communicative effectiveness as defined
by the Strategic Framework of Effective Communication, and non-WHO Chinese health
materials for public communication purposes. The five features model highlighted the
key dimensions which distinguished Chinese health information of WHO defined com-
municative effectiveness from those not: orthographic complexity (average strokes per
character); information load (single sentences, average sentences per paragraph, average
words per sentences), and cognitive load (density of content words). The exclusion of
linguistic features which had large effect sizes such as number of difficult words, sentences
with complex semantic categories from the optimized SVM model suggests that machine
learning differs from statistical modelling, as features which had statistically different
distributions in the outcome datasets might not be best discriminating features for machine
learning.

The result of the comparison between our optimized SVM classifier with the unop-
timized classifier using the CRIE 3.0 features shows that the performance of our model
improved on the testing data in terms of model AUC, overall classification accuracy, sen-
sitivity to detect Chinese health texts not aligning with WHO defined communicative
effectiveness, as well as specificity to diagnose Chinese health texts matching the WHO
defined communicative effectiveness, thus suitable for the Chinese-speaking readership
globally. We could not directly assess the actual readability levels of WHO and non-WHO
Chinese health materials due to lack of internationally validated readability formula for
Chinese. We adapted English readability formula Gunning Fog Readability Index and
Automated Readability Index to linear SVM classifiers to further validate our optimized
classification model. The results again attested to the efficiency and high performance of
our model, with statistically much higher accuracy, sensitivity, and specificity for clinical
use.

In sum, the result shows that our new classifier achieved statistically higher accuracy,
sensitivity, and specificity compared to the state-of-the-art machine learning models for
classification of Chinese primary, secondary educational materials, as well as linear kernel
classifiers adapted from well-established readability formula: Gunning Fog Readability
Index, and Automated Readability Index (ARI). Our classifier provided a needed quantita-
tive tool for assessing and predicting the membership of a certain Chinese health text in
terms of its communicative effectiveness, that is, whether it aligns with the current level
of communicative effectiveness of existing WHO public-oriented health in-formation in
Chinese.

5. Conclusions

Improving the communicative effectiveness of multilingual health resources can help
reduce the increasing health inequalities and disparities among multilingual, multicultural
communities. Despite that readability has a long history in English health resource quality
evaluation, the quantitative evaluation of health resources is understudied in languages
using distinct writing systems like Chinese. Furthermore, the complexity of effective health
communication based on health research insights has now gone beyond readability and
understandability. The WHO Strategic Framework for Effective Communications stipu-
lates new principles such as information accessibility, actionability, relevance, credibility,
timeliness. Developing separate quantitative instruments to measure these dimensions
could be challenging, and theoretically misleading, as specific implementation strategies
and methods may well overlap among these large principles.

Developing new research instruments like machine learning algorithms can help
national and global health professionals to assess the quality of multilingual public health
resources in a more integrated, adaptive fashion with significantly improved accuracy,
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precision, and reliability [27,28], as these are known advantages of machine learning
classifiers which are having increasing applications in wide-ranging research fields. To
overcome the issue of the difficulty to interpret machine learning models, also to increase
the generalizability of our newly developed instrument, we used sparce linear classifiers
such as SVM which tends to outperform other highly complex machine learning classifiers
with small feature sets.

We hope to provide international health professionals engaged in multilingual health
communication, with or without Chinese proficiency, with much-needed decision aids to
assess whether a certain health promotion text in Chinese is suitable for general Chinese-
speaking readers, using existing WHO Chinese materials developed under its Strategic
Framework for Effective Communications as the international benchmarks of multilingual
health communication effectiveness.

The simple, easy-to-interpret nature of our tool can be effectively adapted to other
languages, especially languages spoken by communities for whom high-quality health
information is urgently needed to help reduce increasing health inequalities caused by
persistent lack of quality health information and lack to healthcare services.

6. Limitations

We would like to acknowledge the limitations of our study. The definition of the
WHO principles of effective health communications is qualitative and currently very
general. Important differences, diversity do exist among populations, communities, and
individuals in terms of education, native language and English proficiency, health literacy,
socio-economic status, cognitive ability, mental and physical health, cultures, and other
limiting factors. To improve the adaptability, precision of quantitative and computational
tools to assess the suitability of health materials, there is a need to develop guidelines and
evaluation criteria which capture the practical, diverse needs from diverse people and
communities. With better targeted evaluation guidelines from health authorities and high-
quality materials in English and their translations to other languages, we could improve
the computational models to better support evidence-based health information assessment.
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Appendix A

Infectious Disease Control and Prevention Institute
Viral Disease Control and Prevention Institute
Parasitic Disease Prevention and Control Centre
STD and AIDS Prevention and Control Centre
Chronic Non-communicable Disease Prevention and Control Centre
Nutrition and Health Institute Environment and Health Related Product Safety Institute
Institute of Occupational Health and Poison Control Radiation Protection and Nuclear

Safety Medicine
Rural Water Improvement Technology Guidance Centre
Maternal and Child Health Centre)
China Association for STD and AIDS Prevention and Control
Chinese Nutrition Society
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China Hepatitis Prevention Foundation
Preventive Medicine Information Committee of Chinese Preventive Medicine Association
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