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Bacterial vaginosis (BV) is a common vaginal infection and has been associated
with increased risk for a wide array of health issues. BV is linked with a variety
of heterogeneous pathogenic anaerobic bacteria, among which Mobiluncus is
strongly associated with BV diagnosis. However, their genetic features, pathogenicity,
interspecific diversity, and evolutionary characters have not been illustrated at genomic
level. The current study performed phylogenomic and comparative genomic analyses
of Mobiluncus. Phylogenomic analyses revealed remarkable phylogenetic distinctions
among different species. Compared with M. curtisii, M. mulieris had a larger genome
and pangenome size with more insertion sequences but less CRISPR-Cas systems. In
addition, these two species were diverse in profile of virulence factors, but harbored
similar antibiotic resistance genes. Statistically different functional genome profiles
between strains from the two species were determined, as well as correlations of some
functional genes/pathways with putative pathogenicity. We also showed that high levels
of horizontal gene transfer might be an important strategy for species diversification
and pathogenicity. Collectively, this study provides the first genome sequence level
description of Mobiluncus, and may shed light on its virulence/pathogenicity, functional
diversification, and evolutionary dynamics. Our study could facilitate the further
investigations of this important pathogen, and might improve the future treatment of BV.

Keywords: Mobiluncus, comparative genomics, interspecific divergence, pathogenicity, horizontal gene transfer,
bacterial vaginosis

INTRODUCTION

Bacterial vaginosis (BV), a common gynecological disease characterized by vaginal discharge,
affects roughly a quarter of women worldwide and costs an estimated $4.8 billion annually (Sobel,
2000; Javed et al., 2019; Peebles et al., 2019). BV has been associated with an increased risk of
various health problems, including sexually transmitted infections, adverse pregnancy outcomes
(e.g., preterm births, premature rupture of membranes), pelvic inflammatory disease, increased
susceptibility to HIV infection, and other chronic health issues (Taha et al., 1998; Schwebke and
Desmond, 2005; Onderdonk et al., 2016). The pathogenesis of BV is still a subject of debate (Cherpes
et al., 2008; Muzny and Schwebke, 2016), whereas it has been determined that BV is characterized
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by a decrease in the levels of Lactobacilli and an overgrowth of
opportunistic bacteria including anaerobes or microaerophiles
such as Prevotella, Gardnerella, and Mobiluncus genera (Hillier,
1993; Sha et al., 2005). Among these, the abundance of Gram-
negatively stained and curved rod-shaped bacteria, represented
by Mobiluncus, has been considered as one of the key indicators
of Nugent score, the “gold standard” for BV diagnosis (Nugent
et al., 1991; Srinivasan et al., 2013).

Mobiluncus organisms were initially recognized in vaginal
fluid as early as 1895 and were first isolated in 1913 (Curtis,
1913). Nowadays, much interest has revolved around Mobiluncus
since women with higher Nugent scores (predominantly because
of morphotypes consistent with Mobiluncus) are more likely
to fail therapy than those with lower scores (Schwebke and
Desmond, 2007), and the presence and persistence of Mobiluncus
spp. was found to be highly associated with recurrence of BV
(Meltzer et al., 2008). In addition, the production of malic acid
and trimethylamine by Mobiluncus strains have been reported
to give rise to vaginal irritation and unpleasant odor (Africa
et al., 2014). For these reasons, more efforts have been made to
characterize their resistance mechanisms and virulence factors
(Spiegel, 1987; Zeng et al., 2020; Zhang et al., 2020). Nevertheless,
the definite role of Mobiluncus in BV pathogenesis still remains
largely elusive.

Analysis of the 16S rRNA gene sequences has revealed
that Mobiluncus genus mainly contains two distantly related
species, M. curtisii and M. mulieris. Previous reports from a
number of laboratories have shown that these two species can
be differentiated based on physical and biochemical properties. It
has been demonstrated that M. curtisii and M. mulieris comprise
short curved and long straight (or slightly curved) rods (Hoyles
et al., 2004; Onderdonk et al., 2016), respectively, and show
variation in growth in different liquid media (Taylor-Robinson
and Taylor-Robinson, 2002). In addition, antigenic profiles of
the two species are also distinct (Roberts et al., 1985; Gatti
et al., 1997), and M. mulieris can stimulate a TLR5-mediated
response in host, while M. curtisii cannot (Dela Cruz et al.,
2021). Antimicrobial susceptibility and clonality of Mobiluncus
also vary widely among species and even strains (Spiegel, 1987;
Zhang et al., 2020). Recently, a new species collected from
pig gut, namely M. porci, has been described (Wylensek et al.,
2020). However, these studies were mostly based on phenotypic
data, while genomic features, including genetic diversity and
evolutionary history, of/between Mobiluncus species have not
been clearly elucidated yet.

In the present study, we carried out an in-depth comparative
genomic analysis of 38 publicly available genomic sequences
of Mobiluncus, aiming to investigate the genomic diversity of
this taxon. We compared the status of various virulence and
antibiotic resistance genes (ARGs) among the strains in order
to unleash the potential underlying mechanism of pathogenicity
and resistance. Moreover, we identified genes that may contribute
to the differentiation between species, and tried to build linkages
between genetic differences (gene functions and metabolic
pathways) and potential pathogenicity. Finally, we uncovered the
evolutionary events that may contribute to these variabilities,
especially the horizontal gene transfer (HGT) events. Altogether,

our study not only provides first insights into genomic features
and evolution of the genus Mobiluncus, but also has implications
for improved understanding of the pathogenic mechanism and
putative treatment of this pathogen.

MATERIALS AND METHODS

Genome Data Set
Contigs or scaffolds of the genome sequences for the members
of the genus Mobiluncus were downloaded from the NCBI
genomes FTP site (April 2021)1. To avoid bias, genomes with
estimated contamination > 5% or completion < 95% were
excluded based on CheckM results (Parks et al., 2015). Taxonomy
assignment of these genomes was performed by the Genome
Taxonomy Database (GTDB) toolkit (Chaumeil et al., 2019)
and based on LPSN (List of Prokaryotic names with Standing
in Nomenclature) database (Parte, 2018). Contigs of different
species were reordered using the Move Contig tool in Mauve
software (Darling et al., 2010) against the complete genome of the
M. curtisii ATCC 43063 and M. mulieris DSM 2710, respectively.
Pairwise genome alignment was carried out by the lastz program2,
and the results were visualized using AliTV (Ankenbrand et al.,
2017). Pairwise whole genome average nucleotide identity (ANI)
values were computed by FastANI (Jain et al., 2018).

Genome Annotation
All genomes were reannotated using Prokka with default settings
(Seemann, 2014). Functional annotation and classification
of proteins were performed by sequence comparison using
DIAMOND BLASTP (E-value 1e-05, coverage 0.5, and identity
40%) (Buchfink et al., 2015) against the recently updated
Clusters of Orthologous Group (COG) database (Galperin et al.,
2021). KEGG Automated Annotation Server (KAAS) (Moriya
et al., 2007) was used for pathway mapping of species-specific
genes. Insertion sequences (ISs) were identified by BLASTN
against the ISFinder database (E-value 1e-05) (Siguier et al.,
2006). The prediction of clustered regularly interspaced short
palindromic repeat (CRISPR) in the genome was assessed by the
CRISPRCasFinder tool (Couvin et al., 2018), and only CRISPRs
classified with evidence levels 3 and 4 were considered. Potential
ARGs and putative virulence factors (VFs) encoded in genomes
were identified through BLASTP searches of the Comprehensive
Antibiotic Resistance Database (CARD) (Alcock et al., 2020)
and the Virulence Factors Database (VFDB) (Liu et al., 2019),
respectively. The most differentiating COG entries between
M. curtisii and M. mulieris were determined by SIMPER analysis
by using “simper” function of the vegan R package3. “ordinate”
function in the phyloseq R package (McMurdie and Holmes,
2013) was used to determine the variation in the functional
profiles of HGT genes with non-metric multidimensional scaling
(NMDS) analysis on BrayCurtis dissimilarity matrices. Pairwise

1https://www.ncbi.nlm.nih.gov/genomes
2https://github.com/lastz/lastz
3https://github.com/vegandevs/vegan
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comparisons of species-specific genomic regions were visualized
by EasyFig software (Sullivan et al., 2011).

Pan-Genome and Phylogenomic
Analyses
Homologous gene families were calculated using
GET_HOMOLOGUES (Contreras-Moreira and Vinuesa,
2013) with the OrthoMCL clustering algorithm, and cloud, shell,
and (soft-) core pangenome components were also derived. Pan-
genome statistics were computed by PanGP (Zhao et al., 2014).
Marker-based phylogenetic tree of the genus Mobiluncus was
constructed by the GET_PHYLOMARKERS pipelines (Vinuesa
et al., 2018) running in default mode based on nucleotide
sequences of 329 high-quality marker genes. In addition. an
absence/presence (0/1) matrix of dispensable genes was built
according to GET_HOMOLOGUES results, and was subjected to
R package pvclust (Suzuki and Shimodaira, 2006) for hierarchical
clustering analysis with 1,000 bootstrap replicates with two
types of p-values: AU (approximately unbiased) p-value and BP
(bootstrap probability) value.

Identification of Potential Horizontal
Genes
In order to predict the gain and loss of each homologous gene
family across ancestral nodes during the evolution of Mobiluncus,
the pangenome matrix and the rooted phylogenomic tree were
used as inputs for COUNT software (Csûrös, 2010) to calculate
posterior probabilities (cut-off was set at 70%). We also used
HGTector software (Zhu et al., 2014) to detect genes in each
genome that were potentially acquired through HGT. During
this process, quality cutoffs for DIAMOND BLASTP results were
E-value≤ 1e-05, sequence identity≥ 50%, and coverage of query
sequence≥ 50%. Mobiluncus (rank, genus; taxon identifier 2050)
was set as the self group, and Actinomycetaceae (rank, family;
taxon identifier 2049) was set as the close group.

RESULTS

Phylogeny and Genome Overview of the
Genus Mobiluncus
All 40 Mobiluncus genomes were downloaded from GenBank
database (April 2021). Two genomes (strain FDAARGOS_303
and strain NCTC11820) were filtered out as they contained more
contamination (8.53 and 11.87%, respectively). Therefore, a total
of 38 high-quality Mobiluncus genomes were analyzed in this
study, including four complete and 34 draft genome sequences
(Supplementary Table 1). Based on the similarity observed by
GTDB-tk, two valid species are present within the genus, with
18 genomes belonging to M. curtisii and 19 genomes belonging
to M. mulieris. All of these strains were isolated from human
vagina (except for two with missing data). In addition, based
on LPSN database, strain RF-GAM-744-WT-7 (isolated from pig
feces) was classified as M. porci (Wylensek et al., 2020). To further
elucidate their genetic relatedness, a genome-wide ANI plot was
generated (Figure 1A). The intraspecies ANI values of M. curtisii

and M. mulieris were higher than 95.7 and 97.4%, respectively,
which exceeded the recommended 95% threshold value for
intraspecific prokaryotic strains (Richter and Rossello-Mora,
2009), while the inter-species values were lower than 78.4%. To
further evaluate the intra-genus differentiation and evolutionary
relationships within the genus, phylogenomic reconstruction
was performed based on 329 high-quality phylogenomic marker
(core) genes (Figure 2A). The resulting tree shows two major
clades corresponding to M. curtisii and M. mulieris species,
and one distinct branch formed by the single strain M. porci
RF-GAM-744-WT-7 clustering with M. mulieris. A hierarchical
clustering tree based on the content of dispensable genes showed
similar topological structure (Figure 2B), but with M. porci RF-
GAM-744-WT-7 located on the outskirt of M. curtisii. Given
the representativeness, the following analyses will focus more on
the two validly published BV-associated species, M. curtisii and
M. mulieris.

The characteristics of the genomes studied here are shown
in Figures 1B–H and Supplementary Table 1. The average
genome size of M. curtisii was 2.17 Mbp and was significantly
less than M. mulieris at 2.53 Mbp (Wilcoxon test, p < 0.001).
Consequently, M. curtisii on average contained fewer protein
coding genes at 1,844 compared to M. mulieris at 2,213 (Wilcoxon
test, p < 0.001), and between species showed collinearity with
abundant gene arrangement. GC content levels were similar
between species, with an average of 55.3%, although M. curtisii
had a slightly larger GC content than M. mulieris (mean, 55.5 and
55.0%, respectively; Wilcoxon test, p < 0.001). Strikingly, 11 of
18 M. curtisii strains contained two copies of 16S rRNA genes,
while only 4 of 19 for M. mulieris, and the remaining strains
of the two species contained only one copy (Fisher exact test,
p = 0.0201). The average number of ISs per genome was 10.8
in M. curtisii while 17.8 in M. mulieris, with M. mulieris strain
NCTC11497 harboring the greatest number (n = 68). CRISPR-
Cas system presented in nearly all (17 of 18) M. curtisii strains
(16 TypeIE and 1 TypeIIC), but only 11 of 19 for M. mulieris
(4 TypeIE and 7 TypeIIC) (Fisher exact test, p = 0.0188). Taken
together, these genomic features suggested an apparent genomic
divergence between M. curtisii and M. mulieris.

Antibiotic Resistance Genes and
Potential Virulence Factors of
Mobiluncus
A total of 26 distinctive putative ARGs were identified. Each
genome contained 14.02 ARGs averagely, and no remarkable
difference in the total number or profiles of ARGs was found
between M. mulieris and M. curtisii (Figures 1I, 3A). Four ARGs
were shared by all Mobiluncus strains, including rpoB and rpoB2
(ARO:3004480 and ARO:3000501, respectively; both conferring
resistance to rifampicin), bcrA (ARO:3002987, conferring
bacitracin resistance) and mtrA (ARO:3000816, encoding a
transcriptional activator of the MtrCDE multidrug efflux pump).
Specifically, otrC (ARO:3002894) was found to be M. curtisii-
specific, which encoded a tetracycline resistance efflux pump.

We next investigated the distribution of putative virulence
genes. Overall, genomes of M. mulieris contained more VFs

Frontiers in Microbiology | www.frontiersin.org 3 July 2022 | Volume 13 | Article 939406

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-939406 June 29, 2022 Time: 14:42 # 4

Li et al. Genomic Insights into Mobiluncus

FIGURE 1 | Genomic features of the genus Mobiluncus. (A) Hierarchical clustering based on ANI values of 38 Mobiluncus strains. (B) Whole genome alignment of
M. curtisii and M. mulieris. Color denotes percent similarity of links (see legend). (C–J) Comparison of genomic characteristics between M. curtisii and M. mulieris.
The boxplot shows the median, and the first and third quartiles as the lower and upper hinges. Outliers are indicated as dots. Asterisks (***) indicate significant
differences (significance level of 0.001, Wilcoxon test). NS, not significant; ISs, insertion sequences; CRISPR, clustered regularly interspaced short palindromic
repeat; ARGs, antibiotic resistance genes; VF, virulence factor.

(mean, 20.42; median, 19) than those of M. curtisii (mean,
14.28; median, 14) (Figure 1J), and the profiles of the VFs
could largely differentiate the two species (Figure 3B). Ten
VFs were shared by all strains, including stress adaptation
(clpC, clpE, and clpP), regulation (phoP and relA), adherence
(groEL and tufA), secretion (lirB), immune evasion (wbtL)
and others (htpB), suggesting they might play key roles in
pathogenicity of Mobiluncus strains. In addition, six VFs
were prevalent in M. mulieris but absent in M. curtisii
strains. Among these, five genes (flaABCDE) are associated
with bacterial flagellin proteins, which serve as mediators
of pathogenicity and host immune responses (Ramos et al.,
2004); and the last gene is ideR, protein of which has been
reported to be the key regulator of VFs and iron homeostasis
in Mycobacterium tuberculosis (Pandey and Rodriguez, 2014).
Moreover, there were two VFs only present in all M. curtisii
strains: one is galE, encoding a UDP-galactose-4-epimerase
involved in the biosynthesis of capsular or O-antigen
polysaccharide units in many bacterial pathogens (Agarwal
et al., 2007; Li et al., 2014); and the other is pscN, which
encoded ATPase of Type III secretion system as a main VF

reported in Pseudomonas aeruginosa (Lee and Rietsch, 2015;
Ngo et al., 2020).

Interspecific Pangenome Variation of
Mobiluncus
To explore the interspecific pangenome variation, we
characterized the core and pan-genomes of M. curtisii and
M. mulieris separately (Figure 4). The pangenome of M. curtisii
contained 2,576 genes, whereas that of M. mulieris contained
3,507 genes. There was little difference in the core genome
size (1,540 and 1,539 genes, respectively; softcore: 1,598 and
1,619 genes, respectively) between the two species. However, it
revealed that the pangenome of M. curtisii comprised 450 cloud
genes (accounting for 17.47% of the total genes) and 528 shell
genes (20.50%), much less than those of M. mulieris (814 and
23.21%, 1,074 and 30.62%, respectively). According to a power-
law regression, both species pangenomes were “open”, with
Bpan = 0.19 (M. curtisii) and 0.15 (M. mulieris). Taken together,
both pangenomes appeared to be boundless, while that of the
M. mulieris was relatively more extensive and heterogeneous.
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FIGURE 2 | Phylogeny of the genus Mobiluncus. (A) Maximum-likelihood phylogenomic tree. The tree was constructed based on 329 core genes that could give a
well-resolved tree topology without recombination. The total numbers of ancestral orthologous genes present at each of the nodes are shown next to the deep
nodes, and the numbers of gene gain (+) and loss (–) events are indicated below. Bootstrap values less than 70% are shown at the nodes. The scale bars indicate
10 and 0.25% sequence divergences among and within species, respectively. (B) Hierarchical cluster analysis based on the presence or absence of dispensable
genes. Height indicates the dissimilarity between genomes. BP (bootstrap probability) values less than 70% from 1,000 replicates are shown, and all AU
(approximately unbiased) p-values are > 70%.

Functional Divergence Between
Mobiluncus Species
To investigate functional differentiation between M. curtisii
and M. mulieris, we first explored the COG functional
classification for all genes in each genome (Figure 5A). As
a result, M. curtisii strains had a higher proportion of genes
classified in COG categories E (amino acid transport and
metabolism), H (coenzyme transport and metabolism), M
(cell wall/membrane/envelope biogenesis) and P (inorganic
ion transport and metabolism), while M. mulieris strains
was significantly enriched for genes classified in COG
categories G (carbohydrate transport and metabolism) and
V (defense mechanisms). In addition, a total of 18 COGs
were detected that significantly contributed most to the
dissimilarity between species (SIMPER analysis, > 0.1%
contribution, p < 0.01) (Figure 5B and Supplementary
Table 2), with two-thirds were related to COGs G, V
and M. For example, genes associated with cell wall
binding/biosynthesis (COG2247 and COG0463) and
lipoprotein transport (COG4591) are more abundant in

M. curtisii, while M. mulieris strains contains more genes
from RelBE/YafQ-DinJ/Txe-Axe toxin-antitoxin module
(COG3077, COG2026, COG4115, and COG3041) and
transmembrane proteins of sn-glycerol-3-phosphate transport
system (COG0395 and COG1175).

To further investigate functional differentiation between
the species, we explored the species-specific genes that are
universal (> 90%) in one species but absent in the other. We
found 385 and 429 orthologous genes (OGs) that were specific
to M. curtisii and M. mulieris, respectively (Supplementary
Table 3). Some of the OGs were located physically adjacent
and clustered into genomic regions (Figure 6), which might
perform certain complicated or special roles in extending the
metabolic/pathogenic pathways. One such region was composed
of several arginine biosynthetic genes. Interestingly, besides
operon argDRGH, within the region genomes of M. curtisii
also contained genes of argCJB, whereas M. mulieris lacked
but instead harbored operon carAB elsewhere, which has been
reported to be necessary for pyrimidine nucleotide and arginine
biosynthesis (Han and Turnbough, 1998). Another region
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FIGURE 3 | Hierarchically clustered heatmaps of the distributions of the putative antibiotic resistance genes (A) and virulence factors (B) in Mobiluncus genomes.

FIGURE 4 | Pangenome summary statistics of M. curtisii and M. mulieris. (A) Histogram distributions of soft-core, shell, and cloud genes. Pie chart displays
percentages of each part of the total genes. (B) The sizes of pan- and core-genomes in relation to numbers of genomes added into the gene pool.

contained two pathways, one was involved in the molybdopterin
biosynthesis, encoding an ABC-type molybdate transport system
and a biosynthetic gene cluster of molybdenum cofactor (MoCo),
and another associated with nitrate respiration, encoding a
nitrate reductase operon narKGHJI (only present in 73.7%
M. curtisii strains). Moreover, although all genomes had a series
of genes related to histidine biosynthesis, another eight his genes

(hisF, hisI, hisG, hisA, hisH, hisB, hisC, and hisD) were unique
to M. curtisii strains. Similarly, operon nadABC existed only
in M. curtisii, enabling them biosynthesize NAD+ in both the
salvage and the de novo pathways. Another M. curtisii-specific
region contained genes of LIV system, which is responsible for
the transport of branched-chain amino acids, such as leucine,
isoleucine, and valine (Adams et al., 1990).
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FIGURE 5 | Functional divergences between M. curtisii and M. mulieris. (A) Boxplot of abundance of differential COG categories. All the distributions were
significantly different (Wilcoxon test, p < 10-5). (B) Heatmap of COGs that significantly contributed most to the dissimilarity between M. curtisii and M. mulieris.
Different COG categories are shown in different colors.

We also detected three M. mulieris-specific genomic regions.
One region was composed of genes of an ABC-type guanosine
uptake system NupNOPQ, which inserted in an operon
deoD-deoA-cdd-manB-DeoC, an unusual deoCABD-like operon
perhaps serving as deoxynucleotide degradation also found in
Mollicutes and other pathogens (Christensen et al., 2003; Bizarro
and Schuck, 2007). The second was composed of a complete
sialic acid catabolic gene cluster nanAKE. Interestingly, although
M. curtisii did not contain the cluster, a sialidase gene (nanH)
was found to be M. curtisii-specific. We also detected a lldPEFG
operon (orthologs of lutABC and lctP) in M. mulieris, which
was implicated in lactate utilization and has been reported to
be involved in biofilm formation and pathogenesis in many
pathogenic bacteria (Chai et al., 2009; Jiang et al., 2014).

Gain and Loss of Genes During the
Evolution of Mobiluncus
To decipher the evolutionary history of the genus Mobiluncus,
we first assessed the gain and loss events that have occurred of
ancestral nodes of species on the phylogenomic tree (Figure 2A).

The last common ancestor of the genus Mobiluncus was inferred
to possess 1,395 gene families. Both of the M. curtisii and
M. mulieris genomes have experienced a massive expansion, with
227 and 666 gene gains have been identified occurred at the
divergence of the two species, with only 13 and 151 gene losses,
respectively. Next, we further examined the potential horizontal
genes in Mobiluncus genomes and tracked the potential donor.
As a result, a total of 5,000 predicted HGT events were
identified, with an average genome containing 131.58 (median,
130) horizontally transferred genes. Interestingly, although
M. mulieris has a bigger genome than M. curtisii, predicted HGT
events showed no significant variation between the two species
(mean: 131.53 and 129.78, respectively). This may be because the
transferred genes of M. mulieris comprised more shell and cloud
genes (21.4%), while only 9.9% for M. curtisii. Correspondingly,
90.1% of the transferred genes of M. curtisii were soft-core genes,
while only 78.6% for M. mulieris (Figure 7A). This content
variation also presented at the gene family level.

We next tracked the potential donor of the potential
horizontal genes in Mobiluncus genomes. Among the 5,000
identified potential HGTs, 57.7% of the donors could be
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FIGURE 6 | Genetic organizations of the regions containing species-specific genes. Only genes that are universal (> 90%) in one species but absent in the other are
determined as species-specific genes. Conserved genomic regions flanking these genes are colored in gray. Non-specific genes are marked with dashed lines.
MoCo, molybdenum cofactor.

FIGURE 7 | Analysis of predicted transferred genes. (A) Distribution of the predicted transferred genes in soft-core, shell, and cloud genes. Numbers of transferred
genes and gene families are indicated. (B) Pie chart displays percentages of different donors of HGT events at order level. (C) Non-metric multidimensional scaling
(NMDS) plot of COG entries showing distinct clustering of each species.
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annotated at the phylum level, of which 94.7% were from
Actinobacteria. The other phyla included Firmicutes (4.51%),
Proteobacteria (0.76%) and Chloroflexi (0.035%). In addition,
potential donor taxa of 473 genes could be identified at
the order level (Figure 7B). The orders Propionibacteriales,
Corynebacteriales, and Micrococcales appeared to be the main
donor taxa, accounting for 80% of the total cross-order HGT
genes, while order Eubacteriales was the most non-actinobacteria
donor. We also revealed a different functional profile of putative
transferred genes between species. M. curtisii acquired a higher
proportion of genes classified in COG E (amino acid transport
and metabolism), while M. mulieris was biased toward COG
categories J (translation, ribosomal structure and biogenesis) and
V (defense mechanisms) (Supplementary Figure 1). This result
was partially consistent with the functional divergence between
Mobiluncus species described above (Figure 5A). Meanwhile,
based on the number of proteins annotated to each COG entries,
the three species showed different functional profiles of the HGT
genes (PERMANOVA test, p = 0.001; Figure 7C), implying HGT
contributed to the functional divergence of Mobiluncus species.

DISCUSSION

More than 60 years have passed since BV first described
(Gardner and Dukes, 1955), and even now, its etiology and
the reason for global prevalence remain unclear (Kenyon et al.,
2013; Coudray and Madhivanan, 2020). Common opportunistic
bacteria causing BV include Prevotella, Gardnerella vaginalis and
Mobiluncus (Thorsen et al., 1998; Coudray and Madhivanan,
2020), and the abundance of Mobiluncus strains always represents
a higher Nugent score and a higher possibility to fail therapy
(Schwebke and Desmond, 2007; Meltzer et al., 2008). For the
first time, in the current study we tried to reveal genomic
details of the genus Mobiluncus, to gain more insights into the
genomic features, VF and ARG profiles, functional repertoire
and the evolutionary history of Mobiluncus diversification. Such
information would provide theoretical foundation for further
studies on the pathogenicity, therapy and discrimination of
Mobiluncus species.

Efforts have been made to distinguish the two main species
of Mobiluncus on the basis of morphological and biochemical
differences, especially on the antigenic profiles (Roberts et al.,
1984, 1985; Spiegel, 1987; Zhang et al., 2020). In this study, we
performed a robust phylogenomic reconstruction to verify the
degree of differentiation among species, emphasizing the genetic
differences between M. curtisii and M. mulieris. We showed
that the genome size of M. mulieris was relatively larger, with
more gene family gains predicted across its evolution and a
more open pangenome. This is consistent with the fact that
M. mulieris strains comprised more ISs but less CRISPR-Cas
systems within the genomes, both of which have been reported
to play important roles in the bacterial genome instability
(Darmon and Leach, 2014; Hatoum-Aslan and Marraffini, 2014).
In addition, a genomic investigation on ARG and VF profiles
showed four ARGs and ten VFs were found to be prevalent in
all Mobiluncus strains, while the remaining other genes exhibited

sporadic distribution patterns. Moreover, VFs profiles were able
to distinguish M. curtisii from M. mulieris, whereas ARG profiles
were not. Correspondingly, previous experimental studies have
also revealed significant intra- and inter-species heterogeneity of
antimicrobial susceptibility (Spiegel, 1987; Zhang et al., 2020).
Also, it should be mentioned that although the role of Mobiluncus
in the etiology and pathology of BV remains unclear, these
two species may exhibit different pathogenicity and distribution
during the disease process (Meltzer et al., 2008; Onderdonk et al.,
2016; Arries and Ferrieri, 2022), sometimes even contradictory
(Schwebke and Lawing, 2001; Salinas et al., 2020). Nevertheless,
the VF and ARG profiles revealed in this work may provide
guidance for the future treatment of Mobiluncus infection.

We also detected a series of metabolic pathways that showed
apparent species specificity, most of which have been reported
to be associated with virulence and adoption of pathogenic
organisms. For example, the role of arginine biosynthesis in
virulence has been reported to be crucial for full virulence of
Aspergillus fumigatus in insects (Dietl et al., 2020), and we have
showed that the pathway of arginine biosynthesis in M. curtisii
and M. mulieris was different, perhaps suggesting a different
utilizing efficiency. Furthermore, the capabilities of MoCo
biosynthesis and nitrate reduction were only found in M. curtisii
strains, both of which have been implicated in pathogenesis of
a number of bacterial infections (Williams et al., 2011; Andreae
et al., 2014; Almeida et al., 2017); more his genes were found in
M. curtisii strains, perhaps enabling them capacity of biosynthesis
of histidine and a crucial role in metal homeostasis and virulence
(Dietl et al., 2016); and the extra NAD+ de novo biosynthesis
pathway in M. curtisii could also enhance their virulence during
host infection (Dom and Haesebrouck, 1992; Wang et al.,
2019). On the contrary, two virulence-associated gene clusters,
including genes associated with ABC-type guanosine uptake
system NupNOPQ and lactate utilization, were only present
in M. mulieris. Another noteworthy was the nan gene cluster
for sialic acid catabolism (SAC). With these genes M. mulieris
strains were more likely to consume host sialic acids as carbon
source but could not cleave terminal Neu5Ac residues from host
glycoconjugates (lacking nanH), whereas M. curtisii did just the
opposite. This pattern perhaps implicated a cooperation between
closely related species. However, this cooperation relationship
seems not to be strictly necessary, as women with BV could
harbor both or either of the two species (Holst, 1990). SAC
associated genes have been detected in many BV-associated
bacteria, which could enhance the pathogenicity of organisms
by allowing easier invasion and destruction of tissues (Hardy
et al., 2017; Jones, 2019; Li and Huang, 2022). These results
could reinforce further discrimination of Mobiluncus species,
perhaps by providing a simple and fast approach for identifying
M. curtisii and M. mulieris using PCR or culture experiments, and
in addition might facilitate the development of novel strategies to
detect and prevent Mobiluncus infection of BV.

HGT is known to have great, perhaps the most conspicuous,
impacts on bacterial diversity and speciation, especially for
clinical microorganisms, where acquisition of foreign genes
is crucial for pathogenicity (Smillie et al., 2011; Diard and
Hardt, 2017; Arnold et al., 2021). In this study, we have used
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several methods to evaluate the HGT events. Firstly, both
of the two Mobiluncus species have an open pangenome,
which could be considered as an indicator of high HGT
rates (Medini et al., 2005; Tettelin et al., 2008). Then,
we reconstructed the evolutionary history of the genus. As
expected, gene families undergoing gain events at ancestral
nodes of species outnumbered those that experienced loss events.
Therefore, differences in metabolism and pathogenicity between
species have emerged. Finally, by using a BLAST-based HGT
detection approach, we found that more than 5% of genes
in each strain have suffered transfer events, and these genes
perhaps further promoted the functional divergence between
Mobiluncus species. Interestingly, no significant correlation
between genome size and HGT frequency was observed, which
probably means strains of M. mulieris, compared to M. curtisii,
tend to acquire more dispensable genes, or meanwhile have
suffered more gene loss events. Most of the transferred genes
originated within the Actinobacteria phylum, with more from
members of orders Propionibacteriales, Corynebacteriales, and
Micrococcales. These orders have been reported to include
many pathogenic species that could cause devastating diseases
in humans and animals (Barka et al., 2016; Park et al.,
2019), and also include microorganisms that are also present
in the human vagina (Funke et al., 1997; Aleshkin et al.,
2006; de Figueiredo Leite et al., 2010; Okoli et al., 2019).
Taken together, these findings suggested that genome dynamic,
mediated by gene gain and loss, might be an important
strategy for Mobiluncus species diversification, host adaptation
and pathogenicity.

Collectively, the present study largely extends the
understanding of the genomic features, virulence and antibiotic
resistance profiling, and evolution of the genus Mobiluncus.
Our results also highlight the difference between M. curtisii and
M. mulieris, providing more clues for distinguishing of the two
species. Nevertheless, more experimental evidences are needed
to verify these differences. Fully understanding the pathogenic

potential of Mobiluncus strains remains a complex task with
much to be explored in the future.
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