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Abstract: The road to low-dose aspirin therapy for the prevention of preeclampsia began in the 1980s
with the discovery that there was increased thromboxane and decreased prostacyclin production
in placentas of preeclamptic women. At the time, low-dose aspirin therapy was being used to
prevent recurrent myocardial infarction and other thrombotic events based on its ability to selectively
inhibit thromboxane synthesis without affecting prostacyclin synthesis. With the discovery that
thromboxane was increased in preeclamptic women, it was reasonable to evaluate whether low-dose
aspirin would be effective for preeclampsia prevention. The first clinical trials were very promising,
but then two large multi-center trials dampened enthusiasm until meta-analysis studies showed
aspirin was effective, but with caveats. Low-dose aspirin was most effective when started <16 weeks
of gestation and at doses >100 mg/day. It was effective in reducing preterm preeclampsia, but not
term preeclampsia, and patient compliance and patient weight were important variables. Despite
the effectiveness of low-dose aspirin therapy in correcting the placental imbalance between throm-
boxane and prostacyclin and reducing oxidative stress, some aspirin-treated women still develop
preeclampsia. Alterations in placental sphingolipids and hydroxyeicosatetraenoic acids not affected
by aspirin, but with biologic actions that could cause preeclampsia, may explain treatment failures.
Consideration should be given to aspirin’s effect on neutrophils and pregnancy-specific expression
of protease-activated receptor 1, as well as additional mechanisms of action to prevent preeclampsia.

Keywords: low-dose aspirin; preeclampsia; placenta; eicosanoids; sphingolipids; thromboxane;
prostacyclin; isoprostanes; neutrophils; protease-activated receptor 1

1. Introduction

The rationale for low-dose aspirin therapy began in the 1970s with the discovery
of thromboxane and prostacyclin [1,2]. Thromboxane is a potent vasoconstrictor and
platelet aggregating agent, whereas prostacyclin is a potent vasodilator and inhibitor of
platelet aggregation. Both are synthesized from arachidonic acid by action of cyclooxyge-
nase to generate prostaglandin H2, which is then converted by thromboxane synthase to
thromboxane or by prostacyclin synthase to prostacyclin.

In the 1980s, low-dose aspirin was being used to prevent recurrent myocardial infarc-
tion and other thrombotic events based on its ability to selectively inhibit thromboxane
synthesis without affecting prostacyclin synthesis [3–6]. The reason this is possible is
because the synthesis of thromboxane and prostacyclin is compartmentalized in different
cell types. In the systemic circulation, thromboxane is produced by platelets. Platelets do
not have nuclei and so cannot regenerate cyclooxygenase when it is inhibited. Therefore,
the synthesis of thromboxane is inhibited for the life span of the platelets. Prostacyclin
is produced by endothelial cells. Endothelial cells do have nuclei and can regenerate
cyclooxygenase, so prostacyclin production is minimally affected by low-dose aspirin.
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2. Low-Dose Aspirin for the Prevention of Preeclampsia

Preeclampsia only occurs in the presence of the placenta or placental tissue. Once
the placenta is delivered, symptoms clear. Therefore, the placenta is key to understanding
preeclampsia, but treatment must correct placental, as well as maternal, abnormalities. In
the early 1980s, the placental imbalance between thromboxane and prostacyclin was dis-
covered. The first reports described a decrease in prostacyclin production. Several groups
reported a deficiency in prostacyclin in umbilical arteries, uterine vessels, and placental
veins in women with preeclampsia [7–9]. In 1985, we demonstrated that the reduction in
placental prostacyclin was associated with a significant increase in placental production
of thromboxane (Figure 1). Normal placentas produced equal amounts of thromboxane
and prostacyclin, but in preeclampsia the placenta produced 7 times as much thrombox-
ane as prostacyclin [10]. Other studies later confirmed increased placental production of
thromboxane in preeclampsia [11–16], with the increase linked to increased phospholipase
A2 [15], increased cyclooxygenase-2 [16], and increased thromboxane synthase [14] in
trophoblast cells.
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Figure 1. Production of prostacyclin and thromboxane in normal and preeclamptic placentas.

With the discovery that there was an imbalance between thromboxane and prosta-
cyclin in preeclampsia, it was reasonable to evaluate whether low-dose aspirin would
be effective for preeclampsia prevention. The first clinical trial was published in 1986 by
Wallenburg et al. [17]. It was a randomized, placebo-controlled, double-blind trial using
60 mg/day of aspirin. Forty-six normotensive women at 28 weeks’ gestation were judged
to be at risk for preeclampsia by increased blood pressure response to infused angiotensin II.
Twelve of 23 women taking placebo developed preeclampsia, whereas only 2 of 21 women
on aspirin developed preeclampsia. The incidence of preeclampsia was decreased 83% by
low-dose aspirin (Figure 2). The investigators concluded that low-dose aspirin may correct
the thromboxane/prostacyclin imbalance.
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examination. None were clinically significant, and no other studies previous or since have 
found an increase in placental abruption due to low-dose aspirin therapy [20]. Another 
problem was that both the MFM Network and CLASP studies recommended patients use 
acetaminophen for pain relief. Acetaminophen selectively inhibits prostacyclin without 
affecting thromboxane [21,22], so the effect of low-dose aspirin to correct the thrombox-
ane/prostacyclin imbalance was compromised. Another major problem was these were 
intent-to-treat studies. Compliance with low-dose aspirin was not taken into considera-
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Figure 2. Significant reduction in preeclampsia.

A plethora of clinical trials followed, reporting varying degrees of effectiveness of
aspirin treatment. Two large multicenter intent-to-treat studies were conducted in nul-
liparous pregnant women given 60 mg/day of aspirin by the NICHD Maternal-Fetal
Medicine Unit Network and the Collaborative Low-dose Aspirin Study in Pregnancy
(CLASP) trials [18,19]. Only modest decreases in the incidence of preeclampsia were found
(Figure 3). The MFM Unit Network study reported no improvement in perinatal morbidity
and an increased risk of placental abruption. Interest in low-dose aspirin declined after the
MFM Network Unit and CLASP studies due to concerns about placental abruption and
small beneficial effect of aspirin.
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Figure 3. Modest reduction in preeclampsia.

However, there were problems with these studies. Regarding placental abruption,
only one MFM Network Unit reported this, and abruption was found only on patho-
logic examination. None were clinically significant, and no other studies previous or
since have found an increase in placental abruption due to low-dose aspirin therapy [20].
Another problem was that both the MFM Network and CLASP studies recommended
patients use acetaminophen for pain relief. Acetaminophen selectively inhibits prostacyclin
without affecting thromboxane [21,22], so the effect of low-dose aspirin to correct the
thromboxane/prostacyclin imbalance was compromised. Another major problem was
these were intent-to-treat studies. Compliance with low-dose aspirin was not taken into
consideration [23]. No drug will work if the patient does not take it.
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Hauth et al. reanalyzed the MFM Network data based on compliance [24,25]. They
found that women who were more than 75% compliant in taking their aspirin had a signifi-
cant decrease in the incidence of preeclampsia, from 5.7% to 2.7%, as well as significant
decreases in the incidence of low birth weight, preterm birth, and adverse pregnancy
outcomes (Figure 4). Unfortunately, these data were only published in abstract form and
did not gain recognition.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 23 
 

 

Hauth et al. reanalyzed the MFM Network data based on compliance [24,25]. They 
found that women who were more than 75% compliant in taking their aspirin had a sig-
nificant decrease in the incidence of preeclampsia, from 5.7% to 2.7%, as well as significant 
decreases in the incidence of low birth weight, preterm birth, and adverse pregnancy out-
comes (Figure 4). Unfortunately, these data were only published in abstract form and did 
not gain recognition.  

 
Figure 4. Importance of compliance for low-dose aspirin therapy. 

In 2007, the first meta-analysis of low-dose aspirin trials was published by Askie et 
al., who found that in almost all studies low-dose aspirin reduced the incidence of 
preeclampsia [26]. Additional meta-analysis studies followed, reinforcing the effective-
ness of aspirin. Bujold et al. found that aspirin was more effective when started before 16 
weeks [27]. Roberge et al. reported that low-dose aspirin was effective in preventing pre-
term preeclampsia, but not term preeclampsia [28,29]. These investigators also considered 
the dose of aspirin. They found that studies that used a dose of aspirin ≥ 100 mg were 
more effective in reducing preeclampsia than studies that used a dose < 100 mg [29], and 
Seidler et al. reported a dose response effect for aspirin when comparing studies using ≤ 
81 mg/day to those using > 81 mg and up to 150 mg/day [30]. Another study reported that 
aspirin delays the development of preeclampsia, suggesting this may partly explain why 
aspirin is more effective in preventing preterm preeclampsia than term preeclampsia be-
cause women who would have developed preterm preeclampsia had symptoms delayed 
to term [31]. The influence of obesity is another factor to consider. A dose of 60 mg/day 
may have been sufficient in the 1980s when the first clinical trials were started, but since 
then the United States and other countries have experienced an obesity epidemic. Most 
study subjects are now overweight or obese, which may explain why meta-analysis stud-
ies find that higher doses of aspirin are more effective [29,30,32,33].  

Overall, the meta-analysis studies demonstrated that low-dose aspirin not only de-
creases the incidence of preeclampsia, but also preterm birth < 37 weeks, perinatal death, 
IUGR, and pregnancies with serious adverse outcomes. In 2013 and 2018, the American 
College of Obstetrics and Gynecology recommended low-dose aspirin therapy for women 
at risk of preeclampsia, and it is now the standard of care [34–36].  

≤25% >25-50% >50-75% >75%0

1

2

3

4

5

6

n=261 n=89 n=141 n=553

P=0.04

% Pill Compliance

In
ci

de
nc

e 
of

 P
re

ec
la

m
ps

ia
 (%

) 5.7%

2.7%

≤25% >25-50% >50-75% >75%0
1
2
3
4
5
6
7
8
9

10

% Pill Compliance

In
ci

de
nc

e 
of

 L
ow

 B
irt

h 
W

ei
gh

t (
%

)

P=0.038.8%

4.3%

≤25% >25-50% >50-75% >75%0
1
2
3
4
5
6
7
8
9

10

% Pill Compliance

In
cid

en
ce

 o
f P

re
te

rm
 B

irt
h 

(%
)

P=0.03

10.3%

5.6%

≤25% >25-50% >50-75% >75%0
1
2
3
4
5
6
7
8
9

10
P=0.01

% Pill Compliance

C
om

po
si

te
 B

ad
 O

ut
co

m
e 

(%
)

8.8%

4.3%

Figure 4. Importance of compliance for low-dose aspirin therapy.

In 2007, the first meta-analysis of low-dose aspirin trials was published by Askie et al.,
who found that in almost all studies low-dose aspirin reduced the incidence of preeclamp-
sia [26]. Additional meta-analysis studies followed, reinforcing the effectiveness of aspirin.
Bujold et al. found that aspirin was more effective when started before 16 weeks [27].
Roberge et al. reported that low-dose aspirin was effective in preventing preterm preeclamp-
sia, but not term preeclampsia [28,29]. These investigators also considered the dose of
aspirin. They found that studies that used a dose of aspirin ≥100 mg were more effective
in reducing preeclampsia than studies that used a dose <100 mg [29], and Seidler et al.
reported a dose response effect for aspirin when comparing studies using ≤81 mg/day to
those using >81 mg and up to 150 mg/day [30]. Another study reported that aspirin delays
the development of preeclampsia, suggesting this may partly explain why aspirin is more
effective in preventing preterm preeclampsia than term preeclampsia because women who
would have developed preterm preeclampsia had symptoms delayed to term [31]. The
influence of obesity is another factor to consider. A dose of 60 mg/day may have been
sufficient in the 1980s when the first clinical trials were started, but since then the United
States and other countries have experienced an obesity epidemic. Most study subjects are
now overweight or obese, which may explain why meta-analysis studies find that higher
doses of aspirin are more effective [29,30,32,33].

Overall, the meta-analysis studies demonstrated that low-dose aspirin not only de-
creases the incidence of preeclampsia, but also preterm birth < 37 weeks, perinatal death,
IUGR, and pregnancies with serious adverse outcomes. In 2013 and 2018, the American
College of Obstetrics and Gynecology recommended low-dose aspirin therapy for women
at risk of preeclampsia, and it is now the standard of care [34–36].
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Consideration should be given to the possibility that the effectiveness of low-dose as-
pirin could be improved by supplementation with L-arginine, the substrate for nitric oxide
synthase. Nitric oxide, like prostacyclin, is a potent vasodilator, so supplementation to
increase its production would be beneficial. Supplementation with L-arginine significantly
reduced the incidence of preeclampsia in a population at high risk for preeclampsia [37],
and a recent study showed favorable effects of L-arginine supplementation in conjunction
with low-dose aspirin to improve perinatal outcomes, blood pressure values, and uterine
pulsatile index [38].

Another consideration is the finding that low-dose aspirin is most effective when
started before 16 weeks gestation. This raises the importance of identifying accurate
predictive biomarkers for preeclampsia risk to be used in conjunction with maternal char-
acteristics and medical history, so at-risk women can be identified early in their pregnancy
and immediately put on low-dose aspirin therapy.

3. Does Low-Dose Aspirin Affect the Placenta?

The actions of low-dose aspirin are generally attributed to selective inhibition of
maternal platelet thromboxane; however, beneficial effects must extend to the placenta,
which is a major source of eicosanoids. Indeed, preeclampsia only occurs in the presence of
placental tissue, and the preeclamptic placenta is characterized by increased thromboxane,
decreased prostacyclin, and oxidative stress. Does low-dose aspirin affect the placenta to
correct the thromboxane/prostacyclin imbalance and oxidative stress?

As part of the NICHD Human Placental Project, we undertook a comprehensive
evaluation of placental lipids in women with normal pregnancy (NP) and women at risk
for preeclampsia who were prescribed aspirin [39]. We found the placenta is a rich source of
eicosanoids. We measured 30 eicosanoids in numerous different classes of cyclooxygenase
and non-cyclooxygenase metabolites. Ten of these were abnormal in women with severe
preterm preeclampsia (SPE). Interestingly, thromboxane (TXB2) was not increased, and
prostacyclin (6-keto PGF1a) was not decreased (Figure 5), so the imbalance was not present.
However, prostaglandins PGE and PGF were decreased, indicating maternal ingestion
of aspirin did affect placental cyclooxygenase. These findings suggest low-dose aspirin
therapy corrects the thromboxane/prostacyclin imbalance in the placenta.

Correction of the placental imbalance is possible because thromboxane and prostacy-
clin are compartmentalized within the placenta (Figure 6). Thromboxane is produced by
the trophoblast cells on the maternal side of the placenta, whereas prostacyclin is produced
by the placental vasculature on the fetal side [40–42]. This allows for selective inhibition of
thromboxane because as aspirin enters the maternal intervillous space and starts to cross
the placenta, its concentrations are highest in the trophoblast cells to selectively inhibit
cyclooxygenase associated with thromboxane production. As aspirin crosses the placenta,
its concentration gradually declines according to Fick’s second law of diffusion, sparing
prostacyclin production by the endothelial cells of the placental vasculature. Only 34%
of aspirin from the maternal side crosses to the fetal side [43]. In vitro studies demon-
strated that low-dose aspirin preferentially inhibits placental thromboxane while sparing
prostacyclin [43–45].

We also found evidence that maternal ingestion of aspirin attenuated placental ox-
idative stress. Two of the most abundant isoprostanes, 8-isoprostane (8-iso PGF2a) and
5-isoprostane (5-iPF2a), which are significantly elevated in placentas of preeclamptic
women [46,47], were not elevated in our study of women who developed preeclampsia
while on aspirin therapy (Figure 5) [39]. Isoprostanes are accurate markers of endogenous
lipid peroxidation. They are prostaglandin-like products formed in vivo by free-radical
catalyzed non-enzymatic peroxidation of arachidonic acid [48–50]. The finding that two of
the most abundant isoprostanes were not elevated in preeclampsia is significant because
the placental imbalance between thromboxane and prostacyclin is driven by oxidative
stress [25,51]. This may explain why the imbalance was not present.
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Figure 5. Placental production of cyclooxygenase metabolites and isoprostanes in women with severe
preeclampsia receiving low-dose aspirin, * p < 0.05.

The fact that placental isoprostanes did not increase in women taking low-dose aspirin
could be due to an indirect effect of cyclooxygenase inhibition. Cyclooxygenase generates
reactive oxygen species (ROS) [52], so inhibition of cyclooxygenase could have removed
the source of free radicals to generate isoprostanes from arachidonic acid (Figure 7). This
idea is consistent with our previous reports that low-dose aspirin inhibits lipid peroxides
along with thromboxane in the maternal circulation and in the placenta [43–45,53]. This
action of aspirin could explain the correction of the thromboxane/prostacyclin imbalance
because aspirin removed the driving force.

Despite aspirin therapy, some women develop preeclampsia. Low-dose aspirin re-
duces the risk, but it does not prevent the disease in all women. Significant elevations in
levels of placental hydroxyeicosatetraenoic acids (HETEs) and sphingolipids with biologic
actions that could cause preeclampsia could explain why.

HETEs are lipoxygenase metabolites of arachidonic acid, and they are, therefore,
not affected by low-dose aspirin. The placenta produced four HETEs, two of which,
15-HETE and 20-HETE, were significantly elevated in women who delivered preterm with
severe preeclampsia (Figure 8) [39]. Both of these HETEs cause inflammation [54–61], and
placental pathologic features of preterm preeclampsia are consistent with chronic inflam-
mation [62]. In addition, 20-HETE promotes hypertension, vasoconstriction, and vascular
dysfunction [59–61]. Intrauterine production of 20-HETE by the placenta could contribute
to reduced uterine blood flow and placental vasoconstriction in preeclampsia, and placental
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release into the maternal circulation could contribute to maternal hypertension. In this
regard, 20-HETE enhances vascular reactivity to angiotensin II.
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Sphingolipids are major constituents of the cell membrane and are involved in cell
signaling (Figure 9). They are long-chain fatty acids of various carbon chain lengths that
contain a backbone of sphingosine. Sphingolipids include sphingomyelin, ceramide, sph-
ingosine, and sphingosine-1-phosphate. They are involved in inflammatory signaling
pathways and implicated in cardiovascular disease [63–68]. They are not cyclooxygenase
metabolites, and so, are not affected by aspirin. The placenta produced 42 sphingolipids,
5 of which were abnormal in women with severe preeclampsia [39]. All sphingolipids that
were abnormal were significantly increased compared to normal pregnancy, including ma-
jor C:18 forms. D-e-C18:0 ceramide, D-e-C18:0 sphingomyelin, D-e-sphingosine-1-phosphate
(S1P), and D-e-sphinganine-1-phosphate were increased 2-fold to over 4-fold in placen-
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tas of women with severe preeclampsia compared to placentas of women with a normal
pregnancy (Figure 10).
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Abnormal placental sphingolipid production may contribute to several features of
preeclampsia. For example, ceramide induces apoptosis, which may contribute to placental
cell death in preeclampsia [69], and S1P inhibits extravillous trophoblast migration [70],
and so may contribute to failure of extravillous trophoblasts to effectively remodel the
spiral arteries in preeclampsia. S1P is also involved in inflammation, vascular permeability,
and the immune response. S1P is an intracellular second messenger, but it is also a blood-
borne lipid mediator, and as such, has extracellular actions by binding to S1P receptors.
Placental secretion of S1P could be responsible for abnormalities in the maternal circulation.
Very little information is available about sphingolipids in pregnancy, but maternal levels
of ceramide and S1P have been reported to be elevated in preeclampsia and linked to a
placental source [71,72].

4. Other Considerations Involving Neutrophils and Pregnancy-Specific Expression of
Protease-Activated Receptor 1

Normal pregnancy is characterized by leukocytosis caused by proliferation of neu-
trophils in the 2nd and 3rd trimesters. The number of neutrophils increases 2.5-fold by
30 weeks of gestation in normal pregnancy [73], and the number increases further in
preeclampsia [74]. Neutrophils are usually thought of as part of the innate immune system
and the first line of defense against infection. A role for neutrophils in non-infectious
disease has not been widely considered, but accumulating evidence indicates a role for
neutrophils in “sterile” inflammatory diseases [75].

For neutrophils to manifest their inflammatory effects, they need to infiltrate tis-
sue, and in women with preeclampsia there is extensive neutrophil infiltration into the
maternal systemic blood vessels (Figure 11) [76–79]. In preeclamptic women, 80–90%
of vessels in subcutaneous and omental fat are infiltrated and, although all classes of
leukocytes are activated [80,81], vascular infiltration is restricted to neutrophils [77,78].
Neutrophil infiltration is associated with a significant increase in inflammatory markers,
e.g., interleukin-8 (IL-8), intercellular adhesion molecule-1 (ICAM-1), cyclooxygenase-2
(COX-2), nuclear factor-kappa B (NF-κB), thromboxane synthase (TBXAS1), and myeloper-
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oxidase (MPO) [76,79,82,83]. The finding of neutrophil infiltration provides a basis for a
new way of thinking about vascular dysfunction in preeclampsia. It does not discount
the potential role of plasma factors but adds a new dimension to the understanding of the
underlying mechanisms of the vascular phenotype.
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4.1. Pregnancy-Specific Expression of PAR-1

Protease-activated receptor 1 (PAR-1), originally known as thrombin receptor, is activated
by serine proteases, such as thrombin, neutrophil elastase, and matrix metalloproteinase-1
(MMP-1) [84–86]. Activation leads to downstream signaling mechanisms that include
the RhoA kinase (ROCK) phosphorylation pathway. ROCK is a recognized mediator of
enhanced vascular reactivity, and also regulates the shape and movement of cells. There is
pregnancy-specific expression of PAR-1. Wang et al. showed that PAR-1 is expressed on
neutrophils, but only during pregnancy [87,88]. This suggests that something associated
with the placenta is causing the expression of PAR-1 on circulating neutrophils.

Figure 12 shows omental fat vessels of preeclamptic and normal pregnant women
immunostained for PAR-1. In preeclampsia, PAR-1 is expressed in endothelial cells (EC),
vascular smooth muscle (VSM), and in neutrophils flattened and adherent to the endothe-
lium, infiltrated into the vessel, and present in the lumen of the vessel. In normal pregnancy,
weak staining is present in the endothelium and neutrophils in the vessel lumen. There is
an 8-fold increase in gene and protein expression of PAR-1 in blood vessels of women with
preeclampsia [89].
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4.2. PAR-1 Mediates Neutrophil Inflammatory Response in Pregnancy

Proteases, such as MMP-1, neutrophil elastase, and thrombin, are elevated in women
with preeclampsia [90]. The expression of PAR-1 on neutrophils is specific to pregnancy, so
its activation by elevated proteases in preeclampsia activates an inflammatory mechanism
unique to pregnancy. In normal pregnancy, it makes sense that the expression of inflamma-
tory genes would be silenced. A mechanism for this could be DNA methylation to mask
binding sites for inflammatory transcription factors, such a NF-κB. However, if the methy-
lation marks were erased, it would open these sites, possibly leading to increased gene
expression. One mechanism for erasing methylation marks involves the recently discov-
ered TET proteins (ten-eleven translocation proteins, aka tet methylcytosine dioxygenases).
TET proteins regulate gene expression by enzymatic de-methylation of DNA. They catalyze
the conversion of 5-methycytosine (5-mC) to 5-hydroxy-methylcytosine (5-hmC) [91–94],
which is further oxidized and then removed by the DNA base excision repair enzyme,
thymine-DNA glycosylase, and replaced with unmodified cytosine [95]. TET enzymes
were first discovered in 2009 [93], and little is known about their regulation or role in
disease. TET2 is the main TET protein expressed in leukocytes, and its activation has been
shown to play an essential role in regulating hematopoietic differentiation, which proceeds
in mature cells without cell division normally during emigration from the circulation into
tissue [96–98].

4.3. Proteases Activate Neutrophil TET2 and NF-κB to Mediate Inflammatory Response

Protease activation of PAR-1 causes translocation of TET2 from the cytosol into the
nucleus in neutrophils obtained from pregnant women as evidenced by immunofluores-
cence and confocal microscopy (Figure 13) [90]. TET2 (green) is localized to the cytosol in
control cells of normal pregnant women. Protease treatment with MMP-1 or elastase results
in translocation of TET2 into the nucleus (location identified by DAPI blue) in as early
as 15 min, which is consistent for proteins containing a nuclear localization signal (NLS).
Nuclear translocation of TET2 coincides with activation of NF-κB. Similar to TET2, protease
stimulation of pregnancy neutrophils causes translocation of the p65 subunit of NF-kB (red)
from the cytosol to the nucleus. Inhibition of PAR-1, as well as inhibition of ROCK, prevents
protease-induced translocation of TET2 and p65 into the nucleus (Figure 13). Inhibition of
PAR-1 or ROCK also inhibits inflammatory response as measured by the production of IL-8
and TXB2, which are regulated by NF-κB. Protease treatment of neutrophils from normal
pregnant women significantly increases IL-8 and TXB2, demonstrating that proteases stim-
ulate inflammatory response, but when cells are pretreated with PAR-1 or ROCK inhibitors,
protease-induced increases in IL-8 and TXB2 are prevented.

Expression and activation of neutrophil TET2 are increased in preeclampsia. Im-
munohistochemical staining reveals significantly more staining in omental vessels of
preeclamptic women than in omental vessels of normal pregnant women (Figure 14) [90].
In preeclampsia, almost 90% of vessels stain for TET2 with neutrophils infiltrated into the
vessel wall, as compared to only 16% of vessels in normal pregnancy with staining. When
neutrophils are present in normal vessels, they are usually in the lumen of the vessel. High
magnification images reveal dark staining of the polymorphonuclear nuclei of neutrophils
in preeclampsia (Panel D), as opposed to diffuse staining in normal pregnancy (Panel C).
Nuclear staining suggests TET2 is active in preeclampsia, and activation involves translo-
cation from the cytosol to the nucleus just as observed for TET2 translocation induced by
protease activation of PAR-1. Staining for TET2 in preeclamptic vessels mirrors the staining
for PAR-1 with staining present in endothelium and vascular smooth muscle (VSM), as
well as in neutrophils [90]. This close relationship between PAR-1 and TET2 likely has
important implications for vascular inflammation in preeclampsia.
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Figure 14. TET2 in omental vessels (A–D).

Figure 15 summarizes the molecular mechanisms for protease activation of pregnancy
neutrophils. In normal pregnancy, circulating proteases are not elevated, TET2 and NF-κB
are localized to the cytosol, and inflammatory genes are not expressed. In preeclampsia,
circulating proteases are elevated and activate neutrophils due to their pregnancy- specific
expression of PAR-1. Activation of PAR-1 results in the movement of TET2 and NF-κB
from the cytosol to the nucleus and the expression of inflammatory genes. The PAR-1
pathway involves ROCK phosphorylation because inhibition of either PAR-1 or ROCK
blocks the movement of TET2 and NF-κB from the cytosol to the nucleus and the inflam-
matory response. To summarize, elevated levels of proteases in the maternal circulation
of preeclamptic women activate neutrophils due to their pregnancy-specific expression
of PAR-1. PAR-1 activates ROCK, which phosphorylates TET2 and NF-κB, causing their
translocation from the cytosol to the nucleus. The fact that TET2 translocation into the nu-
cleus coincides with movement of NF-κB implicates epigenetic mechanisms and suggests
that TET2 may enzymatically de-methylate DNA, opening up transcription factor binding
sites for NF-κB, resulting in the expression of inflammatory genes.
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4.4. Expression of PAR-1 in the Placenta

Several studies show PAR-1 is expressed in the placenta [99–102], which is a tissue
specific to pregnancy and dysfunctional in preeclampsia. Figure 16 shows staining for PAR-1
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in a placental villus. PAR-1 is expressed in the syncytiotrophoblast cells, which are directly
bathed by maternal blood. PAR-1 is also present in macrophages of the villous core.
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There is evidence that PAR-1 mediates placental dysfunction in preeclampsia. Be-
cause PAR-1 is expressed in the syncytiotrophoblast, elevated levels of proteases in the
intervillous space could activate PAR-1, leading to placental dysfunction. For example,
protease stimulation of trophoblast PAR-1 causes increased release of the angiogenic fac-
tor, sFlt [100,103], by activation of placental NADPH oxidase to generate reactive oxygen
species [99]. Activation of NADPH oxidase via PAR-1 could be responsible for placental
oxidative stress, which drives the imbalance of increased thromboxane and decreased
prostacyclin production [25].

A protease activating mechanism of neutrophil and placental PAR-1 could explain
why preeclampsia only occurs in pregnant women, and a protease feed-forward scenario
could explain why clinical symptoms progressively worsen. Protease activation of PAR-1
could explain other features of preeclampsia. For example, because neutrophils have
a limited life span of about 8 days, their rapid turnover would explain why maternal
symptoms clear shortly after delivery because new neutrophils not expressing PAR-1 enter
the circulation. Some women develop preeclampsia in the immediate post-partum period.
Labor is recognized to be an inflammatory process, and even in normal term labor, there
is extensive infiltration of neutrophils into maternal systemic vasculature [104]. Women
who develop post-partum preeclampsia might have been on the verge of developing
preeclampsia, and then neutrophil infiltration with labor pushed them over the edge.

4.5. Central Role for PAR-1 in the Clinical Manifestations of Preeclampsia

Protease activation of PAR-1 may play a central role in the pathology of preeclampsia
(Figure 17). Protease activation is involved in the neutrophil TET2 inflammatory response,
neutrophil activation, and enhanced vascular reactivity [90,105]. Activation of PAR-1 may
explain other pathologic features as well because PAR-1 mediates coagulation abnormali-
ties, platelet aggregation, and thromboxane generation. Protease activation of endothelial
PAR-1 activates NF-κB, upregulates cell adhesion molecules (ICAM-1), triggers produc-
tion of neutrophil chemokines (IL-8), and increases permeability of the endothelium to
trigger edema formation [106–112]. PAR-1 may explain the elevation in angiogenic factors
because trophoblast and decidual production of sFlt is stimulated by protease activation of
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PAR-1 [100,103]. Placental oxidative stress may be explained by protease stimulation of
trophoblast PAR-1, which activates NADPH oxidase to generate reactive oxygen species,
resulting in the release of sFlt [99]. Activation of NADPH oxidase could also explain the
placental imbalance of increased thromboxane and decreased prostacyclin characteristic of
preeclampsia because oxidative stress drives this imbalance [25]. The effect of aspirin on
PAR-1 signaling should be evaluated. If aspirin interferes with downstream signaling of
PAR-1, this would be another action to account for its beneficial effects.
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4.6. Placental Activation of Neutrophils

Although all classes of leukocytes are activated in the circulation of women with
preeclampsia [80,81,113–115], only neutrophils extensively infiltrate maternal blood ves-
sels [76–78]. The extensive infiltration of activated neutrophils into blood vessels of women
with preeclampsia [76,78,79] could explain systemic vascular inflammation and why multiple
organs are affected. The question arises as to how neutrophils are activated. The placenta
would seem to be a source for the activator because preeclampsia only occurs in the pres-
ence of placental tissue. Lipid peroxides are potent activators of leukocytes [116–118], and
the human placenta produces lipid peroxides and secretes them into the maternal circula-
tion [13,42,46,119]. In women with preeclampsia, placental production of lipid peroxides
is significantly higher than in women with normal pregnancy [13,42,46]. Therefore, it is
plausible that activation occurs as neutrophils circulate through the intervillous space and are
exposed to lipid peroxides released by the placenta [51,120,121].

4.7. Inhibition of Neutrophils and Treatment of Preeclampsia with Aspirin

Low-dose aspirin is currently standard of care for the prevention of preeclampsia in
high-risk populations. Low-dose aspirin selectively inhibits maternal platelet thromboxane
production without affecting prostacyclin production and, as shown above, it appears
to also selectively inhibit placental thromboxane production, as well as placental oxida-
tive stress. However, maternal platelets and placental trophoblasts may not be the only
aspirin targets. Neutrophils may also be a target. The expression of cyclooxygenase-2 is
increased in neutrophils of preeclamptic women [79,122], and aspirin inhibits neutrophil
production of thromboxane, as well as the generation of reactive oxygen species [117,118].
Neutrophils could be a major source of thromboxane and oxidative stress due to the marked
increase in their numbers during pregnancy. Aspirin treatment might also reduce the in-
filtration of neutrophils into the maternal blood vessels. Future studies are necessary to
address the various mechanisms by which low-dose aspirin is able to reduce the incidence
of preeclampsia.
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Low-dose aspirin is currently being used to prevent preeclampsia in women at risk, but
given its effectiveness, consideration should be given to the use of aspirin in treating women
with preeclampsia. Aspirin was contraindicated for use in pregnancy due to concern that it
might reduce amniotic fluid volume or cause closure of the ductus arteriosus. However,
this concern may be unwarranted because only 30% of an aspirin dose crosses from the
maternal to the fetal side of the placenta [43], and more importantly, the Collaborative
Perinatal Project in the 1970s involving over 40,000 pregnant women and their offspring,
over 24,000 of whom took aspirin during their pregnancy, 1500 of whom were heavily
exposed, found no harmful effects of aspirin use on the neonates [123].

5. Mysterious Beneficial Effects of Low-Dose Aspirin—Is Cyclooxygenase Involved?

The known mechanism of aspirin is to inhibit cyclooxygenase enzymes, the consti-
tutive COX-1 and the inducible COX-2. However, reports are appearing that aspirin also
affects non-cyclooxygenase products. For example, placental soluble fms-like tyrosine
kinase 1 (sFlt-1) is elevated in the circulation of women with preeclampsia and implicated
in preeclampsia pathology [124,125]. sFlit-1 is not a cyclooxygenase product, but low-dose
aspirin reduces hypoxia-induced sFlt-1 release by cytotrophoblast cells in vitro [126,127].
Hypoxia causes oxidative stress and the induction of COX-2, so inhibition of sFlt-1 may be
related to aspirin’s ability to decrease ROS generated by COX-2 (Figure 7).

Aspirin has favorable effects through alterations in phosphoproteins, transcription fac-
tors, and microRNAs implicated in placental apoptosis and trophoblast migration [128–131].
Aspirin facilitates trophoblast invasion by regulating a family of microRNAs that inhibit
trophoblast invasion [131]. Thus, aspirin may augment extracellular trophoblast remodeling
of the spiral arteries, which is deficient in preeclampsia. COX-2 is elevated in the process of
apoptosis [129], so aspirin may decrease placental apoptosis by inhibiting COX-2.

Another puzzling effect of low-dose aspirin is on the regulation of placenta-derived
exosomes. Exosomes are lipid bilayer nano-vesicles released by many cells and are present
in blood [132]. Their lipid makeup reflects their tissue of origin. Placental exosomes can be
specifically identified because they contain microRNAs of the chromosome 19 miRNA cluster
that are highly and exclusively expressed by the placenta throughout pregnancy [133–136].
The placenta releases exosomes throughout pregnancy into maternal blood and placental
exosomes are higher in women with preeclampsia and may contribute to endothelial dysfunc-
tion [137]. Aspirin has been shown to inhibit exosome formation and shedding by platelets,
erythrocytes, monocytes, and vascular smooth muscle cells, and it has been suggested that
low-dose aspirin may have a similar beneficial effect on placental exosome shedding and
content during pregnancy [137].

Most of the studies demonstrating beneficial effects of low-dose aspirin on non-
cyclooxygenase products were conducted in vitro or with animal models of preeclampsia.
It remains to be shown that these effects occur in pregnant women in vivo. However,
these studies expose how much there is to learn about how low-dose aspirin achieves its
protective effect. Does aspirin affect non-cyclooxygenase pathways, or are cyclooxygenase
metabolites involved in regulating these other pathways? Future studies are needed to
address these issues.

6. Conclusions

In summary, low-dose aspirin therapy for the prevention of preeclampsia began with
the discovery of an imbalance of thromboxane and prostacyclin production by placentas
of women with preeclampsia. Although the benefits of low-dose aspirin are generally
attributed to inhibition of maternal platelet thromboxane, they must extend to the pla-
centa. Maternal low-dose aspirin appears to attenuate placental oxidative stress and
correct the thromboxane/prostacyclin imbalance. Abnormalities in eicosanoids and sphin-
golipids not affected by low-dose aspirin may explain why some aspirin-treated women
develop preeclampsia.
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Meta-analysis studies provide new considerations for low-dose aspirin therapy be-
yond those currently recommended by the American College of Obstetrics and Gynecology.
These include the following: (1) a higher dose of aspirin of 150 mg/day (or 2 baby as-
pirin/day) is more effective, (2) aspirin should be started before 16 weeks of gestation,
(3) obese women might need a higher dose, (4) low-dose aspirin is most effective in prevent-
ing preterm preeclampsia, and (5) compliance is very important and should be emphasized
to the patient.

Neutrophils and the pregnancy-specific expression of PAR-1 also play significant
roles in preeclampsia. Proteases are elevated in women with preeclampsia and protease
activation of PAR-1 on neutrophils and placental trophoblasts can explain major clinical
manifestations of preeclampsia. Additional mechanisms of action of aspirin to prevent
preeclampsia should be explored, and consideration should be given to using a standard
dose of aspirin and possible supplementation with L-arginine for treatment of women
with preeclampsia.
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