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Abstract

Immune checkpoint inhibitors are novel biologic agents to treat cancer by inhibiting the regulatory inter-

actions that limit T cell cytotoxicity to tumours. Current agents target either CTLA-4 or the PD-1/PD-L1

axis. Because checkpoints may also regulate autoreactivity, immune checkpoint inhibitor therapy is com-

plicated by side effects known as immune-related adverse events (irAEs). The aim of this article is to

review the mechanisms of these events. irAEs can involve different tissues and include arthritis and other

rheumatic manifestations. The frequency of irAEs is related to the checkpoint inhibited, with the combin-

ation of agents more toxic. Because of their severity, irAEs can limit therapy and require immunosup-

pressive treatment. The mechanisms leading to irAEs are likely similar to those promoting anti-tumour

responses and involve expansion of the T cell repertoire; furthermore, immune checkpoint inhibitors can

affect B cell responses and induce autoantibody production. Better understanding of the mechanisms of

irAEs will be important to improve patient outcome as well as quality of life during treatment.
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Rheumatology key messages

. Checkpoint inhibition can promote anti-cancer responses by blocking regulatory interactions limiting T cell
cytotoxicity.

. Checkpoint inhibition can lead to immune-related adverse events that limit cancer treatment.

. Immune-related adverse events result from changes in patterns of T and B cell expression.

Introduction

Immune checkpoint inhibitors (ICIs) are biologic agents

that represent a revolutionary approach to treating

cancer [1�3]. Rather than killing cancer cells directly,

these agents reset the checks and balances that regulate

T cell cytotoxicity against tumours. This approach exploits

the capacity of the immune system to defend against ma-

lignancy by T cells targeting tumour neoantigens [4].

These cells may fail to prevent or eradicate cancer, how-

ever, because of regulatory interactions known as check-

points. With checkpoints blocked by ICIs, a cytotoxic

T cell response can emerge and provide powerful anti-

tumour activity.

While ICIs have improved the survival of patients with

previously untreatable cancers, the benefits have come

at the cost of serious side effects known as immune-

related adverse events (irAEs) [5�8]; these side effects

can limit cancer therapy and necessitate treatment.

Clinically diverse, irAEs affect the skin, gastrointestinal

tract, lung, heart and endocrine system. irAEs can also

cause arthritis and related rheumatic disease (Table 1)

[9�16].

In many respects, irAEs are not unexpected since the

checkpoints that inhibit the response to tumour antigens

would likely also inhibit autoreactivity. As such, irAEs

would appear an almost inevitable consequence of ICIs

[17, 18]. In view of the frequency and severity of irAEs,

delineating their mechanisms is important in developing

strategies for prevention and treatment. While a damaging

consequence of immunotherapy, irAEs nevertheless
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provide a setting for elucidating the mechanisms that

govern autoreactivity.

Checkpoint inhibitors

Currently, seven immune checkpoint blocking agents

have received approval by the Food and Drug

Administration to treat cancer. These agents target cyto-

toxic T-lymphocyte-associated antigen 4 (CTLA-4), also

known as CD152; programmed cell death protein-1 (PD-

1); and programmed cell death ligand-1 (PD-L1) (Table 2).

As shown in many clinical trials, irAEs commonly compli-

cate ICI therapy and clinically present with autoimmune or

autoinflammatory manifestations. In general, anti-CTLA-4

agents lead to more frequent irAEs than do anti-PD-1/anti-

PD-L1 agents. Combined checkpoint blockade (CCB) is

associated with an increased frequency of irAEs along

with higher levels of C-reactive protein [19].

In addition to currently recognized irAEs, the spectrum

of these side effects may change as ICIs are used to treat

different malignancies and patient populations. Possible

influences include age, sex, comorbidities like pre-exist-

ent autoimmune disease, prior anti-cancer treatment and

the composition of the microbiome [20�22]. Interestingly,

older patients may be at particular risk for side effects

because of age-related changes in the immune system

[23]. While irAEs can be considered ‘off-target’ since

they are distinct from the anti-tumour effect, some studies

indicate that the occurrence of irAEs may be associated

with improved tumour response [24]. Table 3 indicates

factors that may influence the development of irAEs.

The mechanisms of ICIs

ICIs act on the basic mechanisms regulating the T cell

response to antigen. As is now well recognized, T cell

activation requires two signals: TCR recognition of anti-

gen and co-stimulation. For the first signal, antigen rec-

ognition occurs in the context of MHC molecules on

antigen presenting cells (APCs). Co-stimulation occurs

between membrane-bound molecules on T cells and

APCs, with the interaction of CD28 molecules on T

cells with CD80/86 molecules on APCs a key event in

co-stimulation (Fig. 1) [25, 26].

Following activation of T cells, the expression of CTLA-4

is induced. CTLA-4 is expressed on both activated T cells

and on a subset of CD25+CD4+ T cells called T-regulatory

(T-reg) cells [26]. A member of the immunoglobulin super-

gene family, CTLA-4 is �30% homologous with CD28;

TABLE 1 Immune-related adverse events according to specialty

Gastroenterology Dermatology Endocrinology Rheumatology

Colitis
Hepatitis
Pancreatitis

Vitiligo
Skin rasha

Alopecia

Thyroiditis
Adrenal insufficiency
Hypophysitis
Type I diabetes
Pituitary disorders

Inflammatory arthritis
Sicca syndrome
Polymyalgia rheumatica
Myositis/myocarditis
Uveitis

aSkin rash includes psoriasis and psoriaform rashes.

TABLE 2 FDA approved immune checkpoint inhibitors

Immune
checkpoint

inhibitor

Year
of FDA

approval
Mechanism

of action Indications

Ipilimumab 2011 Anti-CTLA-4 Melanoma, CRC, MCC, RCC

Pembrolizumab 2014 Anti-PD-1 Melanoma, HCC, NSCLC, PMBCL, cervical cancer, gastric/gastroesopha-
geal carcinoma, solid tumour, urothelial carcinoma, Hodgkin lymphoma,
HNSCC

Nivolumab 2014 Anti-PD-1 Melanoma, NSCLC, SCLC, CRC, RCC, HCC, urothelial carcinoma, HNSCC,
Hodgkin lymphoma

Atezolizumab 2016 Anti-PD-L1 NSCLC, urothelial carcinoma

Durvalumab 2017 Anti-PD-L1 NSCLC, urothelial carcinoma
Avelumab 2017 Anti-PD-L1 Urothelial carcinoma, MCC

Cemiplimab 2018 Anti-PD-1 CSCC

CSCC: cutaneous squamous cell carcinoma; CTLA-4: cytotoxic T-lymphocyte antigen 4; CRC: colorectal cancer; FDA:
Food and Drug Administration; HCC: hepatocellular carcinoma; HNSCC: head and neck squamous cell carcinoma; MCC:

Merkel cell carcinoma; NSCLC: non-small cell lung cancer; PD-1: programmed cell death protein-1; PD-L1: programmed

cell death ligand-1; PMBCL: primary mediastinal large B cell lymphoma; RCC: renal cell carcinoma; SCLC: small cell lung

cancer.
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CTLA-4 binds CD80/86 with higher affinity and avidity

than CD28. The binding of CTLA-4 by CD80/86 decreases

T cell-mediated immune responses by reducing IL-2 and

IL-2 receptor expression [27]. Another mechanism by

which CTLA-4 can regulate immunity is via its effects on

T regulatory (T-reg) cells [28].

While anti-CTLA-4 antibodies are termed checkpoint in-

hibitors, these agents may have other actions that may

manifest in certain locales (i.e. tumour microenviroment)

and involve other immune cell types [29�31]. Thus, treat-

ment with anti-CTLA-4 can eliminate T-reg cells in a tu-

mour microenvironment via Fc-receptor-mediated

interactions. The relationship between a local reduction

of T-reg cells and the emergence of irAEs is not clear

since this mechanism seems most relevant for an estab-

lished site of inflammation.

While the PD-1�PD-L1 axis also regulates T cells, the

outcome is distinct from that of CTLA-4. PD-1 is a

member of the immunoglobulin supergene family, with ac-

tivation of peripheral T cells and B cells inducing its ex-

pression. The main action of PD-1 appears to be the

maintenance of peripheral tolerance [32]. PD-1 interacts

with two ligands in the peripheral tissues: PD-L1 and PD-

L2. PD-L1 is expressed on resting B cells, T cells, macro-

phages and dendritic cells [33]. PD-L2 is uncommonly

expressed on resting immune cells, but its production

can be induced by pro-inflammatory cytokines [33].

Signalling via both CTLA-4 and PD-1 converges on Akt,

although the pathways and consequences of antibody in-

hibition are distinct [34]. Akt is a serine threonine kinase

that plays a key role in the regulation of processes such as

metabolism, apoptosis and proliferation. For T cells, liga-

tion of CD28 leads to activation of phosphatidylinositol

TABLE 3 Potential influences on irAE development

Malignancy-related
factors Underlying host factors

Cancer type
ICI treatment

Molecular targeta

Monotherapy
CCB
Sequence of therapyb

Possible Influences
Duration of therapy
Prior chemotherapy

Age
Genetic predisposition to auto-

immunity
Pre-existing autoimmune dis-

ease
Microbiome

aAnti-CTLA-4 agents vs anti-PD-1/anti-PD-L1 agents. bUse
of anti-CTLA-4 therapy followed by anti-PD-1/anti-PD-L1

therapy or vice versa. CCB: combined checkpoint blockade;

ICI: immune checkpoint inhibitor; irAE: immune-related ad-

verse event.

FIG. 1 Two-step signalling process for activation of naı̈ve T cells

Antigen presenting cells (APCs) such as dendritic cells (DCs) or B cells present antigen to T cells via MHC class I or II

molecules (signal 1). The co-stimulatory signal occurs with binding of CD80/86 on an APC (A) to the CD28 receptor on the

CD25+CD4+ T cell resulting in upregulation of immune responses (signal 2). Alternatively, a co-inhibitory signal can occur

with binding of the cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) receptor on the CD25+CD4+ T cell to CD80/86

(B) or binding of PD-1 on the peripheral T cell to PD-L1 or PD-L2 on an APC (B); both pathways result in downregulation

of immune responses. Tumour cells can evade immune system recognition via upregulation of PD-L1 or PD-L2 on the

tumour cell surface (C) to bind with CD8+ T cells resulting in downregulation of immune response. DC: dendritic cell;

MHC: major histocompatibility complex.

https://academic.oup.com/rheumatology vii61

Mechanisms of immune-related adverse events

Deleted Text: cell 
Deleted Text: tumor 
Deleted Text: tumor 
Deleted Text: /
Deleted Text:  
Deleted Text: ,


3-kinase (PI3K) whose products bind to Akt, promoting its

phosphorylation. Whereas PD-1 signalling can antagonize

PI3K directly, the effects of CTLA-4 occur via the phos-

phatase called PP2A. As such, anti-CTLA-4 and anti-PD-1

act differently suggesting that combination therapy may

lead to more global effects that are not observed with

either therapy alone; this situation could lead to increased

effectiveness against cancer as well as increased inci-

dence of irAEs.

Together, these findings indicate that the actions of anti-

CTLA-4 and anti-PD-1/PD-L1 differ in terms of the stage of

T cell activation, downstream pathway affected and local-

ization of action. These differences have been reflected in

terminology [35]. Anti-CTLA-4 and anti-PD-1/PD-L1 anti-

bodies have recently been termed ‘immune enhancers’

and ‘immune normalizers’, respectively. The latter termin-

ology is consistent with the idea that anti-PD-1 ICIs ‘nor-

malize’ T cell immunity in the tumour microenvironment

[35]. Consistent with differences in their mechanism, PD-

1 ICIs have greater activity and less toxicity compared with

anti-CTLA-4 ICIs in melanoma patients [36�38].

CTLA-4 and PD-1 in autoimmune disease

Immune homeostasis can prevent autoimmune disease

and the CTLA-4 and PD-1 pathways are vital for this bal-

ance. Evidence for this role derives from studies on

knockout mice that lack these checkpoint molecules [39,

40]. Thus, mice lacking CTLA-4 develop an aggressive

immune-mediated condition characterized by the exten-

sive infiltration of activated lymphocytes in lymph nodes,

spleen and thymus. Relevant to irAEs, infiltration of

lymphocytes occurs in the heart, lung, liver and pancreas

but, interestingly, not in the kidney. Antibody levels in the

knockout mice are also strikingly elevated.

The lack of kidney involvement in the knockout mice is

interesting because of the high levels of immunoglobulin in

these mice. Often, increases in immunoglobulin produc-

tion in genetically manipulated mice are commonly asso-

ciated with anti-DNA and other antinuclear antibodies that

characterize SLE, a prototype autoimmune disease with

glomerulonephritis. In studies thus far, development of

either antinuclear antibodies or lupus-like illness has not

been a prominent feature of irAEs, perhaps suggesting a

distinct pattern of B cell expression that occurs after

CTLA-4 inhibition in humans and mice.

While germline knockout of CTLA-4 can lead to auto-

immunity, the role of CTLA-4 is complex and may include

cell autonomous and non-autonomous effects operating

at different steps in tolerance. Studies by Klocke et al. on

mice undergoing conditional deletion of CTLA-4 shed light

on these mechanisms [41]. With conditional deletion in

adult mice, CTLA-4 deficiency leads to lymphoprolifera-

tion, pneumonitis, gastritis and insulitis among other mani-

festations. In contrast to congenital deficiency, acquired

deficiency in adult mice is not fatal.

With adult deficiency, disease can be transferred by T

cells, although abnormalities among B cells also develop

including hyperglobulinaemia as well as antibodies to in-

sulin, gastric antigen and the Ro52 protein. Despite these

serological abnormalities, the levels of anti-DNA, an im-

portant lupus marker, are less prominent. Autoantibody

findings, therefore, appear more selective than might be

anticipated with a global breakdown in tolerance.

Unlike the situation with germline-deficient mice that

develop rapid fatality, with CTLA-4 deletion during adult-

hood, there is adequate time to test experimental induc-

tion of autoimmunity. As studies by Klocke et al. showed,

collagen-induced arthritis is more severe in mice with

adult CTLA-4 deficiency than in wild-type mice [41].

Levels of induced antibodies to collagen are also

increased. In contrast, mice with adult CTLA-4 deficiency

are protected from the experimental allergic encephalo-

myelitis induced by myelin oligodendrocyte glycoprotein

(MOG) peptide immunization; with a MOG protein-

induced model, however, experimental allergic enceph-

alomyelitis was delayed but not prevented.

In another approach to elucidate irAEs, Lute et al. inves-

tigated the relationship between autoimmunity and the

anti-tumour effect in human CTLA-4 knock-in mice by

comparing the activity of three monoclonal antibodies dif-

fering in CTLA-4 binding [42]. These studies showed that

the antibodies varied in their anti-tumour activity as well as

the development of autoimmunity although these activities

were not linked. Interestingly, in this model system, ani-

mals with tumours treated with anti-CTLA-4 showed

robust anti-DNA responses although the magnitude of

these responses varied among the antibodies. These find-

ings suggest that the presence of a tumour may influence

the development of autoimmunity because of tumour-

associated immune disturbances or release of self-anti-

gen by a tumour undergoing cytotoxicity.

The development of abatacept, a CTLA-4�Fc fusion

protein that competes with CD28 for CD80/86 binding,

also attests to the role of CTLA-4 in the pathogenesis of

RA [43]. While this therapy is effective in the treatment of

rheumatoid arthritis, it has not been used to treat irAE

arthritis, likely because of concerns on its effect on anti-

tumour responses [44].

The role of PD-1/PD-L1

The link between autoimmunity and PD-1 was first

demonstrated in studies of PD-1-deficient murine

models [45]. Depending on the strain, mice lacking PD-1

develop a lupus-like disease marked by glomeruloneph-

ritis and renal deposition of IgG3 and C3. In addition, in

these studies, the majority of PD-1-deficient mice also

developed inflammatory arthritis as shown by histology

[45]. In an extension of this model, Nishimura et al.

crossed the PD-1 knockout mice with mice of the B6-

lpr/lpr strain, which develop lymphoproliferation because

of genetic deficiency of Fas [45]. In these studies, auto-

immunity in the cross of B6-lpr/lpr by PD-1�/� mice was

accelerated in comparison with that observed in B6-lpr/lpr

mice, displaying greater lymphadenopathy as well as

immune complex glomerulonephritis.

The serological findings in these mice are interesting in

terms of the mechanisms for irAEs. Thus, the B6-PD-1�/�

mice do not display antibodies to either anti-DNA or RF.
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Furthermore, the B6-PD-1�/� by lpr/lpr mice showed an

increase in IgG2a anti-DNA but not IgG3 anti-DNA. As in

the case of the CTLA-4 knockout, the PD-1 knockout mice

did not lead to serological findings of SLE. In other stu-

dies, Nishimura et al. demonstrated autoimmune dilated

cardiomyopathy with severe heart failure in PD-1 knock-

out mice [46].

While both CTLA-4 and PD-1 knockout mice develop

immune-mediated conditions, the disease is quite differ-

ent. Whereas CTLA-4 knockout mice die rapidly, disease

in mice lacking PD-1 is gradual, with disease developing

after a year. With inhibition of either checkpoint, it appears

that background genes can influence the development of

autoimmunity.

Evidence for the role of PD-1 in arthritis also comes

from studies of patients with RA demonstrating high

levels of PD-1 in synovial fluid. Liu et al. showed positive

correlation of serum levels of soluble PD-1 with DAS28

scores, a measure of RA disease activity [47]. In other

studies, Guo et al. showed increased PD-1 expression in

synovial tissue of RA patients compared with osteoarth-

ritis patients or normal controls. There was also statistic-

ally significant elevation in soluble PD-1 in the serum of

ACPA positive RA patients compared with seronegative

RA patients [48].

Mechanisms of T cell reactivity in irAEs

Since the antigen specificity of T cells mediating irAEs is

unknown, studies of the mechanisms of these side effects

have assessed general features of the T cell repertoire as

a clue to the aetiology. Studies by Robert et al. demon-

strated that treatment with tremelimumab (an anti-CTLA-4

monoclonal antibody) can increase the number of unique

productively rearranged TCR V-b sequences in the blood

of patients with metastatic melanoma [49]. Using meas-

ures called richness and the Shannon diversity index, im-

portantly, this study showed that patients with and without

irAEs differed in terms of the total number of productive

TCR V b sequences in the complementarity determining

region (CDR3). While these differences were noted in

terms of the frequency of irAEs, responders and non-re-

sponders in terms of the anti-tumour response showed

similar patterns of sequence expression.

While this study did not show the expansion of particu-

lar clones in the peripheral blood, Robert et al. posited

that TCR expansion may be considered a pharmacody-

namic effect of ICIs that reflects the overall immune acti-

vation. Since the emergence of irAEs and the increase in

clonal diversity may be associated, these findings suggest

that irAEs may result from a mobilization of large numbers

of T cells, some of which are autoreactive. The lack of

correlation of TCR diversity with treatment effect may fur-

ther suggest that autoreactive and anti-tumour cells rep-

resent distinct populations.

A study by Oh and colleagues reached a similar con-

clusion [50]. This study involved patients with metastatic

castrate-resistant prostate cancer treated with ipilimumab

in association with GM-CSF. In this study, treatment with

ipilimumab led to a greater diversification of the T cell

repertoire in those patients who developed irAEs in com-

parison to those without this complication. This diversifi-

cation was notable in the number of clonotypes that were

increased along with the presence of newly detected

clones.

As demonstrated in this study, changes in T cell popu-

lations occurred early after treatment, suggesting a rela-

tionship with the subsequent development of irAEs.

Nevertheless, toxicity in general occurs later in the

course of therapy. Given the time lag, it is possible that

pathogenic T cells gradually emerge from the larger

number of clonotypes that occur after checkpoint block-

ade. Interestingly, the time of onset of inflammatory arth-

ritis (IA) ranges from 7 weeks to 24 months, which is later

than that of other non-rheumatic irAEs. In patients with

melanoma who develop IA, the average time of onset is

6�24 months, suggesting that the onset of IA may be af-

fected by the nature of the T cell population in the periph-

ery as well as tumour microenvironment in different types

of cancers [44, 51, 52].

Mechanisms of B cell reactivity in irAEs

While the goal of ICI therapy is to increase cytotoxic T

cells, these agents can also affect B cells either directly or

indirectly. The data on B cell changes after ICI therapy

are limited, although a study by Das et al. demonstrated

that patients with advanced melanoma receiving CCB

had a significant decrease in the number of circulating

B cells after treatment [53]. This effect was not observed

in patients treated with anti-CTLA-4 or anti-PD-1 mono-

therapy. These investigators also demonstrated an in-

crease in the number of plasmablasts and plasma

levels of CXCL13, a marker of germinal centre activation

in humans, with CCB in comparison to monotherapy.

Furthermore, B cells following CCB showed increased

clonality in terms of the expression of immunoglobulin

genes [53].

In the Das et al. study, the early changes in B cells

correlated with the higher rates of grade 3 or higher

irAEs 6 months after CCB. Together, these findings sug-

gest that B cells may be important contributors of auto-

immunity following CCB. In this regard, a subset of CD21lo

memory B cells appeared to be particularly affected by

CCB as shown by restricted expression of PD-1 on the

CD21lo subset, increased B cells with a CD21lo genomic

profile and increased IFN-g signalling in CD21lo B cells

after CCB [53]. This B cell subset was previously

described as a functionally and phenotypically distinct

population on the path to long-lived plasma cells [54].

Patients who are haploinsufficient for CTLA-4 exhibit simi-

lar B cell findings to those observed following CCB [55].

In contrast to studies on T cells, evidence of B cell

autoreactivity is clearer for certain conditions. Thus, pa-

tients with thyroid abnormalities (i.e., thyroiditis and hypo-

thyroidism) display autoantibodies to thyroidal antigen

[56, 57]. Similarly, patients who develop diabetes on ICIs

show antibodies to islet cell antigens as well as glutamic

acid decardoxylase-65 [58, 59]. Although autoantibodies
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may be present in patients who develop rheumatic irAEs,

most patients are seronegative [10, 14, 16, 51, 60, 61].

To delineate further autoantibody production following

ICI, de Moel and colleagues screened pre-treatment and

post-treatment samples of patients with advanced melan-

oma with a large panel of autoantigens [62]. The data

indicated that, of 127 patients in the study, 20% were

positive for any autoantibody prior to treatment while

29% were positive after treatment. Among patients who

were antibody negative before treatment, 19.2% de-

veloped new autoantibodies, with anti-TPO (thyroperoxi-

dase) and anti-TG (thyroglobulin) being the most common.

The relationship between emergence of autoantibodies

and irAEs was not significant. Data showed that 78.9%

of patients who expressed any autoantibody had an irAE

while only 57.5% who were autoantibody negative had an

irAE.

Since ICIs can be given together or sequentially, de

Moel et al. investigated the responses of patients who

had developed an autoantibody during ipilimumab treat-

ment and then received PD-1 blockade. These studies

showed that 44.4% of patients who expressed anti-thy-

roid antibodies during therapy with anti-CTLA-4 and then

received anti-PD-1 therapy had evidence of thyroid

dysfunction. While these findings could suggest that

anti-PD-1 can promote B cell autoimmunity initiated by

anti-CTLA-4, irAEs can take time to develop.

Pre-existing autoimmune disease and
immune checkpoint therapy

Another setting to elucidate the mechanisms of irAEs con-

cerns the response to ICIs in patients with pre-existing

autoimmune disease. In these patients, ICIs can result in

a flare in the underlying disease up to 50% of the time

[63�65]. In a retrospective review of patients with pre-exist-

ing autoimmune disease, Abdel-Wahab et al. noted differ-

ences in the occurrence of irAEs in patients with active vs

inactive autoimmune disease at the time of ICI initiation

[65]. This same review noted that patients on immunosup-

pressive therapy at the start of ICI therapy had a lower

incidence of irAEs. In this analysis, patients with irAEs

were more likely to achieve partial or complete tumoral re-

sponse compared with those without irAEs. In patients with

pre-existing autoimmune disease, more disease flares were

observed with anti-PD-1/PD-L1 agents compared with de

novo irAEs reported with anti-CTLA-4 agents [65].

Menzies et al. showed an increase in the frequency of

flares in patients with active pre-existing autoimmune dis-

ease compared with those with clinically inactive disease.

Furthermore, this study showed that, while the risk of flare

of pre-existing autoimmune disease was �50%, the rate

of de novo irAEs appeared similar to rates observed in

clinical trials that excluded such patients [64]. For patients

who experienced irAEs with anti-CTLA-4 ICI, then chan-

ged to anti-PD-1 ICI, recurrence of the same irAE was

uncommon despite frequent irAEs [64]. Johnson et al.

described a 50% combined risk of either flare of pre-exist-

ing autoimmune disease or development of a new irAE

[63]. Together, these findings suggest a predisposition to

the development of irAEs, although the risk may depend

on the ICI used.

Case studies illustrating mechanisms

In a cohort at Duke University Medical Center, we have

had two patients with autoantibodies consistent with

rheumatoid arthritis and Sjogren’s syndrome but who

did not develop symptoms of disease until after starting

ICI. The RA patient was a 53-year-old man with advanced

melanoma who had a high titre ACPA but negative

rheumatoid factor at the time of evaluation. While asymp-

tomatic prior to therapy, his joint symptoms started after

2 months on pembrolizumab.

The patient with Sjogren’s syndrome was a 70-year-old

woman with non-small cell lung cancer who, at the time of

evaluation, had a positive ANA of 1 : 2560 titre by immuno-

fluorescence (homogeneous and speckled patterns), anti-

bodies to SS-A (Ro60), inflammatory arthritis, and sicca

symptoms (bilateral corneal erosions). She also did not

develop symptoms until after starting CCB with ipilimu-

mab and pembrolizumab. Her sicca symptoms started

first, with inflammatory arthritis developing later. Both pa-

tients required long-term immunosuppression to control

their symptoms, despite discontinuation of ICI (Table 4).

Consideration of the serological and clinical findings of

these two patients raises questions about the mechanism

for irAEs and the most informative terminology to describe

their disease. In general, autoantibody production in RA,

SLE and related autoimmune diseases pre-dates symp-

tomatology by many years in a state known as pre-auto-

immunity. For our patients, the initiation of ICI may have

provided a trigger for the transition from pre-autoimmunity

to autoimmunity. As such, the development of disease in

pre-autoimmune individuals who are predisposed to

disease may be mechanistically distinct from the develop-

ment of an irAE in a patient without risk factors or pre-

existent serological findings.

Immunosuppression and tumour
response

Since patients with pre-existent autoimmune or inflamma-

tory disease may be receiving immunosuppressive ther-

apy at the time of ICI therapy, their ability to respond to

ICIs is an important question and relates to the mechan-

istic relationship of checkpoint inhibition and auto-reactiv-

ity. In a study by Menzies et al. patients with advanced

melanoma and pre-existing autoimmune disease demon-

strated a lower response rate to anti-PD-1 therapy if they

were on immunosuppressive therapy at treatment onset

than those not on immunosuppression [64]. It is not clear,

however, whether the patients who were not on immuno-

suppression had previously been in remission or whether

immunosuppressive therapies had been discontinued to

facilitate ICI treatment.

In other studies by Kobayashi et al. and Raptopoulou et

al. patients with rheumatological conditions like RA and

Sjogren’s were more likely to flare on anti-PD-1 therapy
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compared with other autoimmune diseases; this effect

may be related to the role of PD-1 positive T cells in rheu-

matological disease discussed above [66, 67].

Lee et al. reported that seven of eight patients with pre-

existing RA on immunosuppressive therapy showed par-

tial response or stable disease [68]. One explanation for a

more robust treatment response concerns changes in

immune function in seropositive RA; because of pre-exist-

ing defective T-reg suppressive function, activation of

cancer-specific cytotoxic T cells may occur more readily

[69].

Treatment of rheumatic irAEs

Treatment of irAEs is often necessary to reduce symp-

toms and to allow ICI therapy to proceed. For ICI-asso-

ciated IA, Naidoo et al. proposed an algorithm for

evaluation and management [70]. This algorithm includes

recommendations for NSAIDs, prednisone, and both non-

biologic and biologic DMARDs. One case series by Kim et

al. demonstrated clear and sustained response of ICI-

associated IA to IL-6 inhibition [71]. Evidence thus far in-

dicates that these recommended treatments do not impair

the anti-tumour response suggesting differences in the

pathways leading to irAEs and the anti-tumour response.

Conclusion

The use of ICIs has led to a revolution in the treatment of

cancer although improved outcomes have been asso-

ciated with unique side effects known as immune-related

adverse events. To advance this important new treatment

modality, future studies will need to define the relationship

between anti-tumour and anti-self reactivity, develop bio-

markers for prediction, and assess new approaches for

prevention and treatment, especially in patients with

pre-existent autoimmune disease. In view of the number

of checkpoints that operate in the immune system, the

coming years will see very exciting mechanistic research

to maximize anti-cancer responses while minimizing anti-

self responses.
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