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ABSTRACT
DNA methylation is recognized as one of several epigenetic regulators of gene expression and as potential
driver of carcinogenesis through gene-silencing of tumor suppressors and activation of oncogenes.
However, abnormal methylation, even of promoter regions, does not necessarily alter gene expression
levels, especially if the gene is already silenced, leaving the exact mechanisms of methylation unanswered.
Using a large cohort of matching DNA methylation and gene expression samples of colorectal cancer
(CRC; n = 77) and normal adjacent mucosa tissues (n = 108), we investigated the regulatory role of
methylation on gene expression. We show that on a subset of genes enriched in common cancer
pathways, methylation is significantly associated with gene regulation through gene-specific mechanisms.
We built two classification models to infer gene regulation in CRC from methylation differences of tumor
and normal tissues, taking into account both gene-silencing and gene-activation effects through hyper-
and hypo-methylation of CpGs. The classification models result in high prediction performances in both
training and independent CRC testing cohorts (0.92<AUC<0.97) as well as in individual patient data
(average AUC = 0.82), suggesting a robust interplay between methylation and gene regulation. Validation
analysis in other cancerous tissues resulted in lower prediction performances (0.69<AUC<0.90); however,
it identified genes that share robust dependencies across cancerous tissues. In conclusion, we present a
robust classification approach that predicts the gene-specific regulation through DNA methylation in CRC
tissues with possible transition to different cancer entities. Furthermore, we present HMGA1 as consistently
associated with methylation across cancers, suggesting a potential candidate for DNA methylation
targeting cancer therapy.

KEYWORDS
Epigenetic regulation;
colorectal cancer; DNA
methylation; gene
expression; prediction model;
HMGA1

Introduction

DNA methylation, along with histone modification and chro-
matin remodeling, are important regulators of gene expression.
Here, we focus in particular on DNA methylation, which alters
the activity of a DNA segment by adding a methyl group to the
cytosine carbon 5 of a cytosine-phosphate-guanine (CpG)
sequence. However, methylation at non-CpG sites has also
been observed, but is comparatively rare [1]. Genome-wide
aberrant DNA methylation between colorectal cancer (CRC)
and healthy or “normal” adjacent mucosa (normal) tissues
[2,3] suggests epigenetic modifications as tumor associated
consequences different from the common genetic alterations,
such as somatic mutations in APC, KRAS, or TP53. Different

CpG methylation patterns, such as the CpG island methylator
phenotype (CIMP) [4] have been used to identify CRC sub-
types [5], to distinguish CRC from normal tissues [3], or to
develop clinical biomarkers [6]. Another scope of application is
to infer gene expression from DNA methylation. The current
understanding is that promoter methylation associates with
gene-silencing and gene body methylation associates with
increased transcriptional expression [7–9] across different tis-
sues. Thereby, methylation possibly plays an important role in
carcinogenesis by promoting oncogenes and silencing tumor
suppressors [2,10]. However, this view has been challenged. It
has been suggested that aberrant hypermethylation in cancer is
attributed primarily to genes that are already repressed in the
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tissue of origin and therefore not linked to silencing of tumor
suppressor genes and cancer development [5,11]. However,
they might maintain low gene expression levels at late disease
stages and therefore contribute to a growth advantage of the
tumor. Furthermore, methylation changes are predominantly
thought to come second after gene regulation, which is rather
mediated by other means [12]. Nevertheless, there might be a
small fraction of genes in which methylation changes in cancer
have an impact on cancer gene expression and, therefore, on
carcinogenesis. Indeed, aberrant methylation is not necessarily
correlated with gene expression changes in cancer, indicating a
gene-specific dependency and a regulatory effect on only a sub-
set of genes [13]. This impedes a generalized interpretation of
the influence of CpG methylation on gene expression and an
exact model on how DNA methylation regulates gene expres-
sion remains elusive [14,15].

Many integrative studies of methylation and gene expression
exist [9,14,16,17] but, to our knowledge, only Li et al. [18] pro-
posed a complex model to predict gene regulation (up- or
down-regulation) in lung cancer from 67 features that are com-
prised of CpG methylation, histone H3 methylation, nucleotide
composition, and conservation. Most of the times, however,
only one or two components of the complex epigenetic data are
available, reducing the general applicability of this model.

We utilized DNA methylation and matching gene expres-
sion data from the ColoCare cohort [19], including samples
taken from CRC tissues and normal tissues of adjacent mucosa,
to investigate the regulatory role of DNA methylation on CRC
gene expression. We show that gene regulation between CRC
and normal tissues can be robustly predicted from DNA meth-
ylation differences for a subset of genes, which is enriched in
common cancer pathways. To account for gene-specific depen-
dencies between DNA methylation and gene expression, we
constructed two prediction models for genes being either nega-
tively or positively correlated between DNA methylation and
gene expression. This approach significantly increased our pre-
diction performance compared to a single model. We validated
our classification models in independent CRC cohorts and
individual patient data with high prediction performance. Vali-
dation in other cancer entities resulted in lower prediction per-
formances, suggesting a particularly strong role of DNA
methylation in CRC. In addition, we identified a robust regula-
tory role of DNA methylation on the cancer hallmark gene
High Mobility Group AT-Hook 1 (HMGA1) in different cancer
entities, suggesting a potential candidate gene for DNA methyl-
ation targeting cancer therapy [20–22].

Results

The ColoCare study: DNA methylation and gene expression
data

To study the methylation-gene expression relationships, we
obtained matching DNA methylation and gene expression data
from 77 colorectal cancer (CRC) and 108 adjacent mucosa tis-
sues (Supplementary Table 1) from the ColoCare Study [19].
Adjacent mucosa samples are referred to “normal”; however,
they may be affected by molecular crosstalk from cancer cells
through activation of pro-tumorigenic functions [23]. After

preprocessing and normalization, we annotated CpGs with
their associated genes through their location on either the pro-
moter (-1500 bp of the transcription start site – 1st Exon) or
the gene body region and furthermore noted their CpG island
relation (islands, shores, shelves, open sea; see Materials and
Methods for specification) [24].

A principal component analysis (PCA) revealed a clear sepa-
ration between CRC (green) and normal (purple) for most
samples in both the DNA methylation (first principal compo-
nent; PC1 = 29%; Figure 1A) and gene expression data (PC1 =
26%; Figure 1B). In the DNA methylation and gene expression
data, there were, respectively, one and two normal samples that
clustered within the CRC group and vice versa three and four
tumor samples that clustered within the normal group
(Figures 1A and B). The first can be explained by the aforemen-
tioned crosstalk between tumor and adjacent mucosa tissues.
The latter is likely due to the larger heterogeneity of tumor
samples and the resulting data variability or tumor quality, but
the CRC outliers were inconspicuous in their clinical parame-
ters compared to the other CRC samples. More than 84,000
differentially methylated positions (DMPs; FDR <0.001 and
jDb = bTumor – bNormalj >0.1) between CRC and normal tissues
were identified, with mostly CpG island hypermethylation and
open sea CpG hypomethylation in CRC for both the promoter
and the gene body regions (Figure 1C). While this is in agree-
ment with various cancers, the opposite was observed in
healthy tissues, namely hypo- and hyper-methylation of CpG
islands and open sea CpGs, respectively [9,25]. In the transcrip-
tome data, we found 2456 differentially regulated genes (FDR
<0.01 and jlog2FCj>0.5; Figure 1D), 1160 of them up- and
1296 down-regulated. We considered methylation to have a
putative impact on the expression of a gene if at least two dif-
ferentially methylated CpGs are nearby (8161, see Figure 1E).
Then, about one third of the differentially regulated genes (873
out of 2456) may be impacted by differentially methylated
CpGs (Figure 1E). Interestingly, these genes were particularly
enriched in gene sets from ConsensusPathDB [26], including
in extracellular matrix (ECM) organization, pathways in can-
cer, and EGFR1 signaling (Supplementary Table 1 for a full
list), but a more detailed view is needed to study the influence
of methylation in carcinogenesis gene regulation.

Gene-wise correlation between DNA methylation and gene
expression in colorectal cancer and normal samples

To study the gene-specific impact of DNA methylation, we cal-
culated average methylation levels of CpGs in the promoter
and gene body region, but discriminated between island, shore,
shelf, and open sea CpGs. Thus, we obtained eight averaged
methylation regions (4x promoter + 4x gene body) per gene.
Then Spearman correlation coefficients were calculated
between gene expression values and the averaged methylation
levels. For hypermethylated (CRCMethylation > NormalMethylation)
promoter regions in cancer, 24% displayed significant correla-
tions (FDR corrected P value <0.05 and j%j >0.2) to gene
expression, with 18% of these being related to gene downregu-
lation and 6% to gene upregulation (Figure 2A, total, upper
panel). In contrast, 25% of hypomethylated (CRCMethylation <

NormalMethylation) promoter regions were correlated to gene
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expression values with 17% corresponding to gene up- and 8%
to gene down-regulation (Figure 2A, total, lower panel). In the
gene body, we observed a similar picture. Here, 17% of hyper-
methylated regions were associated to gene downregulation,
while 9% corresponded to gene upregulation (Figure 2B, total,
upper panel). For hypomethylated gene body regions, 14%
related to gene upregulation and 12% to gene downregulation
in cancer (Figure 2B, total, lower panel). In total, we found
16,370 (25%) methylation regions that correlated significantly
with gene expression values, with 10,662 (16%) significant neg-
ative correlations (hyperM $ downregulation and hypoM $
upregulation) and 5,708 (9%) significant positive correlations
(hyperM $ upregulation and hypoM $ downregulation). A
closer look at the methylation regions with significant correla-
tions to gene expression values did not show any preferred
location relative to the gene that is indicative for gene expres-
sion (Figure 2C). It should be noted that the unequal

distribution of CpGs across genes from the Illumina Human-
Methylation450 BeadChip (450K) prevents a statement about
other regions with a potential association to gene expression. In
conclusion, we found, for both the promoter and gene body,
around 25% of methylation regions that were associated with
their gene expression values. However, whether the methyla-
tion changes have triggered gene expression in cancer or
whether these are secondary events following other gene regu-
lating mechanisms cannot be derived in this context.

Prediction of gene regulation from DNA methylation in
colorectal cancer requires two distinct models

Using a machine learning approach with Random Forest, we
sought to build a model that predicts gene regulation (up =
log2FC >0 and down = log2FC <0) from DNA methylation
differences in CRC and normal tissues. Therefore, we averaged

Figure 1. Principal component analysis (PCA) from (A) normalized DNA methylation (M-values) and (B) log2 transformed gene expression data. Normal samples are
shown in purple and tumor samples in green. Samples clustering within the other group (separated by the dashed line) were labeled with their sample ID. C: The number
of significantly differentially methylated CpG sites (Db>0.1 and FDR<0.001) ordered according to location and their island relation (hyper- and hypo-methylation in CRC
compared to normal tissues). D: The number of significantly differentially regulated genes (log2FC >0.5 and FDR<0.01) between CRC and normal tissues (up- and down-
regulation in CRC). E: Overlap between differential methylation (�2 CpGs significantly methylated per gene) and significant gene regulation.
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the Db values (Db = bTumor– bNormal) at the promoter and gene
body regions for the different island relations (island, shore,
shelf, open sea), resulting in eight predictor regions for each
gene. If no CpGs were present in a specific gene location, zeros
were inserted for the Db values.

Furthermore, we hypothesized that gene regulation cannot
be robustly predicted for all genes, for which reason we defined
subsets of genes based on varying thresholds of absolute log2FC
(tumor vs. normal; jlog2FCj >0.1, …, 0.5) and absolute Spear-
man correlation coefficients [j%j >0, …, 0.5 between methyla-
tion and gene expression for at least one gene region (promoter
and gene body island, shore, shelf, open sea)]. Random Forest
classification models were trained on the defined subsets of
genes and prediction performance was evaluated in three-times
repeated 10-fold cross-validation by comparing the predicted
outcome (up- or down-regulation) with the observed (true)
expression changes (Figure 3A).

The prediction performance increased from AUC = 0.64 for
the gene subset with (jlog2FCj >0.1 and j%j >0) to AUC = 0.81
for the gene subset with (jlog2FCj >0.5 and j%j >0.5) with the
most important predictors being the promoter shores followed
by the promoter islands, whereas the promoter shelves were
the least important. Nevertheless, for the subset with thresholds

jlog2FCj >0.5 and j%j >0.5 (Figure 3B; black box), recursive
feature elimination resulted in the best prediction performance
for all eight methylation regions (Supplementary Figure 1A).
Thus, even methylation on promoter shelves contributes mar-
ginally to a better prediction of gene regulation. Hence, features
were not reduced, because of the already small feature space (n
= 8). Furthermore, thorough scanning of the prediction results
revealed that genes with positive correlation coefficients in pro-
moter and gene body islands and shores were mainly falsely
predicted (Supplementary Figure 1B, green box). Therefore, we
set out to train two separate prediction models: one for genes
being negatively and one for genes being positively correlated
between DNA methylation and gene expression.

Comparing our initial prediction model (Figure 3B) to the
approach of separate models (Figure 3C and D), we found an
average increase in the AUC over the different thresholds
(Spearman’s % and log2FC) from 0.72 to 0.86 (0.90) for the neg-
atively (positively) correlated genes and maximum performan-
ces of AUC = 0.96 (AUC = 0.93). The most important
predictors were promoter and gene body shores for the subsets
of negatively correlated genes and gene body open sea for the
subsets of positively correlated genes (Figure 3C and D). A
closer look at the subset of genes passing the most stringent

Figure 2. Proportions of hyper- and hypo-methylated regions that display a significant relationship (FDR corrected P value<0.05 and j%j>0.2) to gene expression for the
promoter (A) and the gene body (B). C: Methylation pattern of all genes (8491) that contain at least one methylation region that is significantly correlated to its gene
expression values.
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thresholds for negative correlation (jlog2FCj >0.5 and % <-0.5;
n = 327; AUC = 0.96; Figure 3C black box) and the subset of
genes for positive correlation (jlogFCj >0.5 and % >0.5;
n = 129; AUC = 0.93; Figure 3D black box) shows that genes
with similar methylation patterns are sometimes differently
regulated (Figure 4A, left panel, see as example black box). This
corroborates again the gene-specific dependencies and the need
for two separate classification models to predict gene regulation
from CpG methylation differences.

Biological function of methylation regulated genes in CRC

In the following experiments, we focused on the subset of nega-
tively correlated genes (327) and the subset of positively corre-
lated genes (129) whose gene regulation could be robustly
predicted in the ColoCare cohort (Figure 3C and D, black
boxes). A Fisher’s exact test using Consensus pathways [26]
resulted in an enrichment of typical cancer associated pathways
(P value <0.05), such as pathways in cancer, PI3K-Akt signal-
ing or cytokine-cytokine receptor interaction for both the nega-
tively and positively correlated genes (Figure 4B, shown as
yellow nodes). There were also unique pathways for the nega-
tively or positively correlated genes, e.g., EGFR1 and extracellu-
lar matrix organization for the former and Ras signaling
pathway for the latter correlation (Figure 4B). Still the pathway
overlap was significant (hypergeometric test P value <10¡5),
indicating no specific function to the different subsets of genes.

To get further insight into the role of methylation on cancer
genes, we obtained cancer associated genes that were curated

from multiple cancer lists (http://www.bushmanlab.org/links/
genelists) and matched them to our subsets of negatively and
positively correlated genes. A total of 84 cancer associated
genes were found in the subset of negatively (62) or positively
correlated genes (22), of which we further manually annotated
52 and 12 genes to either a cancer supporting or suppressing
function according to literature review (Supplementary
Table 2).

As expected, cancer supporting genes (oncogenes) were sig-
nificantly associated to upregulated genes, while cancer sup-
pressing genes (tumor suppressors) were associated to
downregulated genes (x2 P value <10¡6), suggesting a support
of tumor functionality through specific hyper- and hypo-meth-
ylation in CRC. The fact that the regulation from 78 of 84 can-
cer genes were correctly predicted by the Random Forest
classification models proposes a robust dependence between
CpG methylation and gene expression and emphasizes the
important role of methylation changes in cancer associated
genes in the colon.

Model validation in independent CRC cohorts

To validate our classification models, we obtained independent
publicly available cohorts of CRC and normal samples with
CpG methylation as input and gene expression data for perfor-
mance evaluation (Supplementary Table 1). We validated the
models trained on the negatively and positively correlated
genes (Figure 3C and D; black boxes) from the ColoCare data.
First, independent DNA methylation data (GSE42752) was

Figure 3. A: Workflow of training Random Forest classification models on different subsets of genes. Prediction performances (AUCs) obtained from three times repeated
10-fold cross-validation for different subsets of genes according to log2FC and Spearman correlation coefficients thresholds. Below, the importance of predictors across
all prediction models are shown (scaled between [0, 1]). B: Subsets of negatively and positively correlated genes C: subsets of negatively correlated genes and D: Subsets
of positively correlated genes.
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taken as input for the classification models to predict gene reg-
ulation. The ColoCare and one further, independent CRC gene
expression cohort (GSE8671) were used as underlying truth to
evaluate the prediction performance. The classification resulted
in prediction performances of AUC = 0.94 and AUC = 0.98
for the subsets of negatively and positively correlated genes
compared to the ColoCare gene regulation. Comparing to
the GSE8671 cohort data we obtained AUCs of 0.93 and
0.92, respectively (Figure 5A). In a next step, matching
DNA methylation (as input) and gene expression data (as
underlying truth) of 272 CRC and 19 normal samples were
downloaded from TCGA (The Cancer Genome Atlas). Again,
high prediction performances were obtained for the negatively
(AUC = 0.96) and positively correlated genes (AUC = 0.97;
Figure 5A).

Furthermore, the classification models were tested on indi-
vidual patient data, i.e., gene regulation was predicted from
patient-specific DNA methylation differences between CRC
and normal tissues. In total, 16 CRC patients within TCGA had
both input DNA methylation (tumor and normal) data as well

as gene expression data (tumor and normal) to check the pre-
diction results. The gene regulation prediction of these 16
patients resulted in an average prediction performance of
AUC = 0.82 § 0.05 and AUC = 0.83 § 0.10 for the negatively
and positively correlated genes, respectively (Figure 5B). This
shows that for a subset of genes, we can consistently predict
gene regulation in CRC cohort as well as in individual patient
data, highlighting the wide applicability of our prediction mod-
els and the robust dependence between CpG methylation and
gene expression in CRC data.

Model validation in other cancerous tissues

For a general understanding of the interdependence between
CpG methylation and gene expression in carcinogenesis, we
acquired matching cohort data for methylome and transcrip-
tome from TCGA for breast invasive carcinoma (BRCA), lung
adenocarcinoma (LUAD), and thyroid carcinoma (THCA)
cancer (Supplementary Table 1). Among the hyper- and hypo-
methylated regions in promoter and gene body for BRCA,

Figure 4. A: Left panel: Heatmap of methylation profiles (Db values) for all genes from the subsets of negatively (327) and positively (129) correlated genes (see Figure 3C
and D; black boxes) with regard to their regulation, prediction outcome and prediction model association. The black box represents an example of gene-specific regula-
tion (up and down) from similar methylation patterns. Right panel: detailed view of 84 cancer associated genes (cancer genes from Bushman’s Lab, Suppl. Table 2) and
their associated function in cancer. B: Significantly enriched consensus pathways (P value <0.05) in negatively correlated (purple nodes), positively correlated (grey
nodes), and both (yellow nodes) genes. Edges are drawn if pathways share 30% of their genes. Node and font size are proportional to the size of the gene sets.
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LUAD, and THCA, we found 30% (22% negatively and 8%
positively), 26% (18% negatively and 8% positively), and 17%
(13% negatively and 4% positively) correlated (FDR adjusted P
value <0.05 and j%j >0.2) between DNA methylation and gene
expression values (Supplementary Figures 2–4).

For model training, we obtained new subsets of negatively
(positively) correlated genes with thresholds jlog2FCj >0.5 and
% <-0.5 (>0.5) as described previously. Using the classification
models trained on the ColoCare CRC data, prediction perform-
ances were achieved as AUC = (0.87, 0.77, and 0.90) for the
negatively and AUC = (0.76, 0.74, and 0.69) for the positively
correlated genes for (BRCA, LUAD, and THCA), respectively
(Figure 6A). In comparison to the prediction performances for
colon cancer, performances of BRCA, LUAD, and THCA were
consistently lower and significant for the positively, but not for
the negatively correlated genes (t-test P = 0.0011 and P = 0.13,
respectively). To rule out overfitting towards colon cancer, we
trained new prediction models separately for BRCA, LUAD,
and THCA. Interestingly, prediction performances were insig-
nificantly different for both the negatively [AUC = (0.88, 0.79,
and 0.90)] and the positively [AUC = (0.88, 0.75, and 0.73)]
correlated genes, respectively, abrogating any overfitting
towards colon cancer. Thus, gene regulation prediction with
the presented prediction models is particularly useful for
CRC.

Interestingly, only five genes from the specified subsets
showed a consistent negative correlation between expression
and methylation across the four cancers (Figure 6B): High
mobility group AT-Hook 1 (HMGA1), Metallothionein 1E
(MT1E), Fas cell surface death receptor (FAS), Anterior gradient
2 (AGR2), and Nuclear Factor Erythroid 2 like 3 (NFE2L3),
while no genes were found to overlap within the positively cor-
related genes (Figure 6B).

Epigenetic alteration of HMGA1 in cancerous tissues

HMGA1 is an oncogene involved in many cancerous mecha-
nisms [27]. We observed a highly robust dependence between
gene regulation and DNA methylation differences in the differ-
ent cancer types. Its expression was correctly predicted in 16/16
TCGA CRC patients (15 upregulated and 1 downregulated)
and in all our investigated cancer cohorts (CRC, BRCA, LUAD,
THCA, all upregulated). In-depth analysis on HMGA1 associ-
ated CpGs, showed hypomethylation as an indicator of
increased gene expression for 9/21 CpGs in all tested cancer
types (Supplementary Table 2), suggesting hypermethylation as
potential treatment to regulate HMGA1 overexpression in can-
cer. Overall correlation from all tested samples, associates the
promoter region (Figure 6C) with gene expression. We further
investigated the survival prognosis of gene expression levels but
could not identify a significant association (log-rank test
P >0.05) in CRC, BRCA, THCA, and LUAD from TCGA.

To exclude mutation driven changes in HMGA1 expression,
we compared the mutation frequency of HMGA1 to 19,147
other genes in >9000 cancerous samples from TCGA. HMGA1
was among the top 5% of genes with the lowest mutation fre-
quency (Figure 6D). This further strengthens the hypothesis
that epigenetic alteration through CpG methylation of HMGA1
may regulate its gene expression in various cancers.

Discussion

In this study we investigated the interplay between CpG meth-
ylation and gene expression in CRC and normal adjacent
mucosa tissues from participants in the ColoCare cohort [19].
Our findings support previously identified differentially meth-
ylated positions, with mainly island hypermethylation and

Figure 5. A: ROC curves of validation analysis of the prediction models for negative correlated (solid line) and positive correlated (dashed line) genes in independent CRC
methylation (meth) and gene expression (exp) data. B: Average of gene regulation prediction performances (AUC) and their standard deviation for 16 individual CRC
patients from TCGA repository.
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open sea hypomethylation in CRC tissues and differentially
regulated genes [3,5]. As previously stated, many differentially
methylated CpG sites displayed no effect on gene regulation,
suggesting no contribution to cancer through modification of
the transcriptome [5,11]. Yet, we identified roughly 25% of
methylation regions in the promoter and gene body with signif-
icant correlations (FDR corrected P value <0.05 and j%j >0.2)
to gene expression levels, suggesting an interplay between DNA
methylation and gene expression in cancer. For example, Nau-
mov et al. [3] identified 14 hypermethylated CpG sites on 8
genes (SND1, ADHFE1, NR5A2, COL4A, OPLAH, TLX2,
C1orf70, ZFP64) with high diagnostic potential for CRC. While
all of these CpGs showed significant hypermethylation in our
data set, thus confirming their diagnostic role, only 4 out of 8
genes seem to be regulated through CpG methylation: ADHFE1
(down), NR5A2 (down), COL4A1/2 (up), and SND1 (up).

Among the methylated regions with a significant relation-
ship to gene expression, the majority (16%) of hyper(hypo)
methylated regions in both the promoter and gene body were
related to gene down(up)regulation, corroborating the predom-
inant view of CpG island promoter hyper(hypo)methylation
being a silencing (activating) epigenetic change. Nevertheless,
there was a substantial amount (9%) that displayed a link
between hyper(hypo)methylated regions and gene up(down)
regulation in cancer. In particular, hyper(hypo)methylation of
the gene body open sea and shelf regions were linked to up
(down)regulation in cancer, which is in agreement with the
association between global hypomethylation and gene repres-
sion in breast cancer [28] and with the primarily positive corre-
lation between DNA methylation and gene expression across
human tissues and cell lines for non-CpG islands residing in
the gene body [9]. Nevertheless, whether the methylation

Figure 6. A: ROC curves of validation analysis of the prediction models for negative correlated (solid line) and positive correlated (dashed line) genes in BRCA, LUAD, and
THCA data. B: Overlap between the subsets of genes of negatively and positively correlated genes used in the prediction models of CRC, BRCA, LUAD and THCA (see ROC
curves Figure 6A). C: Illumina 450K methylation profile on the HMGA1 gene. Hypermethylated CpGs in cancer tissues are shown in yellow and hypomethylated CpGs in
blue. The size of the methylation sites corresponds to the significance of the Spearman correlation coefficient between HMGA1 gene expression and methylation levels at
the respective loci. D: Mutational frequencies of HMGA1, MT1E, AGR2, FAS, and NFE2L3 across more than 9000 cancer patients from TCGA.
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changes are a cause or consequence of transcriptional regula-
tions in cancer cannot be answered with the underlying data.
The many-sided correlation patterns indicated a gene-specific
role of associations between methylation and gene expression
changes. To test the possibility to infer gene regulation from
DNA methylation, we constructed a Random Forest classifica-
tion model. The gene-specific behavior towards CpG methyla-
tion complicated prediction analysis for a single model, which
was solved by a novel approach that trained two prediction
models separately—one for the genes with negative correlation
between methylation and gene expression and one for the posi-
tively correlated genes. The prediction models were particularly
accurate for a subset of negatively correlated genes (jlogFCj
>0.5 and % <-0.5; AUC = 0.96) and positively correlated genes
(jlogFCj >0.5 and % >0.5; AUC = 0.93), indicating a strong
link between DNA methylation and gene expression for these
genes. In addition, both subsets of genes were associated to
common cancer pathways, with cancer suppressing and sup-
porting genes being primarily silenced and activated,
respectively.

The classification models achieved high prediction perform-
ances in independent CRC cohorts and single patient data as
well, demonstrating their general usage to infer gene regulation
from methylation data, whenever gene expression data is
missing.

However, gene regulation prediction analysis did not work
equally well in other cancer types such as BRCA, LUAD, and
THCA (0.69�AUC�0.90). For the hyper- and hypo-methyl-
ated regions that were associated with gene expression, we
found varying proportions for BRCA (30%), LUAD (26%), and
THCA (17%), suggesting a cancer specific linkage of methyla-
tion and gene expression. Interestingly, prediction models
trained on the respective cancers did not produce better per-
formances than the models trained on CRC. This suggests that
the dependencies between methylation changes and gene
expression are less robust in BRCA, LUAD, and THCA than in
CRC, but it also indicates that methylation changes of nega-
tively and positively regulated genes have similar responses
across cancer types. Furthermore, the subsets of genes accord-
ing to log2FC and correlation coefficient thresholds varied
across cancers, indicating tissue-specific dependencies as pro-
posed elsewhere [13]. Matching our prediction results, methyl-
ation occurs at higher frequencies in CRC compared to other
cancer types [29,30], which might suggest a stronger role of
DNA methylation in CRC and could explain the prediction
discrepancies.

The prediction of gene regulation from DNA methylation
comes with three limitations. First, high prediction performan-
ces can only be obtained for a subset of genes that is based on
differential expression (log2FC) and correlation structures with
DNA methylation (Spearman’s %). However, it is easy to infer
such underlying dependencies from publicly available data
repositories that include DNA methylation and matching gene
expression data, e.g., from TCGA. Second, we related CpGs to
only the promoter and gene body region based on Illumina
annotation of the 450K methylation BeadChip. Therefore,
genes that were not regulated by those may have regulatory
regions at distant enhancer sites or isolated intergenic CpGs,
which were not included in the model. Third, we cannot predict

the strength of the regulation, i.e., the effect size of expression
differences (log2FC). It highly depends on the dynamic range
of the genes, which would have to be incorporated in the pre-
diction model and requires further work.

Recently, Li et al. [18] published a prediction model to infer
gene regulation of differentially expressed genes (DEGs;
n = 2874) from methylation levels in lung cancer data from
TCGA. In addition to CpG methylation, they considered his-
tone methylation, nucleotide composition and conservation,
comprising to a total of 1412 features. Eighty percent of the
DEGs were used for feature selection analysis and machine
learning, resulting in 67 features with a prediction performance
of AUC = 0.83 in the remaining 20%. For a different subset of
genes and therefore not exactly comparable to their results, our
models trained on the CRC (LUAD) cohort data, obtained pre-
diction performances of AUC = 0.77 (0.79) and AUC = 0.74
(0.75) for the negatively (520) and positively (192) correlated
genes, respectively. The discrepancies might be due to (i) the
incorporation of histone methylation and nucleotide composi-
tion data; (ii) the subsets of genes the models were trained and
tested on; (iii) the evaluation of prediction performance (single
split vs. 3x repeated CV); but also (iv) the choice of the models.
To what extent the Li et al.’s approach is specific to lung cancer
has not been examined yet. Thus, we recommend to use our
model particularly for CRC data and due to its simplicity in fea-
ture space (8 features per gene), as well as when only 450K
methylation data is accessible.

Among the genes regulated by DNA methylation in all
investigated cancers, we found a strong indication for HMGA1
upregulation whenever CpG islands and shores were hypome-
thylated at the TSS1500 and 5’UTR promoter region. Also, one
site within the gene body was consistently hypomethylated,
pointing to a combined regulatory role of different methylation
sites. To our knowledge, we are the first to report such a consis-
tent dependence between HMGA1 methylation and expression
in multiple tumors. HMGA1 is one of the cancer hallmark
genes [27], playing an important role in regulation of gene
transcription, e.g., p53, inhibition of apoptosis, and progression
of metastasis [31–33]. While high expression levels of HMGA
proteins correlate with advanced tumor grade and poor survival
in PDAC patients [27,31,34], we could not confirm a survival
association in CRC, BRCA, LUAD, or THCA TCGA data. Nev-
ertheless, HMGA1 has been suggested as a biomarker in PDAC
and as a promising target for cancer therapy [27,31,34,35].
Global DNA methylation modifications have already been used
in cancer therapy, by the use of epigenetic inhibitors [36].
Recently, also target specific DNA methylation alterations have
become available using a CRISPR-Cas9-based tool [22]. This
enables the possibility to increase CpG methylation on the
HMGA1 promoter region and therefore reduce its gene expres-
sion in cancer. However, the clinical implementation will
require further research.

In conclusion, we present two prediction models with Ran-
dom Forest classification to robustly infer gene regulation on a
subset of genes from CpG methylation differences in CRC and
normal adjacent mucosa tissues but also other cancer entities.
This suggests the existence of cancer contributing genes that
are strongly associated with and presumably regulated through
DNA methylation changes in CRC. Finally, we identify
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HMGA1 as robustly hypomethylated and upregulated in all
cancer types. As a result of the role of HMGA1 in cancer devel-
opment, we suggest regulation of gene expression through
DNA methylation targeting cancer therapy. However, further
work is required to experimentally validate the regulatory
impact of methylation on HMGA1 expression.

Materials and methods

Illumina 450K preprocessing

Illumina 450K microarrays were preprocessed using the Rminfi
package [37]. First, probes with detection P value >0.01 or
beadcounts �3 in 10% of the samples were removed followed
by quantile normalization of methylation intensity values. Sec-
ond, b values were determined from methylation intensities
and normalized with BMIQ [38]. CpGs on the X- and Y-chro-
mosome as well as with SNP association (dbSNP minor allele
frequency >0.01) were excluded from further analysis. The
remaining CpGs (424,555) were used for subsequent analysis.
Differentially methylated positions were calculated using mod-
erated t-tests between CRC and normal tissues as proposed
elsewhere [37]. Significance was defined as a FDR corrected P
value <0.001 and jDbj >0.1. For prediction analyses, we
assigned CpG sites to genes and calculated average b values for
the promoter region (1500TSS-1st Exon) and the gene body for
different island relations (island, shore, shelf, open sea) accord-
ing to the Illumina manifest, which is based on the UCSC
annotation [39]. Therefore, islands are defined by a CG content
of >50% and an observed/expected ratio of more than 0.6 in
windows 200<x<500 bases. The regions 0–2 kb and 2–4 kb
up- and down-stream of islands are defined shores and shelves,
respectively. CpG sites falling in neither of these categories
were defined as open sea [40]. We discriminated between the
four island relations and the promoter or gene body, resulting
in eight methylation values per gene. Then, gene-wise methyla-
tion differences (Db = bTumor – bNormal) were obtained per
value. If CpG levels were missing on a gene region, differences
of Db = 0 were inserted. Methylation data sets (450K) from the
cancer genome atlas (TCGA) were downloaded with normal-
ized b values and clinical information.

Gene expression preprocessing

Illumina HumanHT12v4 microarrays were quantile normal-
ized, log2 transformed and manufacture IDs were matched to
unique gene EntrezIDs. If multiple manufacture IDs were asso-
ciated to the same EntrezID, the one with the higher inter-
quartile-range across the data was kept. Differentially expressed
genes were obtained applying the limma pipeline [41] and
using a Benjamini-Hochberg adjusted P value cutoff <0.01 and
an absolute log2-fold change cutoff (logFC) >1. For prediction
analysis, we defined upregulation as logFC>0 and downregula-
tion as logFC <0.

Correlation analysis

CpG methylation levels were averaged according to their
respective gene location (promoter and gene body) and island

relation (island, shore, shelf, open sea). Then, Spearman corre-
lation coefficients % were calculated between averaged methyla-
tion sites and gene expression values for samples with
matching methylation and transcriptome data. P values of cor-
relation coefficients were adjusted for multiple testing (Benja-
mini-Hochberg).

Gene regulation prediction

Random Forest classification models were used to classify gene
regulation (up or down) from 8 methylation differences (Db =
bTumor – bNormal) for different subsets of genes according to
log2FC and correlation coefficient thresholds. The best model
was chosen in three-times repeated 10-fold cross-validation,
and performance was evaluated by the area under the curve
(AUC) of the receiver operated characteristic (ROC) using the
R caret package [42]. For validation analysis, models trained on
the ColoCare data were used to predict gene regulation from
methylation data of independent CRC and other cancer cohorts
(breast, lung and thyroid).

All data are fully available from Gene Expression Omnibus
with the accession numbers GSE101764 (DNA methylation)
and GSE106582 (gene expression). All analyses were coded in
R and are available upon request.

Ethics: ColoCare Study

The ColoCare Consortium combines research on colorectal
cancer, with sites at the Fred Hutchison Cancer Research Cen-
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Heidelberg, Germany). This study exclusively focused on
patients recruited in Heidelberg and has been approved by the
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