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ABSTRACT
The immune system can recognize tumor cells to mount antigen-specific T cell response. Central to the 
establishment of T cell-mediated adaptive immunity are the inflammatory events that facilitate antigen 
presentation by stimulating the expression of MHC and costimulatory molecules and the secretion of pro- 
inflammatory cytokines. Such inflammatory events can be triggered upon cytotoxic treatments that 
induce immunogenic cancer cell death modalities. However, cancers have acquired a plethora of mechan-
isms to subvert, or to hide from, host-encoded immunosurveillance. Here, we discuss how tumor intrinsic 
oncogenic factors subvert desirable intratumoral inflammation by suppressing immunogenic cell death.
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Introduction

The tumor microenvironment comprises malignant cells, 
immune cells (innate and adaptive), structural cells (e.g. 
fibroblasts), vascular cells and others. These cellular con-
stituents function as ecosystems in thus far that they 
exhibit cooperation (e.g. reciprocal provision of growth 
factors), competition (e.g. for oxygen, nutrients), preda-
tion (e.g. antitumor immunity), and co-evolution in 
response to selective pressure. The immune system exerts 
complex tasks to eliminate growing tumors. Innate 
immune cells such as natural killer (NK) cells are the 
first to encounter and fight off cancer and, if tumors are 
not eliminated, the adaptive immune system takes over to 
mount tumor-specific response by engaging cytotoxic 
T lymphocytes (CTLs) which are endowed with receptors 
that recognize tumor antigens presented in the context of 
major histocompatibility complex (MHC) (Figure 1). 
Cancer immunoediting is the process whereby the 
immune system can both constrain and promote tumor 
growth. The concept of cancer immunoediting relies on 
sequential stages, namely elimination, equilibrium and 
escape, that depict the interaction of growing tumors 
with the immune system1. Over-expressed tumor- 
associated self-antigens, non-self-mutated neoantigens 
and oncogenic virus-associated epitopes can be cross- 
presented to naïve T cells and activate tumor-specific 
CTL responses to eliminate immunogenic tumors1. The 
immune pressure added to genomic instability provides 
tumors an opportunity to develop malignant escape var-
iants that undergo progressive selection and outgrowth. 
Thus, clinically diagnosed macroscopic tumors are usually 

immune-edited and have defeated host intrinsic immuno-
surveillance mechanisms (Figure 2).

Several immunotherapeutic approaches can reactivate pre-
existing immune infiltrates to provide long-term survival of 
cancer patients. Moreover, in tumors that lack immune infil-
trates induction of inflammatory cell death can kickstart the 
anticancer immunity cycle and reinstate immunosurveillance 
(Figure 3).2 In fact, certain types of cytotoxic chemotherapies3 

or targeted therapies such as radiation,4 oncolytic viruses,5 

photodynamic therapy,6 extracorporeal 
photochemotherapy7,8 can activate tumor cell stress and 
immunogenic cell death (ICD) that positively contributes to 
immune-mediated recognition of tumors3 (Figure 3). 
Depending on the cytotoxic stimuli, ICD consists of 
a cascade of events that starts with a premortem stress and 
leads to a cellular demise that concurrently allows the release of 
immunomodulatory molecules and tumor cell contents. In 
these scenarios, danger molecules and cytokines released dur-
ing ICD are critical for successful tumor-antigen presentation 
and development of adaptive immunity. Thus, approaches that 
combine ICD inducers with immune checkpoint inhibitors2 

that block inhibitory T cell receptors9,10 have gained clinical 
popularity.11,12 However, emerging studies show direct evi-
dence that tumor-intrinsic oncogenic factors can influence 
the immunogenicity of tumor cell death13,14 (Figure 4). Here 
we review recent advances as to how tumor-specific oncogenic 
factors (oncogenes and tumor suppressors) influence the antic-
ancer immunity cycle by dictating the activation of inflamma-
tory cell death as well as the secretion of immunomodulatory 
molecules during ICD. We conclude by illustrating how 
knowledge of tumor genetics can be integrated into patient 
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selection for maximizing immunotherapeutic outcome after 
ICD-inducing treatments.

Mechanisms of antitumor immunity after ICD

Mechanisms of ICD and downstream events leading to tumor- 
specific CTL response have been mostly investigated in the 
context of cancer chemotherapy. In this setting, stressed and 

dying malignant cells display or release Danger Associated 
Molecular Patterns (DAMPs) that attract and activate profi-
cient antigen-presenting cells, mainly immature dendritic cells 
(DCs). Among these alarm signals are (1) the surface exposure 
of the endoplasmic reticulum chaperone calreticulin (CALR) 
and the release into the tumor microenvironment (TME) of (2) 
the cytoplasmic protein annexin A1 (ANXA1), (3) the nucleo-
tide ATP, and (4) the nonhistone chromatin-binding protein 
high-molecular group B1 (HMGB1) (Figure 3). These DAMPs 
are sensed by DCs through the low-density lipoprotein recep-
tor-related protein 1 (LRP1, also known as CD91), formyl 
peptide receptor-1 (FPR1), purinergic receptors P2RX7 and 
P2RY2, and TLR4, respectively. Additionally, treatment by 
ICD chemo-inducers mimics viral infection and stimulates 
the secretion by malignant entities of type I interferons (IFN) 
and C-X-C motif chemokine ligand 10 (CXCL10), thus attract-
ing T lymphocytes. Once at proximity of DAMP-emitting 
dying cancer cells, DCs will experience activation and matura-
tion which implies up-regulation of the lymphoid tissue- 
residing C-C motif chemokine receptor 7 (CCR7), of MHC 
molecules and co-stimulatory factors (e.g. CD80, CD86), as 
well as the production of inflammatory cytokines (e.g. inter-
leukin-12 [IL12], IL6, tumor necrosis factor-alpha [TNF-α]).

DCs are able to engulf tumor antigens notably via phagocy-
tosis of malignant cell corpses, or via macropinocytosis of free 
antigens that may have spread upon cell death.15 Then, DCs 
process captured antigens and proceed to cross-presentation of 
associated epitopes onto MHC (Figure 1). Of note, DC popula-
tions that appeared particularly enriched in the tumor bed and 
seemed predictive of an improved cancer outcome consist of 
Ly6ChiCD11b+ monocyte-derived DCs and of Clec9A+ type 1 
conventional DCs, particularly the CD103+ subset.16 Recently, 
a platelet factor P-selectin was shown to initiate cross- 
presentation.17 Mature DCs migrate to secondary lymphoid 
organs to prime cognate naïve CD4+ and CD8+ 

T lymphocytes.18 This step not only requires the interaction 
of the MHC/epitope complex with the T cell receptor (TCR) 

Figure 1. Mechanisms of tumor antigen presentation. Antigen-presenting cells (APCs) deliver peptides via major histocompatibility complex (MHC) to the T cell receptor 
(TCR). This initial peptide-loaded MHC-TCR interaction signal activates the T cell, but for antigen presentation to succeed, two additional steps are required. Engagement 
of co-stimulatory and co-inhibitory molecules is the second signal that determines T cell function and fate by promoting or inhibiting T cell activation and function. The 
third signal required for successful antigen presentation is the provision of an inflammatory cytokine milieu that determines the differentiation of T cells. ICD stimulates 
antigen presentation at signals two and three by releasing danger molecules that increase co-stimulatory molecule expression and providing cytokines essential for T 
cell differentiation.

Figure 2. Mechanisms of tumor-mediated immune evasion. Tumors can 
inhibit intrinsically developed immunity at the three stages of anticancer immu-
nity cycle. Tumors secrete suppressive cytokines and ligands to inhibit T cell 
priming. Moreover, tumors can also conspire the secretion of chemokines that 
are essential for entry of cytotoxic T lymphocytes into the tumor stroma. Lastly, 
tumors can also inhibit T cell-mediated killing either by downregulating compo-
nents of the antigen processing and presentation machinery or by expressing 
T cell inhibitory ligands such as PD-L1/2.
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but also a co-stimulatory signal resulting from the binding of 
DC surface-exposed CD80/CD86 to T cell surface-exposed 
CD28, as well as the secretion of some cytokines supporting 
T cell differentiation and proliferation such as IL219(Figure 1). 
Activated type 1 helper CD4+ T (Th1) and cytotoxic CD8+ 

T (Tc1) lymphocytes also produce large amounts of IFNγ, 
which exhibits pleiotropic antitumor activity. First, IFNγ 
maintains Th1 T cell lineage commitment and stimulates dif-
ferentiation of CD8+ T cells into CTLs (positive feedback loop), 
boosts antigenic exposure in antigen-presenting cells and 

Figure 3. Mechanisms of ICD. Several types of lethal stimuli (a) activate tumor cell stress and cell death that leads to the surface expression of the “eat me” signal 
calreticulin and extracellular release of ATP, HMGB1 and interferons (b). In a concerted effort, the danger molecules released during ICD promote antigen presentation 
and immune cell trafficking (c).

Figure 4. Tumor intrinsic oncogenic factors dictate the activation and execution of ICD. (a) Diverse genotoxic and metabolic stimuli initiate signaling pathways to 
activate autophagy, necroptosis and pyroptosis. (b) All these three types of inflammatory cell death can be modulated by tumor intrinsic factors. (c) Several types of 
oncogenes evade ICD by indirectly activating immune-suppressive ligands.
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target cells, and favors macrophage activation and polarization 
toward a tumoricidal phenotype (e.g. enhanced phagocytic 
potential, production of nitric oxide, tryptophan depletion)20. 
Second, IFNγ can exert direct anti-proliferative (e.g. regulation 
of p21 expression), anti-angiogenic (e.g. impaired survival of 
endothelial cells) and pro-apoptotic/necroptotic (e.g. up- 
regulation of caspases, enhanced secretion of Fas and Fas 
ligand) effects on transformed cells.20 Additionally, activated 
T lymphocytes produce TNFα which cooperates with IFNγ to 
further stimulate Th1/Tc1 responses and to sensitize cancer 
cells to apoptosis (e.g. repression of B-cell lymphoma-extra 
large [Bcl-xL] expression, ischemia via endothelial cell 
apoptosis).20,21 Upon activation, effector T cells, notably 
CTLs, express C-X-C motif chemokine receptor 3 (CXCR3) 
that will allow their migration to the tumor bed in a, yet poorly 
understood, paracrine CXCL9/CXCL10/CXCL11-dependent 
manner22 (Figure 2). These chemokines are mostly secreted 
by cancer cells, monocytes, endothelial cells and fibroblasts in 
response to IFN-γ22 Then malignant cells harboring MHC- 
I-coupled epitopes can be targeted by cognate CTLs which 
achieve their antitumor function mainly through the secretion 
of perforin, a pore-forming toxin triggering osmotic lysis.23,24 

Collectively, this series of events has been termed “cancer- 
immunity cycle” by Dan Chen and Ira Mellman back in 
201318 (Figure 2).

Adaptive immune-resistance mechanisms encoded by 
tumors

Cancer cells adapt to overcome the aforementioned immuno-
surveillance mechanisms and resist to immune attack. These 
pro-tumoral immune evasion actions mostly prevent either the 
ignition of the cancer-immunity cycle at the level of antigen 
presentation by inhibiting DC function, or terminally suppress 
the effector function of cytotoxic T lymphocytes25 (Figure 2). 
First, immunoediting tends to select poorly immunogenic 
transformed cells. Hiding from the adaptive immune cell 
radar can be achieved through mutations or epigenetic silen-
cing of relevant tumor antigens or through a general reduction 
of antigen presentation, via the loss of class-I MHC, beta- 
2-microglobulin (B2M) or antigen peptide transporters 1 and 
2 (TAP1/2).26,27 Alternatively, some malignant cells constitu-
tively expose inhibitory immune checkpoints such as pro-
grammed death-ligand 1 (PD-L1)28 or secrete 
immunosuppressive factors like indoleamine 2, 3-dioxygenase 
1 (IDO1).29 Both PD-L1 and IDO1 are normally stimulated by 
IFN-γ as a negative feedback loop.29–31 PD-L1 interacts with 
the activation/exhaustion marker programmed cell death 1 
(PD-1) on tumor-infiltrating T lymphocytes (TILs) and impair 
cytokine production as well as T cell proliferation and 
survival.32 Released IDO1 depletes tryptophan (Trp) from the 
extracellular milieu thus promoting cell cycle arrest and death 
of effector TILs.29 Furthermore, Trp catabolism by IDO1 enzy-
matic activity generates kynurenine (Kyn). The latter can bind 
the aryl hydrocarbon receptor (AhR), a ligand-activated tran-
scription factor, at the surface of DCs and regulatory CD4+ 

T lymphocytes (Tregs). In DCs, Kyn-activated AhR triggers the 
release of immunosuppressive IL10 while inhibiting the pro-
duction of immunostimulatory IFNβ. Meanwhile, nuclear 

translocation of activated AhR in immunosuppressive Tregs 
stimulates their proliferation within the TME.29 In addition to 
IFN-induced adaptive immune resistance, cancer cells also 
acquire resistance to cancer immunosurveillance and immu-
notherapy via inflammatory cytokine- and stress-related 
mechanisms.33–36 For instance, in a preclinical murine model 
of melanoma, the release of TNFα by TILs initiated de- 
differentiation of melanoma cells and ultimately translated 
into a loss of several melanosomal antigens. As 
a consequence, a therapy relying on the adoptive transfer of 
T cells specific for the melanoma-associated antigen gp100 
only showed transient responses.33,34 Oncogenic pathways 
that support the abovementioned mechanisms of adaptive 
immune resistance remain poorly documented and will be 
introduced in the following paragraph.37

Oncogenic driver mutations influence cancer immune 
contexture and immunosurveillance

Genomic landscapes of common human cancers revealed 
around 140 genes that can drive tumorigenesis when altered 
by intragenic mutations.38 Common to most solid tumors is 
that the major driver oncogenic mutations confer selective 
growth and proliferative advantage by altering up to 12 cancer 
cell-intrinsic cellular signaling pathways.38 These deregulated 
pathways confer distinct and complementary capabilities that 
confer on tumor cells a selective growth advantage by increas-
ing cell division and preventing cell death.39 In parallel, cancer 
cells must acquire the ability to prevent immune cell recogni-
tion and elimination.40 The composition and function of 
immune cells in tumors vary greatly between and within cancer 
histotypes.41,42 This considerable variation in phenotypic and 
functional characteristics of intratumoral leukocyte composi-
tion impact cancer outcome.43 Accumulating clinical observa-
tions and mouse studies reveal that gain-of-function mutations 
in oncogenes (e.g. KRAS, MYC) and loss-of-function altera-
tions in tumor suppressor genes (e.g. PTEN, TP53) are corre-
lated with changes in immune composition and response to 
immunotherapy.44 Overall, mouse and human studies showed 
that inactivation of tumor suppressors as well as activation of 
oncogenes directly contribute to pro-tumoral immune contex-
ture and failed immunosurveillance.44 The mechanisms by 
which oncogenic driver mutations orchestrate highly immune- 
suppressive tumor microenvironments are under intense 
investigation. Pro-oncogenic signals can affect the cancer- 
immunity cycle at the stages of (1) tumor antigen capture 
and presentation, (2) T cell activation and recruitment to 
malignant lesions, and of the (3) tumoricidal activity of 
T cells within the tumor (Figure 2). This review will document 
how tumor intrinsic oncogenic events influence ICD and 
thereby influence tumor antigen presentation.

Do tumor-intrinsic oncogenic events affect ICD?

Over-activated oncogenic signaling at early stages of cellular 
transformation creates metabolic stress that compel malignant 
cells to activate programmed cell death.45 Thus, only malignant 
cells that acquire additional molecular defects to confer inter-
ruption of cell death signaling cascades are able to continue 
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proliferation.46,47 In addition to cell-autonomous effects, cell 
death effectors can exert non-cell-autonomous effects by reg-
ulating the release of danger molecules and cytokines into the 
tumor microenvironment.48–50 Thus, tumors manipulate pro-
grammed cell death to evade immunosurveillance. Malignant 
cells suppress programmed cell death signaling through loss-of 
-function mutations in proteins that sense and transduce lethal 
signals or execute cell death (as in many tumor suppressor 
proteins), and also from gain-of-function alterations in onco-
genes that normally deliver pro-survival signals.51,52 

Depending on the cytotoxic stimuli, ICD consists of 
a cascade of events which starts with a premortem stress and 
leads to a cellular demise that concurrently allows the release of 
immunomodulatory molecules and tumor cell content. Thus, 
successful execution of ICD involves three distinct and inter-
linked biological processes that include (1) activation of pre-
mortem stress and execution of inflammatory cell death, (2) 
expression and/or secretion of immunomodulatory molecules, 
and (3) exogenous effects of these immunomodulatory mole-
cules which consist in the recruitment and activation of 
immune cells (Figure 3). In the next section of the review, we 
provide new insights and mechanisms as to how tumor-specific 
oncogenic events interfere at the first two steps of ICD 
activation.

1. Effect of tumor-intrinsic oncogenic events on the 
initiation and execution of inflammatory cell death 
modalities

It is now widely accepted that oncogenic events, depend-
ing on cancer type, select for tumors that initially resist 
cell death. Due to inactivation of the molecular pathways 
that sense cellular stress to activate cell death, malignant 
cells are relatively resistant to death upon chemotherapy 
and radiotherapy.53 Although the mechanisms are mostly 
unknown, tumors dampen signaling pathways required for 
sensing intracellular and extracellular stress.54,55 Several 
sensors of damage-associated molecular patterns 
(DAMPs), including Toll-like receptors (TLRs),55 the cyto-
solic RNA-sensors retinoic acid-inducible gene I (RIG-I)56 

and melanoma differentiation A protein 5 (MDA-5), as 
well as stimulator of interferon genes (STING),54 appear 
down-regulated in multiple cancers compared to healthy 
tissues. Collectively, these deregulated pathways enable 
tumor cells to counter immunosurveillance, partly by pre-
venting them to sense stress and to activate immune 
sentinels. Recent studies showed that oncogenic factors 
interfere in certain tumor types with the activation and 
execution of inflammatory cell death by regulating the 
expression of cell death executioner caspases57,58 and 
kinases14 (Figure 4). Moreover, inhibition of major onco-
genes, such as KRAS, causes tumors to die in an immuno-
genic fashion thereby reinstating immunosurveillance.13 

The following sections of the review will describe how 
tumor-intrinsic oncogenic factors interfere with ICD by 
manipulating cell death and survival programs including 
autophagy, necroptosis and pyroptosis, or again ICD- 
related hallmarks.

Autophagy

Autophagy is an evolutionarily conserved lysosomal degrada-
tion process that is critical for nutrient recycling and metabolic 
adaptation during stress (Figure 4a). Thus, autophagy inter-
venes in a plethora of biological phenomena such as mitochon-
drial function, stress response, cellular homeostasis, 
metabolism, cell death and immune surveillance.59 

Autophagy is linked to many types of pathologies including 
cancer. Autophagy plays a complex role in tumor development 
and progression by influencing different aspects of the tumor– 
host interaction. Autophagy constitutes a cell-intrinsic barrier 
against malignant transformation60 by activating oncogene- 
induced cell death,45 cellular senescence,61,62 removal of reac-
tive oxygen species which can damage mitochondria,63 main-
tenance of genomic stability64 and degradation of oncogenic 
proteins.65–69 Consistent with this notion, deletion of autop-
hagy regulators in tumor-prone mouse results in increased 
incidence of lung and liver tumors as well as lymphomas.70–73 

However, in established tumors, autophagy is often used as an 
adaptive mechanism for tumors to thrive in nutrient-depleted 
and hypoxic tumor microenvironments.74–77 Although tumor 
cells vary in their autophagy dependency, inhibiting autophagy 
in established tumors generally results in dramatic tumor 
reduction and prolonged survival in murine models.78,79 In 
accordance with these observations, advanced human tumors 
often display enhanced autophagic flux.80

The non-cell-autonomous antitumor effects of autophagy are 
linked to its immunomodulatory role in the immune 
TME.12,81–83 Autophagy induction in anthracycline-treated 
dying tumors facilitates the release of immune-stimulatory 
ATP to the extracellular microenvironment, thereby potentiat-
ing tumor-antigen presentation and immune-mediated recogni-
tion of tumors.81–84 In this line, deletion of ATG5 in KRAS 
mutant tumors results in accelerated oncogenesis by creating 
highly immunosuppressive microenvironment associated with 
Treg-mediated inhibition of cancer immunosurvillence.78 

Moreover, autophagy has been shown to promote cross- 
priming of tumor-specific CD8+ T cells.85 In immune cells, 
autophagy plays a role in the formation of memory CD8+ 

T cells.86 Overall, these findings suggest that both tumor- 
intrinsic and systemic host defects in autophagy may prevent 
the immune system to detect and eliminate pre-malignant and 
malignant cells. In contrast, tumor cell autophagy has also been 
shown to inhibit NK cell cytotoxicity in some tumor types.87

Due to its tumor cell-autonomous and immune-mediated 
microenvironmental effects, autophagy is subject to modula-
tion by oncogenic and tumor suppressor proteins88,89 (Figure 
4b). Many oncogenes, such as BCL-2 and RAS directly inacti-
vate components of the autophagy machinery. Several mem-
bers of the BCL-2 protein family inhibit autophagy by 
sequestering BECN1.90–92 Hyperactivated RAS engages the 
PI3K/PDPK1/AKT1 signaling cascade to potently supress 
autophagic responses.93 Tumor suppressors such as TP53 
engage the cell death machinery in tumors that harbor irrepar-
able molecular lesions such as DNA damage. TP53 can pro-
mote autophagy by transactivating multiple autophagy-related 
genes including AMPK and BH3 family of proteins (such as 
BAD, BNIP3). Moreover, the phosphatase and tensin homolog 
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protein (PTEN) is a tumor suppressor with autophagy promot-
ing functions by antagonizing PI3K signaling. The transcrip-
tion factor forkhead box O1 (FOXO1) is a tumor suppressor 
required for stress-induced autophagy by directly interacting 
with ATG7. Taken together, tumor suppressors activate autop-
hagy to limit malignant cell progression. Malignant cells that 
have acquired the hallmarks of inactivating tumor suppressors 
along with hyperactivated oncogenes will progress to down- 
regulate autophagy. Additional genetic defects may cooperate 
with oncogenes and tumor suppressors to regulate autophagy 
during tumor progression.

Necroptosis

Necroptosis is a programmed cell death triggered by various 
stimuli that include engagement of death receptors, IFNs, 
TLRs, intracellular RNA and DNA sensors, as well as genotoxic 
and oxidative stresses induced by anticancer drugs94 (Figure 
4a). The role of necroptosis in anticancer immunity remains 
unclear. Indeed, necroptosis can be pro-tumoral95 and 
antitumoral96–98 depending on the nature of the lethal stimulus 
and tumor model. On one side, George Miller and colleagues 
identified that pancreatic tumors have higher basal expression 
of the necrosome components that is further augmented after 
treatment with gemcitabine. Impeding necroptosis in vivo 
resulted in a more inflammatory tumor infiltrate associated 
with elevated CD8+ T lymphocytes and reduced myeloid- 
derived suppressor cells. These pro-tumorigenic effects of 
necroptosis seemed specific to tumors that were growing in 
the pancreatic microenvironment. Yet, recently in melanoma, 
an unbiased CRISPR screen identified RIPK1 as a top candi-
date inhibiting immunotherapy with immune checkpoint 
inhibitors.99 On the other side, antitumor effects of necroptosis 
are based on overexpression of the executioner proteins RIPK3 
and MLKL.96–98 These observations were mainly made in vac-
cination studies that specifically activate necroptosis in fibro-
blasts following chemically induced dimerization of RIPK1/3 
to activate cytokine secretion and cell lysis. Intratumoral injec-
tion of necroptotic fibroblasts provides pro-inflammatory cyto-
kines that serve as adjuvants to activate antitumor immunity in 
a non-antigen-dependent fashion.96–98 The paradoxical effects 
of necroptosis on immune activation may arise from differ-
ences in the lethal stimuli and immune responsiveness of the 
tumor models.

Components of the necroptosis machinery are deregulated 
in many cancer types (Figure 4b). Tumors display different 
types of mutations in the proteins that execute necroptosis. 
Some cancer types shut off necroptosis through (1) genetic and 
epigenetic down-regulation of RIPK3 and MLKL expression in 
acute myeloid leukemia, breast, colon and colorectal cancer 
types,100–102 and (2) acquired mutations in functional domains 
of RIPK3 and MLKL that hinder necroptosis signaling or cell 
lysis during necroptosis.103,104 In this line, tumor-specific 
oncogenic events are shown to directly regulate the expression 
of RIPK1 and RIPK314. The actin crosslinking protein α- 
actinin-4 (ACTN4) is emerging as crucial regulator of carcino-
genesis. ACTN4 serves as a scaffold to stabilize RIPK1 by 
allowing association of RIPK1 and cellular inhibitor of apop-
tosis protein 1 (cIAP1) to activate NF-κB.105 A recent study on 

941 human cancer cell lines came to the conclusion that 83% of 
the cells are resistant to necroptosis, irrespective of the tissue 
and cancer subtype. Bioinformatic analyses revealed that 20 
oncogenic hits hinder necroptosis by down-regulating RIPK3 
expression.14 Chemical inhibition of the oncogenes AXL (using 
BMS-777607) and BRAF (TAK-632) up-regulated RIPK3 
expression in tumor cells.14 However, shutting down the 
necroptosis pathway is not a general mechanism exploited by 
all types of cancer cells to survive and progress. Indeed, the 
expression of necroptotic players was found to be elevated in 
glioblastoma,106 lung107 and ovarian cancers.108 Future studies 
should explore the genetic and epigenetic interactions of onco-
genes and tumor suppressors with the necroptosis machinery 
in a broad range of cancers.

Pyroptosis

Pyroptosis is an inflammatory form of programmed necrosis 
that serves as an immune effector mechanism against microbes 
and cancer109 (Figure 4a). A diverse range of ligands and 
genotoxic stressors stimulate the inflammatory signaling cas-
cade that culminates in the activation of caspases that subse-
quently cleave and activate gasdermin. Irrespective of the cell 
death stimuli and signaling cascade, gasdermin cleavage repre-
sents a terminal event during pyroptosis.110 Proteins of the 
gasdermin family (which consists of gasdermins A, B, C, D, 
and E as well as of Pejvakin) are expressed in normal tissues111 

in an autoinhibited state (with the exception of Pejvakin). 
Following caspase- and granzyme A/B-mediated cleavage, the 
active N-terminal domain of gasdermin binds to the plasma 
membrane to generate pores that disrupt their barrier function, 
resulting in cell swelling and eventual lysis.111 Moreover, the 
pores serve as gates for the extracellular release of danger 
signals and cytokines.111

The pathophysiological role of pyroptosis in cancer is 
expanding. Many types of anticancer chemotherapies 
including topotecan, etoposide, cisplatin, 5-fluoruracil and 
paclitaxel activate pyroptosis in cancer cell lines in 
a gasdermin-dependent fashion. Activation of pyroptosis 
in tumors can exert both tumor-promoting and antitumor 
immune effects.112 Pro-tumor effects of pyroptosis are 
reported for pancreatic tumors and mainly linked to chronic 
activation of the inflammasome which attracts MDSCs.113 

The tumor-promoting role of inflammasomes is related to 
immune suppression consecutive to secretion of the cyto-
kines IL-1β114,115 and IL-18.116–118 On the contrary, antitu-
mor effects of inflammasomes were witnessed in colorectal 
cancer. As inflammasomes are major drivers of pyroptosis, 
the lack of inflammasome mediators in colorectal cancer was 
associated with pronounced tumor growth.119–122 In line 
with the antitumor effects of pyroptosis, loss of gasdermin 
expression is correlated with aggressive cancers and 
increased risk of metastasis123 whereas expression of full- 
length gasdermin E in mouse cancers stimulate antitumor 
immunity.124,125 Two independent groups showed that ecto-
pically expressed full-length gasdermin E is cleaved by gran-
zyme A/B released by cytotoxic T lymphocytes and NK cells, 
resulting in the release of N-terminal gasdermin that forms 
pores in cancer cells.124,125
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Several studies revealed that gasdermin proteins A, C, D and 
E are down-regulated in human breast,125 gastric126 and color-
ectal cancer cell lines, as well as in primary tumors126,127 

(Figure 4b). Accordingly, targeted therapies like erlotinib and 
trametinib, which inhibit oncogenic signaling by targeting 
EGFR and KRAS, respectively, resulted in increased 
pyroptosis.128 These results suggest that the oncogenes EGFR 
and KRAS may suppress pyroptosis. Further research should 
explore the mechanisms by which tumor-specific oncogenic 
events downregulate pyroptosis.

2. Effect of tumor-intrinsic oncogenic events on the 
secretion of ICD-induced DAMPs

Sensing of lethal stimuli to activate cellular stress and pro-
grammed cell death is essential to enforce tumor cells to emit 
immunomodulatory molecules (Figure 3). In the last two dec-
ades, the molecular mechanisms of ICD-induced immune acti-
vation have profoundly enriched our understanding on the 
immunomodulatory molecules released during cell 
death129,130 and how that affects recruitment of immune cells 
to the tumor bed, innate and adaptive immune cell activation, 
and anticancer activity.2,82 Overall, these studies have shown 
that various forms of ICD inducers promote the exposure or 
release/secretion of immunomodulatory molecules such as 
CALR,131 HMGB1, ATP,132 type I IFNs,41 CXCL10,41 and 
CXCL1.42 ICD inherently relies on the ability of cancer cells 
to display these signals (Figure 3). Yet, tumors vary in their 
ability to secrete immuno-modulatory molecules upon pro-
grammed cell death.133–135 These differences can be attributed 
to the origin of the tumor tissue,136 underlying oncogenic 
events and (epi)genetic lesions the tumor has accumulated 
over time. Studies elucidating the direct effects of oncogenic 
events on the secretion and/or exposure of immunomodula-
tory molecules are generally lacking. However, a few recent 
studies have shown that oncogenes137,138 can influence the 
expression of immunomodulatory molecules during ICD. In 
the next sections, we review recent literature describing how 
oncogenic events can influence the level of immunomodula-
tory molecules emitted by malignant entities experiencing ICD 
(Figure 4c).

Calreticulin (CALR)

CALR is an endoplasmic reticulum resident protein critically 
important for maintaining calcium homeostasis and serves as 
a molecular chaperone to prevent the export of misfolded 
proteins to the Golgi apparatus.139,140 Calreticulin plays addi-
tional immunological functions such as facilitating the phago-
cytic uptake of dying tumor cells by innate immune cells129,141 

and serving as integral part of the peptide-loading complex for 
antigen presentation in the context of MHC-I.142,143 Moreover, 
CALR has many immune-related functions in T cells that have 
been extensively reviewed elsewhere.93 Conversely, high 
expression of intracellular CALR promotes tumor cell prolif-
eration contributing to metastasis in multiple cancer types.

Contrasting with the pro-tumor impact of intracellular 
CALR, surface-exposed CALR, following treatment with ICD- 
inducing chemotherapies, promotes tumor cell uptake by 

phagocytic cells.129,141 There are two ways by which CALR 
reaches the surface of dying cells. The first pathway relies on 
transcription and translational inhibition,144 leading to the 
phosphorylation of eukaryotic initiation factor 2α (eIF2α) by 
the ER stress-sensing kinase, PKR-related ER kinase (PERK), 
and subsequent activation of caspase-8 and BAX. Finally, 
a pool of CALR that has transited the Golgi apparatus is 
secreted by SNAP receptor (SNARE)-dependent 
exocytosis.145 In addition, paracrine signals that involve the 
chemokine CXCL8 contribute to CALR exposure in an eIF2a/ 
PERK/BAX//BAK-dependent fashion.146 Vaccination of mice 
with dying tumor cells deficient in any of the proteins required 
for CALR exposure, or with cells in which CALR was knocked 
down, reduced the immunogenicity of the dying cell 
vaccine.145 The second pathway for CALR exposure is activated 
by photodynamic therapy and relies on direct PERK-mediated 
trafficking of CALR by regulation of the proximal secretory 
pathway.147 In this signaling pathway, eIF2a phosphorylation 
and caspase-8 signaling are dispensable for CALR exposure.147

Surface expression of CALR does not always occur after 
administration of cytotoxic therapies, as certain chemothera-
pies such as cisplatin or melphalan are unable to induce this 
feature of ICD.148 Moreover, there are tumor-specific differ-
ences in surface exposure of CALR, as prototypical ICD indu-
cers such as doxorubicin do not expose CALR on B-cell 
lymphoma148 or acute myeloid leukemia cells.149 Despite this, 
a retrospective analysis of non-small cell lung cancer patients 
showed that CALR expression on tumor cells was significantly 
correlated with eIF2α phosphorylation and disease outcome.131 

Higher CALR expression was associated with tumor infiltra-
tion by DCs and effector memory T-cell subsets that conferred 
prolonged survival.131 Tumor-intrinsic determinants of CALR 
surface exposure are currently lacking. Recently, the promoter 
of the tumor suppressor retinoblastoma 1 (RB1) has been 
shown to dually control the expression of 7.1 kb non-coding 
RNA located upstream of the RB1 gene (ncRNA-RB1).137 The 
study identified that CALR is a novel target of ncRNA-RB1. 
Depletion of ncRNA-RB1 contributes to a failed surface expo-
sure of CALR during mitoxantrone treatment resulting in 
reduced phagocytosis of dying cells.137 While surface CALR 
on dying cells promotes their phagocytic uptake, this process is 
often counteracted by tumors through overexpression of the 
anti-phagocytic signal CD47.151 CD47 is a pentaspanin cell 
surface protein that counters phagocytosis through ligation of 
its signal regulatory protein a (SIRPa) receptor on phagocytic 
cells.150 Recently, oncogenic MYC was found to subvert immu-
nosurveillance by upregulating the expression of CD47 which 
resulted in poor macrophage infiltration in multiple tumor 
types, including lymphoma/leukemia and liver cancer138 

(Figure 4c).

Extracellular ATP

Extracellular ATP actively secreted or passively released from 
dying tumors is one of the immunomodulatory molecules 
facilitating immune-mediated detection of tumors during 
ICD. The mechanism of ATP release during ICD depends on 
the type of lethal stimulus. Anthracyclines induce ATP release 
via caspase-dependent activation of pannexin 1 channels, 
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lysosomal exocytosis, and plasma membrane blebbing.151 

Moreover, autophagy is indispensable for the release of ATP 
during anthracycline-induced tumor cell death. However, ATP 
secretion after hypericin-based PDT operates independently of 
autophagy and involves PERK-regulated proximal secretory 
pathways, as well as PI3K-dependent exocytosis. ATP exerts 
its immunomodulatory effect via activation of purinergic P2X7 
and P2Y2 receptors (P2RX7, P2RY2) on myeloid cells. In mouse 
DCs, extracellular ATP binds to P2RX7 to initiate inflamma-
some signaling and the release of IL-1β to activate IL17- 
producing γδ T cells.152 Thus, the lack of inflammasome sig-
naling components and/or IL17 signaling aborts the immuno-
genic effects of anthracycline-induced cell death.153

The excessive inflammatory effects of extracellular ATP are 
countered by a negative feedback mechanism to limit tissue 
injury.154 Precisely, a system consisting of the ecto-enzymes 
CD39 and CD73, together with receptors of the adenosinergic 
pathway, converts immunostimulatory ATP into immunosup-
pressive adenosine.155 ATP in the extracellular environment is 
broken down to adenosine monophosphate (AMP) by ecto- 
ATPases such as CD39.155 The ecto-5ʹ-nucletodase CD73 
breaks down AMP into adenosine. CD73-derived adenosine 
in the extracellular environment exerts its immunosuppressive 
effects by binding to one of the four G-protein-coupled ade-
nosine receptors.155 CD73 transcription is directly regulated by 
HIF-1alpha,156 explaining why the hypoxic tumor microenvir-
onment is often associated with high expression of CD73 in 
cancer cells, endothelial cells, fibroblasts, lymphocytes and 
myeloid cells. Tumor-derived CD73 can potently inhibit anti-
tumor immunity by suppressing T and NK cell function.157,158 

High amounts of CD73 in triple-negative breast cancer132 and 
high-grade serous ovarian cancer159 patients are negatively 
associated with tumor infiltration and overall patient survival. 
Patients with high levels of CD73 and low levels of tumor- 
infiltrating leucocytes show poor clinical outcome.132 

Oncogenic pathways such as Wnt and downstream β- 
catenin,160 MAPK,161 EGFR162 and AKT signaling promote 
CD73 expression on tumor cells163 (Figure 4c). Moreover, 
increased CD73 was significantly associated with TP53 muta-
tions in melanoma patients.164 BRAF-targeted therapy with 
either dabrafenib or vermurafenib showed reduced levels of 
CD73 in biopsies of melanoma patients.164

HMGB1

HMGB1 is a highly conserved nonhistone chromatic-binding 
protein abundantly expressed in all eukaryotic cells.165,166 

HMGB1 can be released passively or actively,167,168 although 
the molecular mechanisms that initiate the release of HMGB1 
from tumor cells undergoing ICD remain to be elucidated. 
Extracellular HMGB1 has several immunomodulatory 
properties166,169 based on its redox state and post- 
translational modifications.170 The immunogenicity of anthra-
cycline-treated dying apoptotic cells depends on the passive 
release of HMGB1 that binds to TLR4 in innate immune cells. 
Extracellular HMGB1 mediates its effects by binding to PRRs 
such as TLR4171 and RAGE.172 Various types of ICD inducers 
such as anthracyclines,173 radiation174–176 and oncolytic 

viruses5 stimulate the secretion of HMGB1. The immunother-
apeutic effects of anthracycline therapy failed in TLR4−/- and 
Myd88−/- mice suggesting that the HMGB1-TLR4-MYD88 axis 
is essential to stimulate the maturation of dendritic cells 
thereby enhancing their ability to cross-present tumor 
antigens.173 In human breast cancer patients, 
a polymorphism in TLR4 that affects the binding of HMGB1 
predicts relapse after anthracycline therapy.173 In summary, 
the role of HMGB1 in anticancer immunity is complex and 
future studies should aim to elucidate tumor-specific and 
microenvironment-dependent immune effects of extracellular 
HMGB1.

Conclusions and future perspectives

The current state-of-the-art suggests that cancer cell- 
intrinsic factors can affect the activation and subversion of 
cancer cell ICD, although detailed mechanistic studies elu-
cidating specific biological interactions are lacking. 
Understanding the intimate relationship between oncogenic 
factors and ICD will yield essential biological information 
on which oncogenic factors to target depending on the 
malignant indication. These investigations will be useful 
for the selection of patients that would benefit from immu-
nomodulation upon ICD-inducing treatments. This knowl-
edge will help maximizing the potential of ICD-inducing 
therapeutics for cancer patients and provide rationale for 
personalized medicine based on the genetic profile of 
tumors. We expect that the combination of targeted thera-
pies against tumor-intrinsic oncogenic pathways with ICD- 
inducing agents will further stimulate the cancer-immunity 
cycle, and particularly the cytotoxic T cell response. This 
basic research will contribute to clinical oncology through 
the development of novel biotherapeutics.
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