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Abstract

The transmission of coronavirus disease-2019 (COVID-19) epidemic is a global emer-

gency, which is worsened by the genetic mutations of SARS-CoV-2. However, till date,

few statistical studies have researched the COVID-19 spread patterns in terms of

the variant cases. Hence, this paper aims to explore the associated risk factors of

Delta variant, the most contagious strain of COVID-19. The study collected the state-

level COVID-19 Delta variant cases in the United States during a 12-week period

and included potential environmental, socioeconomic, and public prevention factors

as independent variables. Instead of regarding the covariate effects as constant, this

paper proposes a flexible Bayesian hierarchical model with spatio-temporally varying

coefficients to account for data heterogeneity. The method enables us to cluster the

states into distinctive groups based on the temporal trends of the coefficients and

simultaneously identify significant risk factors for each cluster. The findings contribute

novel insight into the dynamics of covariate effects on the COVID-19 Delta variant

over space and time, which could help the government develop targeted prevention

measures for vulnerable regions based on the selected risk factors.
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1 INTRODUCTION

The coronavirus disease 2019 (COVID-19) was declared a global

pandemic by theWorldHealthOrganization on 11March 2020 (WHO,

2020) and has caused a severe disruption to society as well as a great

loss to life by overwhelming health care systems in many countries.

Just as some signs of optimism were observed about the prevention

and control of COVID-19, it was found that SARS-CoV-2, the cause of

COVID-19, had gone through genetic mutations over time, resulting

in the propagation of new virus variants. One of these new variants,

the Delta (B.1.617.2) variant, was first identified in India in late 2020

and has spread rapidly around the globe. As of 14 October 2021,

the Delta variant has been reported in 187 out of 194 World Health

Organization member countries, becoming the predominant lineage

worldwide (Mirror, 2021).

According to new estimates released by the Centers for Disease

Control andPrevention (CDC), the highly contagiousDelta strain could

account for more than 80% of COVID-19 new cases in parts of the

United States, leading to a huge surge of hospitalization in most states.

Due to its extremely high transmissibility, the Delta variant has been

listedas avariant of concern (VOC)byWHO(MinistryofHealth, 2021),

outcompeting the incipient and other variant lineages of COVID-19,

such as B.1.617.1 (Kappa) and B.1.1.7 (Alpha) (Mlcochova et al., 2021).

Therefore, researchers around the world pay particular attention to
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the transmission of the Delta virus in the environment. This paper is

focusedonexploring thepotential risk factors thatmayhave significant

effects on the spread of Delta variant.

There have been extensive studies on the contributing factors of

the incipient COVID-19 virus, albeit with conflicting results. Many

researchers found that environmental factors, such as temperature,

humidity, wind speed and air pollution, play an important role in the

transmission of COVID-19 epidemic (Ahmadi et al., 2020; Bashir et al.,

2020; Tosepu et al., 2020; Xu et al., 2020). Demographic and socioe-

conomic factors, including population density, age distribution, income

and so on, are also found crucial in controlling COVID-19 spread, with

increased cases more likely observed in densely populated areas (Díaz

de León-Martínez et al., 2020; Zheng et al., 2020). However, some

other studies showed no evidence of association between COVID-19

and absolute humidity or temperature (Jamil et al., 2020; Xie & Zhu,

2020). In the research of Hamidi et al. (2020), population density is

found not to be a significant driver, contrary to the previous results.

Thus, there is still much uncertainty about the risk factors of COVID-

19 transmission due to the rapid changes of data in various research

scopes.

Many statistical methods, such as partial correlation coefficients

(PCCs) (Ahmadi et al., 2020), ordinary least squares (OLS) andBayesian

hierarchical models (Millett et al., 2020) have been utilized to analyse

the correlations betweenCOVID-19 cases and the potential contribut-

ing factors. For example, Gayawan et al. (2020) used the Poisson hurdle

model to explain excess zero counts of COVID-19 cases. Briz-Redón

and Serrano-Aroca (2020) employed the separable random effects

model to incorporate structured and unstructured components. How-

ever, the mentioned models often assume that covariate effects are

constant anddonot change over space and time,whichmayneglect the

possible dynamics and staged significance of the coefficients. Based on

geographically weighted regression models (GWRs), Luo et al. (2021)

proposed a local regression method, showing the spatial variability

of the correlations between multiple risk factors and the COVID-19

death rate. But the study only focused on the spatial dimension of the

data, lacking consideration of temporal trends. Hence, it is necessary in

this research to discover the spatio-temporal patterns of the covariate

effects to helpmonitor health care access.

In this paper, preliminary analysis shows spatial heterogeneity in

the distribution of Delta variant cases in the United States. Sanni-

grahi et al. (2020) pointed out that the uneven distribution of the

COVID-19 confirmed cases across Europe could be attributed to the

discrepant socio-demographic factors such as age and income. Inspired

by their finding, this paper constructs a flexible Bayesian hierarchi-

cal model with spatio-temporally varying coefficients, which allows for

heterogeneous temporal patterns of the covariate effects. Applied to

the COVID-19 Delta variant cases in the United States, the proposed

method enables us to cluster the states into distinctive groups based

on the variation of covariate effects over time and to identify signifi-

cant risk factors separately for each cluster. The studywill paveway for

better understanding of the transmission of COVID-19Delta virus and

may help the government establish appropriate precautions according

to the conditions of the regions.

2 MATERIALS AND METHODS

2.1 Study site

In this paper, the spatial domain of interest includes the lower 48

contiguous states and the District of Columbia in the United States,

excluding the states of Alaska and Hawaii from analysis, since they do

not border the continental United States. The total population of the

United States is 330 million, of which California and Texas are the two

most populous states. Most of the states are on the east or west coast

and have fairly dense populations.

2.2 Data collection

The detection of Delta variant needs viral genomes sequencing in

the laboratory. We obtained the weekly proportion of Delta variant

cases relative to all samples sequenced in each state of the United

States from the website of cov-spectrum (https://cov-spectrum.ethz.

ch/explore/United%20States/AllSamples/AllTimes) for the period of

week22 (24May2021) toweek33 (15August 2021). Then, theweekly

number of Delta variant cases was calculated via the proportion of the

variant multiplied by the cumulative number of all confirmed COVID-

19 cases in the corresponding week, which was collected by state from

https://outbreak.info/location-reports?loc=USA_US-GA.

Potential contributing factors of the Delta variant are considered

as independent variables, including the environmental factors, demo-

graphics and socioeconomic factors and public interventions. The

environmental variables contain maximum temperature (tem_max),

average temperature (tem_ave), minimum temperature (tem_min),

average relative humidity (hum_ave), average wind speed (wind_ave)

and cumulative precipitation (preci_sum). These data were collected

on a week scale to match the response and obtained by integrating

the daily information from ‘Weather Underground’ website from 10

May 2021 to 16 August 2021, which is 2 weeks prior to the confirmed

Delta cases since the COVID-19 virus usually has a 7-day or longer

incubation period (Briz-Redón & Serrano-Aroca, 2020).

The demographics and socioeconomic factors include state-level

population density, proportion of elderly people (≥ 65-years-old) and

per capita personal income in the first quarter of 2021, following

Hamidi et al. (2020) and Pequeno et al. (2020). Data on population

and income were collected from Bureau of Economic Analysis (https://

apps.bea.gov/iTable/iTable.cfm?reqid=70&step=1&acrdn=2). The pro-

portion of the elderly in each state was obtained from Population

Reference Bureau (PRB), which is available at https://www.prb.org/

usdata/indicator/age65/snapshot.

Public interventions of primary interest in this paper include

weekly COVID-19 vaccination coverage and per cent change in

community mobility in the period of week 20–33. To explore the

effect of vaccination, the cumulative share of population vaccinated

with 1+ doses in each state was collected from KFF COVID-19 Vac-

cine Monitor (https://www.kff.org/coronavirus-covid-19/issue-brief/

state-covid-19-data-and-policy-actions/). The per cent change in

https://cov-spectrum.ethz.ch/explore/United%20States/AllSamples/AllTimes
https://cov-spectrum.ethz.ch/explore/United%20States/AllSamples/AllTimes
https://outbreak.info/location-reports?loc=USA_US-GA
https://apps.bea.gov/iTable/iTable.cfm?reqid=70&step=1&acrdn=2
https://apps.bea.gov/iTable/iTable.cfm?reqid=70&step=1&acrdn=2
https://www.prb.org/usdata/indicator/age65/snapshot
https://www.prb.org/usdata/indicator/age65/snapshot
https://www.kff.org/coronavirus-covid-19/issue-brief/state-covid-19-data-and-policy-actions/
https://www.kff.org/coronavirus-covid-19/issue-brief/state-covid-19-data-and-policy-actions/
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community mobility was obtained from Google website, relative to a

baseline index for a typical day before the onset of COVID-19, which

is available at https://www.google.com/covid19/mobility/. Since there

is strong multi-collinearity among the different community mobility

patterns, the paper uses only transit station mobility. Note that mete-

orological variables and public intervention factors vary with space

and timewhile the demographics and social factors only change across

different states.

2.3 Data analyses

2.3.1 Bayesian spatio-temporal modelling

Let {Yit} denote the observed number of cases in the ith area (i =

1,… , N) and the tth time point (t = 1,… , T), which is assumed to follow

a Poisson distribution as

Yit ∣ 𝜃it ∼ Poisson (Eit𝜃it) , i = 1,… , N, t = 1,… , T

where 𝜃it is the relative risk and Eit is the expected case count. The log-

arithm of relative risk is then modeled with spatio-temporally varying

coefficients as follows:

log (𝜃it) = 𝛽0 +

P1∑
p = 1

Xip𝛽itp +
P∑

p =P1 +1

Xi(t−lag)p𝛽itp + 𝜀it

where 𝛽0 is the intercept, Xip (p = 1,… , P1) are the demo-

graphics or socioeconomic covariates only changing with state i,

Xi(t−lag)p (p = P1 + 1,… , P) are the time-varying meteorological and

intervention covariates with temporal lag, and 𝜷 it = (𝛽it1 , … , 𝛽itP)

are the corresponding coefficients in area i at time t. The space–time

random component 𝜀it represents the structure not captured by the

covariate effects. The temporally lagged specification is utilized for

consideration of the COVID-19 incubation period, which establishes

the relationship between the relative risk at time t and the meteoro-

logical and intervention covariates at time t − lag. On the basis of the

existing research, the incubation time of COVID-19 is usually 7–14

days, and thus in our real data analysis, the temporal lag parameter is

considered as lag = 1 or 2 (weeks).

According to the previous studies (Lawson et al., 2014; Lee et al.,

2017), the time-varying coefficients may have locally homogeneous

trends due to spatial adjacency. Thus, this paper models the regres-

sion coefficients as cluster-specific in the sense that the areas in

the same cluster have common covariate effects with particular tem-

poral patterns, which is different from the patterns in other clus-

ters. Following Choi et al. (2012), the variable coefficients 𝜷 it is

modelled as

𝜷 it = 𝜷C(i),t

where C(i)(= 1,… , S ) denotes the spatial cluster of area i and S is the

number of clusters.

Amulti-nomial distribution is assumed for C(i) as follows

C (i) ∼ Multi (wi1,… , wiS)

where wis ≥ 0 indicates the probability of area i being assigned to

cluster s, and thus
∑S

s = 1 wis = 1. For modelling purposes, unstan-

dardized weight w∗
is ≥ 0 is utilized in place of the probability wis, with

the transformation of wis =
w∗
is∑S

s=1 w
∗
is

. Then the weight w∗
is is modeled

with the following log-normal distribution to account for the spatial

dependence in the small areas,

log
(
w∗
is

)
∼ N

(
𝜂is,𝜎

2
s
)

where 𝜂is is the mean with spatial correlation and 𝜎2s is the variance.

The widely used intrinsic conditional autoregressive (ICAR) distri-

bution (Besag et al., 1991) is employed to further model the mean

𝜂is as

𝜂is ∣ 𝜂i′s, i′ ≠ i ∼ N

(
1
ni

∑
i′∼i

𝜂i′s,
𝜎2𝜂s
ni

)

where ni is the number of neighbours for area i, i′ ∼ i represents that

areas i′ and i are neighbours and 𝜎2𝜂s controls the degree of spatial

volatility. The full conditional distribution givenearlier, denotedas 𝜂is ∼

ICAR(𝜎2𝜂s ), holds independently for each s.

When area i belongs to cluster s, the coefficient vector in area i is

denoted as𝜷st = (𝛽st1,… , 𝛽stP)
′

. To select significant covariates for each

spatial cluster, the pth covariate effect 𝛽stp is hierarchically modelled

as

𝛽stp = 𝛿sp × 𝜆stp, s = 1,… , S; t = 1,… , T; p = 1,… , P

where δsp is a binary entry parameter controlling the selection of the

pth covariate in cluster s and λstp denotes the temporal pattern of the

covariate effect. If δsp = 0, then the pth covariate Xp is not significant in

cluster s. Otherwise, δsp =1denotes thatXp is selected in cluster s, with

temporally dependent coefficient βstp = λstp.
Thebinary selector𝛿sp flexibly switches inor out of thepth covariate

in cluster s, following a Bernoulli distribution as

𝛿sp|𝜙sp ∼ Ber
(
𝜙sp

)
,

where 𝜙sp denotes the selection probability. Since spatial depen-

dence across clusters is generally not evident (Adin et al., 2019), an

unstructured prior distribution is used tomodel 𝜙sp as

logit
(
𝜙sp

)
= 𝜇p + 𝜉sp,

where 𝜇p is the intercept and 𝜉sp ∼ N(0,𝜎2
𝜉sp
) is the spatially uncorre-

lated term.

The temporal patterns of 𝜆stp vary with spatial clusters and many

alternative structures, such as autoregressive models and random

walks, could be taken into consideration. In this paper, anAR(1) process

https://www.google.com/covid19/mobility/
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is employed tomodel the temporal trend of 𝜆stp as

𝜆stp|𝜆s,t−1,p ∼ N
(
𝜌𝜆sp𝜆s,t−1,p,𝜎

2
𝜆sp

)
, s = 1,… , S; p = 1,… , P.

Following from Briz-Redón and Serrano-Aroca (2020), the random

component 𝜀it is modelled as 𝜀it = ui + vi + 𝛾t + 𝜁t , where ui is a spa-

tially unstructured random effect following a normal distribution as ui
∼ N(0, 𝜎2u ), vi is a spatially structured effect following an ICAR distribu-

tion as vi ∼ ICAR(𝜎2v ), 𝛾t is a temporally unstructured effect following

𝛾t ∼N(0, 𝜎2𝛾 ) and 𝜁t is a temporally structured effect following an AR(1)

distribution as 𝜁t ∼ N(𝜌𝜁𝜁t−1,𝜎
2
𝜁
) with 0< 𝜌𝜁 < 1.

Our main focus is on the regression coefficients and spatial cluster-

ing, i.e., the estimation of 𝜷 it , C(i), 𝛿sp, and 𝜆stp, which can be computed

from the posterior distributions of the parameters based on the

hierarchical models above.

2.3.2 Bayesian inference

The likelihood function of the observed counts Y = {Yit, i = 1,… , N,

t = 1,… , T} is expressed as follows

L (Θ|Y) = N∏
i=1

T∏
t=1

Poisson
(
Yit|Eit,Xit , 𝛽0, 𝜷C(i),t

)

where Θ is the set of parameters in the hierarchical models. The

prior distributions of the intercept parameters 𝛽0 and 𝜇p are speci-

fied as 𝛽0 ∼ N(0,𝜎2
0
) and 𝜇p ∼ N(0,𝜎2𝜇p ), respectively. All the standard

deviation parameters are assumed to follow uniform distributions as

𝜎s,𝜎𝜂s ,𝜎𝜆sp ,𝜎𝜉sp ∼ Uniform(0, c), where c is a constant (Gelman, 2006).

The temporal parameter 𝜌𝜆sp in the structure of 𝜆stp is considered to

follow 𝜌𝜆sp ∼ Uniform(0,1).

Bayesian inference is conducted for the parameters of interest

based on the posterior distributions. MCMC algorithm is carried out

via software R and WinBUGS. The convergence of posterior sam-

pling is checked by autocorrelation functions, trace plots and Geweke

convergence diagnostics.

Since the indicatorC(i) is a categorical variable, its posteriormode is

used as estimates. As for variable selection in each cluster, themarginal

posterior selection probability, P( 𝛿sp = 1|Y), is comparedwith the cut-

off value of 0.5 (Barbieri & Berger, 2004; Lawson et al., 2012). If

the estimated probability is greater than 0.5, then 𝛿̂sp = 1 and Xp is

selected in cluster s; otherwise, Xp is viewed as unimportant for clus-

ter s and excluded from the model. The remaining parameters are

estimated by the posterior means.

2.4 Ethics statement

The authors confirm that the ethical policies of the journal, as noted

on the journal’s author guidelines page, have been adhered to. No eth-

ical approval was required as this study did not collect any identifiable

personal information.

3 RESULTS

3.1 Descriptive analysis for COVID-19 Delta
cases

Figure 1 displays the transmission of COVID-19 Delta variant in the

United States. The left panel shows the cumulative number of Delta

variant cases (per 100,000 population) in the period between week 22

and week 33. It is seen that the Delta virus has spread throughout the

United States with the southeastern areas suffering the most severe

invasion.Many states such asNevada andWyoming in thewestern dis-

trict are also in a serious condition. The right panel depicts the weekly

standardized morbidity ratio (SMR) of each state, defined as the num-

ber of observed Delta cases divided by the number of expected cases

calculated by the internal standardization method (Banerjee et al.,

2003), with larger values representing higher disease risks. The SMRs

in several states reach thepeakat thebeginningof the studyperiod and

gradually fall downwith time while some others show a slowly upward

tendency, such as Louisiana and Florida.

Figure 2 displays the standardized incidence maps for the United

States in 6 weeks. There is obvious clustering phenomenon possibly

due to the spatial adjacency effects and the influence of common risk

factors. To further quantify the strength of spatial correlation among

the state-level incidences, we first apply Global Moran’s I statistic

(Banerjee et al., 2003) to the SMRs of the 49 regions. It is shown that

the value of Global Moran’s I is reasonably large for each week and the

significance test suggests very strong evidence for positive spatial cor-

relation. Then Local Moran’s I is employed to identify spatial clusters.

Taking the SMRs in week 25 for example, the test results indicate that

the statesofUtah,Nevada,Wyoming,Missouri andArkansas are signif-

icant hotspots,which is consistentwith the finding from the top-middle

panel of Figure 2. Similar results are obtained for the other weeks and

are omitted for brevity. It is easy to find that the hotspots gradually

move from the west and central to southeastern districts, which facili-

tates the tendency for the Delta virus to spread nationwide. The SMRs

have an evident spatio-temporal variation throughout the country and

hence, the dynamic changes motivate us to explore the contributing

risk factors in each state.

3.2 Exploratory analysis for the covariates

To avoid multi-collinearity issues, the Spearman-rank correlation test

is applied to the six environmental variables. The results are shown

in Figure 3. Not surprisingly, the three temperature-related variables,

tem_max, tem_ave and tem_min are highly correlated to each other.

There is also a close relationship between humidity (hum_ave) and

precipitation (preci_sum) and both of them are negatively connected

with tem_max. Therefore, only three environmental factors, tem_ave,

hum_ave andwind_ave are chosen to be incorporated into themodel.

To explore the variation tendency of the three climate variables,

boxplots are drawn in Figure 4 for all the states from week 21 to week
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F IGURE 1 The spread of COVID-19Delta variant in the United States. Left: Cumulative Delta cases betweenweek 22 andweek 33. Right: The
weekly standardizedmorbidity (incidence) ratios for the states in the study period

F IGURE 2 Statemaps of standardizedmorbidity ratios of COVID-19Delta variant in six selected weeks in the United States

32, which is 1 week prior to the confirmed cases. The average tem-

perature jumps upward at first and climbs slowly in the subsequent

weeks. On the whole, the average humidity and average wind speed

exhibit earlier increase and later decrease trends, although the fluc-

tuations are not in sync. The maps of these considered environmental

and demographics and socio-economic covariates, which are omitted

for conciseness, also show significant spatial effects. Thus, it is reason-

able to consider the spatio-temporally varying coefficients of these risk

factors to explore the underlying patterns of significant covariates for

the Delta variant cases.

3.3 Spatio-temporal modelling analysis

3.3.1 Comparisons with the alternative models

Based on MCMC algorithms, we obtain Bayesian posterior samples of

30,000 iterations, with 10,000 burn-in samples. A thinning rate of 10 is

used toavoidhigh sample autocorrelations; thus, parameter estimation

is finally conducted with 2000 samples.

The temporal lag parameter and the number of clusters are deter-

mined based on model assessment criteria: deviance information
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F IGURE 3 Spearman-rank correlation of the six environmental
variables in the analysis of COVID-19Delta cases

criterion (DIC3) (Celeux et al., 2006), marginal predictive likelihood

(MPL) (Gelfand & Dey, 1994) and mean squared prediction error

(MSPE). In general, the model with smaller values of DIC3, MSPE and

a larger value of MPL provides better fitness for the data. The consid-

ered range for the number of clusters is from 4 to 13. It is found that

overall, the models with lag = 1 fit the data better than the ones with

lag = 2. And in the setting of lag = 1, DIC3 andMSPE prefer the model

with 7 clusters, whileMPL achieves its optimumwith S= 8. Since there

is no significant difference between theMPL values of the twomodels,

the number of clusters S = 7 is chosen to be the best. Therefore, the

subsequent studies are conducted based on the specification of lag= 1

and S= 7.

The proposed model is also compared with four alternative models,

which are constructed as follows:

TABLE 1 Comparison results of the consideredmodels in terms of
the assessment criteria

Model DIC3 MPL MSPE

Model 1 5894.2 −2920.4 399.6

Model 2 5782.6 −2915.7 397.2

Model 3 5452.9 −2761.3 252.3

Model 4 5403.7 −2784.2 241.5

Model 5 5361.4 −2717.5 236.8

1. Model 1: Bayesian hierarchical model with only variable selection

procedures, but no spatial clustering: 𝛽itp = 𝛿ip × 𝜆tp; 𝛿ip is a binary

variable selector, similar to 𝛿sp in the previous section, and 𝜆tp

follows an AR(1) process.

2. Model 2: Bayesian hierarchical model with spatial cluster indi-

cators, but no variable selection: 𝜷 it = 𝜷C(i),t as proposed, but

𝛽stp|𝛽s,t−1,p ∼ N(𝜌sp𝛽s,t−1,p,𝜎
2
sp) with C (i) = s.

3. Model 3: Bayesian spatio-temporal model with only unstruc-

tured random effects ui and 𝛾t: log (𝜃it) = 𝛽0 +
∑

p Xip𝛽itp +∑
p Xi(t−lag)p𝛽itp + ui + 𝛾t,where ui ∼N(0, 𝜎2u ), 𝛾t ∼N(0, 𝜎2𝛾 ).

4. Model 4: Bayesian spatio-temporal model with only structured ran-

dom effects vi and 𝜁t: log (𝜃it) = 𝛽0 +
∑

p Xip𝛽itp +
∑

p Xi(t−lag)p𝛽itp +

vi + 𝜁t,where vi ∼ ICAR(𝜎2v ), 𝜁t ∼ N(𝜌𝜁𝜁t−1 ,𝜎
2
𝜁
) with 0< 𝜌𝜁 < 1.

5. Model 5 (the proposed model): Bayesian spatio-temporal model

with mixed random effects ( 𝜀it = ui + vi + 𝛾t + 𝜁t), which simulta-

neously allows for variable selection and spatial clustering.

Table 1 presents the comparison results for the considered mod-

els in terms of the model assessment criteria mentioned earlier. It is

seen that Models 1 and 2 have much larger values of DIC3 and MSPE

than the other models, and their MPL values are the smallest, which

indicates that only taking into account variable selection (Model 1)

or spatial clustering (Model 2) is inadequate for the data. In partic-

ular, it seems that leaving spatial clustering out of consideration has

more serious impact on themodel performance.Models 3 and4behave

a bit better, but are still inferior to Model 5 (the proposed model),

F IGURE 4 Boxplots of the three climate variables in the states of America fromweek 21 to week 32
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F IGURE 5 Themap of spatial clusters for the covariate effects on
the Delta variant cases with the number of clusters S= 7. The gray
regions, including states of Alaska andHawaii, are not considered in
themodel due to their non-adjacency with themainland

showing that both structured and unstructured random effects pro-

vide enhanced results for the model. Thus, the proposed model is the

best fit one, based on which the estimation results are displayed in the

following sections.

3.3.2 Spatial clustering of covariate effects

The estimated spatial cluster indicators are shown in the map of

Figure 5. There are 6 states in the first group, located on the south-

ern border of the United States. Both the second and the third groups

contain 8 states scattered among 3 separated districts. Including 9

states, the fourth group is concentrated on the Atlantic coast and New

England region. The fifth group is relatively small, with only 4 states:

Wisconsin, Kentucky,WestVirginia andVirginia. The states in the sixth

group are situated in two districts: the Great Lakes region and the

western areas. The last group contains 3 states in the Northeast and

4 states in theMidwest.

It is seen from Figure 5 that the distribution of spatial clusters

is well proportioned, with states in the same cluster tending to be

geographically contiguous, which makes sense to share common risk

factors in the neighbourhood. Meanwhile, spatial discontinuity is also

allowed in each cluster. For example, although Oregon, South Dakota

andColorado are separated from each other, they can still be clustered

together in group3. These features verify the flexibility of theproposed

model in terms of the clustering patterns for the states.

3.3.3 Covariate effects estimation

Figure 6 shows the variable selection results with the maps of esti-

mated binary selector 𝛿̂sp, p = 1,… ,8. The colored regions represent

that the covariate is selected in the corresponding states. Evidently,

the covariate effects on COVID-19 Delta cases are spatially varying.

In combination with the spatial clusters in Figure 5, we could see

that average temperature is widely selected in 5 clusters, including

35 states in the mainland. Average humidity mainly affects the west

coast and central regions of America, covering 4 clusters: (2,3,4,7),

while average wind speed has a significant impact on clusters 3 and

6 in the north. Population density plays an important part in clusters

1,3,5 and 7, where cluster 5 is themost densely populated region in the

United States. The proportion of elderly people is connected with the

Delta variant cases in 4 clusters, which are concentrated in the west-

ern and southeastern regions. Personal income is selected in clusters

(2,4,5), which contains 21 states. Vaccination coverage is a significant

factor in most states, including clusters 2,3,4,5 and 7. The per cent

change in transit station mobility also has a broad effect on the spread

of Delta variant, specifically in clusters (1,2,4,5,7). The spatial variation

of significant contributing factors confirms the importance of variable

selection in each cluster for COVID-19Delta variant.

The coefficient estimation results for 𝛽stp, s = 1,… ,7, p = 1,… ,8

are displayed in Figure 7. Detailed values of the estimates and 95%

credible intervals for the coefficients could be found in the Tables

S1–S8 of the supplement. Obviously, the covariate effects are dynam-

ically changing with space and time. The unselected covariates have

much smaller coefficients close to zero, which is coincident with the

results in Figure 6. It is known that the three environmental variables,

personal income and vaccination coverage in the selected clusters

are all negatively associated with the disease relative ratios, while

higher population density, proportion of elderly people (>65-years-

old) and per cent change in transit station mobility are connected with

increased risk of Delta variant infection in the domain of selected

states.

As the COVID-19 epidemic evolves, it is critically important for the

whole society to understand the changes of the associations between

the contributing factors and the relative risks over time. From the coef-

ficient estimation results in Figure 7, we could see that similar to the

concurrent regression model, the covariate effects vary over the pro-

cess of the pandemic. During the study period, the states in America

are between spring and summer. Exploratory analysis in Section 3.2

shows that the three meteorological variables have continuous fluctu-

ations up and down, and correspondingly, Figure 7 indicates that there

are marked variations in the meteorological covariate effects for most

selected clusters.

It is worth noting that although the demographics and socioeco-

nomic factors are measured at baseline, their effects on the disease

risk are not constant over the follow-up time, which is similar to the

results of Carroll et al. (2020) and Briz-Redón and Serrano-Aroca

(2022). This is because the spread of Delta variant is quite rapid, and

due to the pressure of reopening, the preventionmeasures adopted by

state governments are constantly changing, such as the magnitude of

mandated lockdowns and vaccine promotion. These result in different

patterns at different time points, and then the effects of these baseline

variables may change over weeks. In particular, according to Gallagher

et al. (2021), in areas with high vaccination coverage and low com-

munity mobility, the transmission of COVID-19 could be significantly



8 MA ET AL.

F IGURE 6 Spatial variable selection results for the eight factors in the analysis of COVID-19Delta variant cases

interrupted, and thus the effect of population density will reduce in a

certain degree. In other cases, the effects of these baseline variables

are likely to fluctuate week by week due to the complex changes of the

environments.

For the intervention variables, vaccination coverage and per cent

change in mobility also have varying effects over time. In particular,

vaccination coverage shows gradually increasing negative associations

in the selected states. According to the study of Briz-Redón and

Serrano-Aroca (2022), the social immunity effect is significant only

when the vaccination coverage reaches a certain level. Therefore, in

the states with low coverage rate, vaccination only provides relatively

low protection efficacy, while in other states, with the continuous

improvement of vaccination coverage, the protection mechanism for

susceptible people is gradually enhanced.

The overall effects of covariates in the clusters are presented in

Table 2, which are calculated by averaging the time-varying covari-

ate effects in the period of study. It is seen from Figure 7 and Table 2

that both temporal trends and overall sizes of the coefficients in

different clusters are distinct from each other. Therefore, it is neces-

sary to consider spatial clustering determined by the heterogeneous

temporal patterns of covariate effects. The spatio-temporally varying

coefficients could accurately capture the factor effects on the disease

relative risks of COVID-19Delta variant.

3.3.4 COVID-19 Delta cases estimation

The relative risks of COVID-19 Delta variant can be estimated for the

time period of study. Figure 8 presents the posterior estimates and

the corresponding standard deviations for the relative risks 𝜃it in the

spatial domain of interest in Week 24, that is, i = 1,… , 49 and t = 3,

while the detailed estimation results for all the timepoints (t=1,… ,12)

can be found in Tables S9–S14 of the supplement. The state names

are sorted in alphabetical order, with the corresponding ID numbers
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F IGURE 7 The temporal trends of the estimated coefficients for the eight potential factors in the clusters. There are S= 7 clusters marked in
different colours

TABLE 2 The overall effects of covariates in the clusters for the period of study

s= 1 s= 2 s= 3 s= 4 s= 5 s= 6 s= 7

Average temperature −0.006 −0.120 0.004 −0.213 −0.211 −0.123 −0.155

Average humidity −0.016 −0.219 −0.170 −0.136 −0.015 0.008 −0.204

Average wind speed 0.014 −0.015 −0.145 −0.009 0.006 −0.175 −0.012

Population density 0.224 0.013 0.157 0.026 0.285 0.023 0.343

Age over 65 0.345 0.244 0.005 −0.002 0.010 0.353 0.425

Income −0.013 −0.146 0.033 −0.200 −0.175 −0.007 0.015

Vaccine −0.018 −0.153 −0.368 −0.324 −0.291 −0.007 −0.192

Mobility 0.017 0.273 0.327 0.202 0.165 0.012 0.238
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F IGURE 8 Maps of the posterior estimates (left panel) and the corresponding standard deviations (right panel) for the relative risks in
Week 24

also detailed in Table S15 of the supplement. Based on the estima-

tion of relative risks, Figure 9 displays the maps of comparison of the

observed number of COVID-19 Delta cases and the estimated cases

from the proposedmodel in weeks 24, 28 and 32. The number of cases

is counted per 100,000 population. It is shown that the disease cases

estimated by the proposedmodel have recovered themajor spatial dis-

tributions in the states of interest. Specifically, the Delta variant cases

are concentrated in the central regions at the beginning and things are

getting worse in the south afterward. Overall, the Delta variant cases

are rapidly increasing during the study period. The proposed method

correctly captures the evolution of the epidemic across the states of

the United States.

4 DISCUSSION

The paper first illustrates the spatio-temporal distributions of COVID-

19 Delta variant cases at the state level in the United States during

a 12-week period. The temporal trends and spatial heterogeneity of

the data suggest to us to construct a hierarchical model with spatio-

temporally varying coefficients and further to cluster the states based

on the temporal profiles of the covariate effects. Our findings provide

a detailed insight into the significance of the contributing factors on

the SMRs of Delta variant. It is shown that the covariate effects are

spatially varying, with evidently distinct temporal trends in different

clusters.

The study finds dynamic effects of the contributing factors from

environmental, socio-economic and demographic aspects as well as

public health interventions. Average temperature and average humid-

ity have significant effects in most states of America. Their negative

association with the disease morbidity is consistent with the previous

findings of Liu et al. (2020) and Mecenas, et al. (2020), where cases

sprout up with low temperature and humidity, probably because such

condition provides a more suitable environment for Delta variant sur-

vival. Average wind speed plays an important role mainly in the north,

in agreement with Islam et al. (2021), which also indicates an inverse

relationship with COVID-19 cases due to the shorter suspending time

and lower concentration of the virus in the case of higher wind speed.

Population density and proportion of elderly people (> 65-years-

old) are found positively connectedwith the risk of infection, congenial

with common sense that dense population facilitates the transmission

of virus (Poole, 2020) and that elderly people are more susceptible

because of weaker immune systems. The effect of personal income is

also significant in some states,with high susceptibility toDelta virus for

low-income people as a result of deficient self-protection conscious-

ness as well as limited access to health isolation measures (Pequeno

et al., 2020). Vaccination promotion and mobility reduction are still

efficient prevention actions to protect people from infection, though

the implementation of these measures needs to be stepped up in some

states.

It can be seen that the significant variables were spatially varying

and the covariate effects changed over time, which had potentially

influenced the spatial pattern of COVID-19 Delta variate cases. In the

early stage of the studyperiod, hotspotsweremainly distributed in two

regions: Wyoming, Colorado, Utah and Nevada in the west and Mis-

souri andArkansas in the central south. It is known that there aremany

mountains in Wyoming, Colorado and Utah, leading to a cold and dry

climate, while Nevada is near the Pacific Ocean with cooler tempera-

tures in the spring. Such objective condition is beneficial to the spread

of Delta variant in the environment. There are also relatively large pro-

portions of elderly people inWyoming, Nevada,Missouri andArkansas

(17.1%, 16.1%, 17.3% and 17.4%, respectively). And the community

mobility in Wyoming, Missouri and Arkansas was still growing during

this period. All these factors contributed to the spread and outbreak of

Delta variant in the hotspots in the first fewweeks.

In the following weeks, vaccination coverage increased gradually

in each state, with significantly higher rate in Washington, Oregon,

California, Colorado and New Mexico in the west; so, it is seen that

the Delta virus did not continue to spread from the hotspots to other

parts of the western region. In addition, due to the significant decline
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F IGURE 9 Comparison of the observed number of COVID-19Delta cases and the estimated cases based on the proposedmethod for 3 weeks
within the study period

of mobility in the southwest, including Nevada, Utah and Colorado,

the morbidity risk in the western hotspots gradually reduced to the

average level.

During this period, there was still relatively higher community

mobility but lower vaccination coverage in the southeastern region.

Especially in Louisiana, Mississippi and Alabama, which were close

to the hotspots, the vaccination coverage was only around 35−40%,

providing insufficient protection to the susceptible people. Moreover,

these regions also have a large elderly population, facilitating the

transmission of the virus to the southeast, which became the new



12 MA ET AL.

hotspot in the later stage. Florida, in particular, having a large popu-

lation density with 20.6% elderly people, developed into the hardest-

hit area in the later period, although the mobility there decreased

gradually. On the contrary, the states in the northeast maintained

a relatively good situation due to the significantly higher vaccina-

tion coverage, higher per capita income and reduced community

mobility.

Since the beginning of COVID-19 pandemic, a number ofmajor vari-

ants, including Alpha, Gamma, Delta and so on, have been identified

across the United States. This study focuses on the spread of Delta

variant in the states, since it is the most prominent one at the time

of writing. Among these lineages, Alpha was the first highly publicized

variant and began to spread in the United States by the end of 2020.

Based on the data in the website of Cov-spectrum, it is found that

from February to March 2021, the incidence of COVID-19 caused by

Alpha variant began to increase in the Great Lakes and some south-

ern states such asNewMexico, Texas andFlorida. InApril, the epidemic

situation in these hotspots was further aggravated and the variant dif-

fused to the whole country, gradually becoming the dominant variant

in the United States. By May, the spread of Alpha was almost at its

peak, with South Dakota and Iowa in the north, as well as Louisiana,

Mississippi and Georgia in the south as the worst-hit areas. In June,

Alpha gradually receded with the rise of the more invasive Delta vari-

ant. On the whole, Delta spread much faster from the central region

to the southeast, while Alpha spread from the north and south to the

middle.

Carson et al. (2021) showed that Alpha variant was substantially

more temperature sensitive, with humidity insignificant in the fitted

models. According to Duong (2021) and Zhao et al. (2022), Alpha is

50% more transmissible than the original strain, and thus frequent

communitymobility and dense populationwill definitely accelerate the

spread of the virus. Many studies (He et al., 2021; Planas et al., 2021)

researched the effectiveness of vaccines on the variants and noted

that compared with the Alpha strain, Delta is more resistant to anti-

body, so vaccines appear to be less effective against the Delta variant,

but their effects are still significant in the case of high vaccination

coverage. Since December 2021, the Omicron variant, which is even

more contagious than Delta, has become popular in the United States.

Some studies (CDC, 2021; Christensen et al., 2022) have shown that

patients infected with Omicron are significantly younger, suggesting

that there may be a different age effect, but further research is still

needed. Therefore, it is important to maintain SARS-CoV-2 genomic

surveillance and build targeted prevention measures for public

health.

It should be noted that the number of confirmed cases for COVID-

19 Delta variant is subject to some uncertainty, since the detection of

Delta variant needs sequencing techniques to scan the viral genome

and not every confirmed COVID-19 case is sequenced due to limited

laboratory capacity. The paper utilizes the weekly proportion of Delta

variant cases relative to all samples sequenced to obtain the approx-

imate counts. Though with some deviations, the counts are the best

available data right now and can provide sufficiently reliable basis for

analysis.

5 CONCLUSION

Motivated by the COVID-19 Delta variant cases, this paper develops

a flexible Bayesian hierarchical model to identify spatial clusters deter-

minedbydistinct temporal profiles of coefficients and conduct variable

selection for the clusters. It is worth noting that the areas in the same

cluster are allowed to be disconnected and that covariate effects vary

with space and time. It is shown that for the COVID-19 Delta variant

cases, the eight considered environmental, sociodemographic and pub-

lic intervention factors are selected in different clusters and the factor

effects have distinct temporal behaviours depending on the groups.

The disease relative risks are well estimated by the proposed method.

Based on the results about the associated risk factors, the study could

help the government provide earlywarnings for people at higher risk of

infection and develop effective protection suggestions, such as avoid-

ing crowded spaces, keeping well ventilated, taking special care of the

elderly and receiving vaccinations timely, whichmay play an important

role in fighting against the Delta variant.
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