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ABSTRACT: An algebraic procedure for overcoming the multiple degeneracy problem in
eigenvalue (root) determination of the characteristic polynomial of 3-fold symmetrical molecular
graphs is given. This leads to the tabulation of Hückel molecular orbital binding energy (Eπ) and
eigenvalues (roots) for [2]triangulene to [9]trianguene for the first time. Triangulenes are the
smallest possible condensed benzenoid polyradicals.

■ INTRODUCTION
The first synthesis of triangulene was attempted to ascertain
whether the hydrocarbon was rendered more stable than is
implied by the diradical formula, which was performed by Clar
and Stewart before 1952.1 Subsequently, the synthesis and
studies of triangulene derivatives were reported.2−4 The recent
surge in interest in triangulene was brought into focus by the
single molecule synthesis of triangulene ([3]triangulene) itself
by a tip-assisted approach using a combined scanning tunneling
and atomic force microscope.5 This was followed by single
molecule synthesis of [4]triangulene, [5]triangulene, and
[7]triangulene.6−8 Various [r]triangulenes have been featured
in a number of recent papers.9−11 Here, r is the number of rings
along each of the three equilateral edges of the triangulene
molecular graph.

In general, triangulenes possess numerous multiple degener-
ate eigenvalues. Since obtaining the roots (eigenvalues) of
characteristic polynomials of molecular graphs with multiple
degenerate eigenvalues is challenging by normal factorization
procedures, we give an analytical reduction procedure for
solving these degenerate eigenvalues in [r]triangulenes, which
gives greater intuitive insights than the brute force of matrix
diagonalization. The Hückel molecular orbital binding energy
for [4]triangulene to [9]trianguene is presented for the first
time. The consequence of high degeneracy in the frontier
orbitals of the [r]triangulenes is discussed.

■ RESULTS AND DISCUSSION
Our approach to circumvent the difficulty of solving multiple
degenerate eigenvalues in [r]triangulenes involves decomposing

their 3-fold molecular graphs into three irreducible subgraphs;
two of the three irreducible subgraphs are identical, explaining
the double degeneracy. The unique subgraph is the carrier of the
unique eigenvalues. The [r]triangulenes have vertex-centric (r =
2−3, 5−6, ...) and ring-centric (r = 4, 7, ...) sets; there are two-
times asmany vertex-centric [r]triangulenes as ring-centric ones.
The center vertex of these systems occurs in two sets. In one set,
the center vertex is starred, and in the other, it is unstarred. To
decompose 3-fold molecular graphs composed of fused
hexagonal rings, one must distinguish between vertex-centric
and ring-centric systems. The total number of carbons in ring-
centric [r]triangular species is divisible by three (Nc/3 =
integer), and for the vertex-centric species, it is (Nc − 1)/3 =
integer. The general formula for [r]triangulenes is
Cr

2
+4r + 1H1/2(r

2
+r) + 6. It should be noted that the unpaired

electrons in [r]triangulenes only travel over the starred carbon
vertices.
Method of Calculation. Figure 1 gives the irreducible

subgraphs for the vertex-centric and ring-centric molecular
graphs for [2]−[4]triangulenes. For vertex-centric PAH
molecular graphs, the threefold rotational operation defines
three equivalent sets of vertices (R, S, and T) and a self-
equivalent vertex (va) lying on the axis of rotation. To construct
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the unique subgraph Ga, draw the set R together with all the
edges connecting the members of the set including additional
normal edges for pairs of vertices originally connected to
symmetry-equivalent vertices belonging to the adjacent set R in
the original molecular graph. The weight of the undirected edge
connected to va becomes 31/2. To construct the remaining two
subgraphs GS and GT, draw the set S and set T as done for the
unique subgraph but without the self-equivalent vertex but
instead the additional edges become complex edges of weights
ω* and ω. To illustrate this method, consider Figure 1, which
shows the irreducible subgraphs for the vertex-centric molecular
graphs of [2]−[3]triangulenes. The additional normal edges in
the unique subgraphs (R) are indicated by curved arrows for
emphasis, and the complex edges in the two identical subgraphs
(S and T) are indicated by opposing pairs of arrows labeled by
ω* and ω.12,13 The characteristic polynomial with their
corresponding eigenvalues listed below the unique irreducible
subgraphs was easily determined by the Balasubramanian
program for weighted graphs. All unique subgraphs are alternant
carbon species. The odd carbon unique subgraphs will have an
odd number of zero eigenvalues and the even carbon ones an
even number zero eigenvalues. An example of the graph
theoretical determination of the characteristic polynomial of one
of the irreducible subgraphs with the single complex edge for
[3]triangulene that gives one set of the doubly degenerate
eigenvalues is given in the upper part of Figure 2.

For ring-centric PAH molecular graphs, the threefold
rotational operation defines three equivalent sets of vertices
(R, S, and T). To construct the unique irreducible subgraph Ga,
draw the set R together with all the edges connecting the
members of the set including additional normal edges for pairs of
vertices originally connected to symmetry-equivalent vertices
belonging to the adjacent set R in the original molecular graph.
The edge of R embedded in the central hexagonal ring of the
original molecular graph is given the weight two. In construction
of the other two irreducible subgraphs Ge, draw the sets of S and
T together with all the edges connecting themembers of each set

including additional complex ω* and ω edges for pairs of
vertices originally connected to symmetry-equivalent vertices
belonging to the adjacent sets S and T in the original molecular
graph. The edges of S and T embedded in the central hexagonal
ring of the original molecular graph are complex edges of weight
of ω* + 1 and ω + 1.12,13 This process is illustrated in Figure 1 for
[4]triangulene. The characteristic polynomial with their
corresponding eigenvalues that are listed below the unique
irreducible subgraphs of [4]triangulene was easily determined
by the Balasubramanian program for weighted graphs.14 All the
unique irreducible subgraphs can be solved in this way (Figure

Figure 1. Irreducible subgraphs of [2]−[4]triangulenes. [2]Triangulene and [3]triangulene are vertex-centric molecular graphs, and [4]triangulene is
a ring-centric molecular graph.

Figure 2. The irreducible subgraph for the doubly degenerate
eigenvalues of [3]triangulene and its right-hand mirror-plane fragment
give one set of the doubly degenerate eigenvalues except the right-hand
fragment that has in addition one unique eigenvalue of ±1.0.
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1). The graph theoretical determination of the characteristic
polynomial of the irreducible subgraphs with multiple complex
edges for [5]triangulene and larger triangulenes is far more
complicated, and we will now describe our method using mirror-
plane fragmentation to circumvent this problem for [r]-
triangulenes.
Calculation Results.Mirror-plane fragmentation of molec-

ular graphs having twofold or greater symmetry by the
McClelland rules15−17 leads to simplification in determining
their characteristic polynomials and eigenvalues. All the right-
hand mirror-plane fragments can easily be solved by the
Balasubramanian program because they are devoid of complex
edges. The right-hand mirror-plane fragment of 3-fold sym-
metrical molecular graphs always contain one set of its doubly
degenerate eigenvalues along with some unique eigenvalues, as
shown in the lower part of Figure 2.18 All the eigenvalues
obtained from the right-hand mirror-plane fragments have
antisymmetric eigenvectors in regard to this mirror-plane
(Figure 3). The unique eigenvalues can be identified by
examining the unique eigenvalues determined from the
corresponding irreducible subgraphs from the 3-fold decom-
position describe above for Figures 1 and 2. Subtracting out
these common unique eigenvalues from the eigenvalue set

determined for the right-hand mirror-plane fragment and
doubling the remaining mirror-plane eigenvalues and adding
the unique eigenvalues of the corresponding unique irreducible
subgraph will give all the eigenvalues belonging to a given
[r]triangulene. The right-hand mirror-plane fragments are given
in Figure 3 for [2]-, [3]-, and [4]triangulene for comparison with
the unique eigenvalues given in Figure 1. In this eigenvalue
determination process, it needs to be noted that one should
expect at least three eigenvalues of ±1 because of ethene
embedding on the three equilateral edges of [r]triangulene per
the descriptive rules of Hall12,13 and r − 1 zero eigenvalues per
the Gordon-Davison peak to valley difference rule and their
excised internal structures. Since [r]triangulenes are bipartite
(alternant) polycyclic conjugated hydrocarbons, they can be
maximally starred such that every starred carbon vertex is not
adjacent to another starred carbon and every non-starred carbon
is likewise not adjacent to another. Thus, the difference between
the number of starred carbon vertices and non-starred vertices is
also equal to the number zero eigenvalues in [r]triangulenes. For
[2]triangulene, the zero eigenvalue in the right-hand mirror-
plane fragment is identified as the only unique eigenvalue and
the other eigenvalues (±1, ±31/2) belong to one set of
degenerate eigenvalues. For [3]triangulene, one of the two ±1

Figure 3. Right-hand mirror-plane fragments of [2]−[4]triangulenes.
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eigenvalues in the right-hand mirror-plane fragment is identified
as the unique eigenvalues and the other eigenvalues (0, ±1,
±1.54336, ±2.14896) belong to one set of degenerate
eigenvalues. For [4]triangulene, one of the ±21/2 eigenvalue in
the right-hand mirror-plane fragment is identified as a unique
eigenvalue and the other eigenvalues (0, ±0.822554, ±1, ±21/2,
±1.908422, ±2.383554) belong to one set of degenerate
eigenvalues. Thus, in this comparison of Figures 1 and 3, we
were able to determine all the respective eigenvalues for [2]-,
[3]-, and [4]triangulenes. At this point, one might inquire why
we could not determine the other eigenvalues for the left-hand
mirror-plane fragments using the Balasubramanian program.
The reason is that left-hand mirror-plane fragments have
numerous square root weighted edges, which leads to decimal
round off problems in determining their characteristic
polynomial roots. Decimal round off problems in determining
the characteristic polynomial roots for right-hand mirror-plane
fragments of [9]triangulene and larger triangulenes occur. Also,
operating on the 31/2 weighted edge in the unique vertex-centric
irreducible subgraphs gives the integer 3 per Figure 4, which

avoids decimal errors that evolve if 31/2 = 1.73205 is used in the
Balasubramanian characteristic polynomial program.14 In
general, all [r]triangulenes have at least three ±1 eigenvalues
and r − 1 zero eigenvalues. As the number of zero eigenvalues
increase, we expect that the [r]triangulene will become
increasingly more electrically conductive.

Figure 5 summarizes the unique irreducible subgraphs for the
[2]−[8]triangulenes including their respective unique eigenval-
ues. Every third subgraph has a weighted-2 edge and belongs to a
ring-centric triangulene. The vertex-centric molecular graphs
occur in pairs where the first one has a starred central carbon
vertex and second does not. This results in their paired
respective irreducible subgraphs having dangling √3 weighted
edges where the end carbon in the first one is starred and in the
second is not. Taking the sum of eigenvalues for the unique
irreducible subgraphs [Eπ(unique sum)] in Figure 5 and plotting
against their corresponding total binding energy [Eπ(total)] in
Table 1 give a linear equation of Eπ(unique sum) =
0.3289Eπ(total) + 1.5498 (R2 = 0.9996). Using this highly
correlative equation, one can obtain the total binding energy of

Figure 4. Operating on the 31/2 weighted edge gives the integer 3, which avoids decimal errors that evolve if 31/2 = 1.73205 is used in the
Balasubramanian characteristic polynomial program.

Figure 5. Irreducible subgraphs that give the unique eigenvalues for [2]−[8] triangulenes.
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even larger [r]triangulenes (r > 9) with minimal computational
effort.

Table 2 summarizes all the eigenvalues obtained from the
irreducible subgraphs (Figure 5) and the right-hand mirror-
plane fragments (Figure 6) in HMO β units for [2]triangulenes
to [9]triangulene. The eigenvalue distribution displays the
following notable correlations. The number of zero eigenvalues
increase according to the Gordon-Davison peak to valley
difference rule and the difference between the number of starred
carbon vertices and non-starred vertices rule for bipartite
molecular polyhex graphs. The largest eigenvalues gradually
approach the value 3.0 (2.4495 to 2.9092 for [2]- to
[9]triangulene), as predicted by the Fröbenius theorem. The
eigenvalues of ±√2 × 3 for [4]- and [9]triangulenes are
predicted by the embedding of the perimeter by allyl and 3-
ethenyl-4-methylenylhexatriene, as shown in Figure 4 of ref 19.
The number of eigenvalues of ±1.0 is three for all [r]-
triangulenes except [7]triangulene that has two extra ±1.0
eigenvalues as predicted by Hall’s descriptive rules due to mixed
ethene and pentadienyl embeddings.12,13 The eigenvalue ±√3
is predicted by pentadienyl embedding of the perimeter of
[5]triangulene.
Known Properties. It is known that [3]triangulene is a

diradical that exists in a triplet ground state, which arises from
the double degeneracy of the HOMO.4,5,20 Both [4]triangulene

Table 1. List of the Smallest Benzenoids of Each Radical
Degree

molecule [no. of rings
along each edge]

triangulene

formula
[radical
degree]

number of
resonance

structures (SC) Eπ, β
benzene ([1]triangulene) C6H6 [0] 2 8.0000
phenalenyl ([2]
triangulene)

C13H9 [1] 20 17.8272

[3]triangulene C22H12 [2] 306 30.8098
[4]triangulene C33H15 [3] 7 376 46.9533
[5]triangulene C46H18 [4] 273 956 66.2511
[6]triangulene C61H21 [5] 15 345 156 88.7016
[7]triangulene C78H24 [6] 1 274 990 124 114.3042
[8]triangulene C97H27 [7] 155 024 945 978 143.0562
[9]triangulene C118H30 [8] 27 422 185 371

264
173.8373

[10]triangulene C141H33 [9] 6 981 850 496 603
886

[11]triangulene C166H36 [10] 2 547 185 424 690
611 836

Table 2. HMO Eigenvalue (β) Summary for [2]Triangulene to [9]Triangulene

C13H9 C22H12 C33H15 C46H18 C61H21 C78H24 C97H27 C118H30

0.0 0.0 ×2 0.0 x3 0.0 ×4 0.0 ×5 0.0 ×6 0.0 ×7 0.0 ×8
±1.0 ×3 ±0.8632 ±0.8226 ×2 ±0.7484 ×2 ±0.6699 ±0.6145 ×2 ±0.5617 ×2 ±0.5157
±√3 ×2 ±1.0 ×3 ±1.0 ×3 ±0.8825 ±0.6840 ±0.8176 ×2 ±0.7542 ±0.5176
±2.4495 ±1.5242 ±1.3378 ±1.0 ×3 ±0.8637 ×2 ±0.8952 ±0.7760 ±0.7139 ×2

±1.5434 ×2 ±√2 ×3 ±1.2164 ×2 ±1.0 ×3 ±1.0 ×5 ±0.8780 ×2 ±0.8248 ×2
±2.1489 ×2 ±1.9084 ×2 ±1.3265 ±1.0998 ×2 ±1.1345 ×2 ±0.9208 ×2 ±0.8689 ×2
±2.6328 ±1.9337 ±1.3398 ×2 ±1.1948 ±1.2278 ±1.0 ×3 ±0.9047

±2.3836 ×2 ±1.6833 ±1.2743 ×2 ±1.2388 ×2 ±1.0657 ×2 ±1.0 ×3
±2.7333 ±√3 ±1.2856 ±1.3903 ×2 ±1.1241 ±1.0897 ×2

±1.7664 ×2 ±1.5300 ×2 ±1.4707 ±1.1990 ×2 ±1.1609 ×2
±2.1549 ×2 ±1.6364 ×2 ±1.5434 ±1.2057 ±1.1707
±2.1928 ±1.6439 ±1.5480 ×2 ±1.2666 ±1.1832 ×2
±2.5301 ×2 ±1.9405 ±1.7781 ×2 ±1.2756 ±1.2921 ×2
±2.7964 ±1.9696 ±1.8706 ×2 ±1.3813 ×2 ±1.3399

±2.0191 ×2 ±1.8884 ±1.4733 ±√2 ×3
±2.3270 ×2 ±2.1318 ±1.4739 ×2 ±1.4977
±2.3654 ±2.1490 ±1.6301 ×2 ±1.5060 ×2
±2.6287 ×2 ±2.2021 ×2 ±1.7063 ±1.5059
±2.8391 ±.2.4515 ×2 ±1.7574 ±1.6010 ×2

±2.4866 ±1.7739 ×2 ±1.6780 ×2
±2.6988 ×2 ±1.9716 ×2 ±1.6851
±2.8696 ±2.0531 ×2 ±1.8242 ×2

±2.0742 ±1.8918
±2.2764 ±1.9319
±2.2866 ±1.9552 ×2
±2.3381 ×2 ±2.1239 ×2
±2.5443 ×2 ±2.1962 ×2
±2.5752 ±2.3175
±2.7506 ×2 ±2.3881
±2.8921 ±2.3942

±2.4418 ×2
±2.6154 ×2
±2.6427
±2.7900 ×2
±2.9092
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and [5]triangulene retain their open-shell ground state on an
inert Au(111) surface.6,7 However, based on a combination of
density functional theory and scanning tunneling spectroscopy,
it is suggested that [7]triangulene results in a closed shell state
on Cu(111) with considerable charge transfer.8 Here, we
imagine that the more reactive Cu(111) and the greater
unpaired electron density are uniquely operating.

Both the phenalenyl monoradical and [3]triangulene diradical
have been extensively studied. A recent review emphasizes
various macroscale synthetic approaches to Clar’s hydrocarbon
([3]triangulene).20 In this review, Figure 5 displays the Kekule ́
structures of [4]triangulene, [5]triangulene, and [7]triangulene
that maximizes their sextets with the unpaired electrons located
at solo positions. A similar rendition of [10]triangulene can be
found in Figure 9 of ref 21. The [r]triangulenes with three
equilateral edges are the smallest condensed polyradical
benzenoids possible. The phenalenyl monoradical and [3]-
triangulene diradical are the first members of the respective
radical constant-one-isomer series.22 Circumscribing the C33H15
[4]triangulene triradical once gives the C69H21 triradical, which
is the first-generation member of the unique triradical D3h
constant-one-isomer series. The formula of C69H21 also
corresponds to 12 more monoradical benzenoids that are the
first-generation members of the monoradical constant-12-
isomer series.23 Similarly, circumscribing the C46H18 [5]-
triangulene tetraradical twice gives the C142H30 tetraradical,
which is the first-generationmember of the uniqueD3h constant-
one-isomer series. The formula of C142H30 also corresponds to
46 diradical and 86 Kekuleán (nonradical) benzenoid hydro-
carbons. The 46 C142H30 diradicals are the first-generation
members of the diradical D3h constant-46-isomer series, and the

sum of 1 + 46 + 86 = 133 is the total number of C142H30
benzenoid isomers belonging to the first generation of the
constant-133-isomer series. Successive circumscribing of the
C61H21 [6]triangulene pentaradical as shown in Figure 10 of ref
24 gives C325H45 as the first-generation member of the unique
pentaradical D3h constant-one-isomer series.24 This brief
synopsis demonstrates the important topological relationships
that evolve from the [r]triangulenes.
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