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Graphical abstract

Inactivation of SARS-CoV-2 variants by oral mouthwashes containing 0.07% cetyl pyridinium chloride (CPC).

Abstract

Introduction. The importance of human saliva in aerosol-based transmission of SARS-CoV-2 is now widely recognized. However, 
little is known about the efficacy of virucidal mouthwash formulations against emergent SARS-CoV-2 variants of concern and 
in the presence of saliva.

Hypothesis. Mouthwashes containing virucidal actives will have similar inactivation effects against multiple SARS-CoV-2 vari-
ants of concern and will retain efficacy in the presence of human saliva.

Aim. To examine in vitro efficacy of mouthwash formulations to inactivate SARS-CoV-2 variants.
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Introduction
The high viral load of SARS-CoV-2 present in the saliva of infected individuals [1] and in aerosol droplets formed passively during 
speech and breathing, and actively during coughing [2–4] have contributed to the recognition that saliva plays a key role in the 
transmission of SARS-CoV-2 [5–7]. The potential of the oral cavity to act as a viral reservoir is supported by the presence of the 
angiotensin-converting enzyme 2 (ACE-2) receptor in oral gingival epithelia and salivary glands and the infection of these tissues 
by SARS-CoV-2 in vivo [8], potentially aggravating systemic infection via an oral-vasculo-pulmonary route [9].

The use of oral rinses or mouthwashes have been proposed by health organizations to mitigate transmission of SARS-CoV-2 during 
dentistry procedures due to their demonstrated efficacy in inactivating SARS-CoV-2 in vitro and in vivo [10–12]. The antimicrobial 
action of a mouthwash is dependent on a combination of the active ingredients, their intrinsic efficacy and their bioavailability 
during use. Active ingredients used in mouthwashes include quaternary ammonium compounds (QACS) such as dequalinium 
chloride, benzalkonium chloride, cetyl pyridinium chloride (CPC) and chlorhexidine (CHX), which are believed to function as 
antimicrobials via a stepwise process of charge-mediated attraction and destabilisation of the bacterial lipid envelope [13–15].

CPC is widely used in mouthwash formulations displaying substantive action against a range of oral bacteria [16–18] and viruses, 
including SARS-CoV-2 [10, 19–21], whilst data on virucidal efficacy of CHX against SARS-CoV-2 has been more varied [22–26]. 
All mouthwashes, regardless of composition, must function in situ in the oral cavity, and hence must retain efficacy in the presence 
of human saliva, overcoming any potential deactivation from salivary components [27–29].

To investigate the impact of mouthwash composition on efficacy we compared the in vitro virucidal efficacy of mouthwashes 
containing 0.07 % CPC and 0.2 % CHX digluconate against a range of SARS-CoV-2 variants. In addition, the efficacy of a repre-
sentative CPC containing mouthwash was also investigated in the presence of human saliva. Our findings suggest CPC mouth-
washes offer potent virucidal activity that is effective against all variants tested and which is maintained in the presence of human 
saliva under simulated usage conditions.

Methods
Cell culture and viruses
Vero E6 cells (C1008: African green monkey kidney cells) obtained from Public Health England, were maintained in Dulbecco’s 
minimal essential medium (DMEM) with 10 % foetal bovine serum (FBS) and 0.05 mg ml−1 gentamicin. Cells were maintained 
at 37 °C and 5 % CO2. The following reagents were obtained through BEI Resources, NIAID, NIH: SARS-Related Coronavirus 
2, Isolate USA-WA1/2020, NR-52281; SARS-Related Coronavirus 2, Isolate hCoV-19/England/204820464/2020, NR-54000, 
contributed by Bassam Hallis; SARS-Related Coronavirus 2, Isolate hCoV-19/South Africa/KRISP-EC-K005321/2020, NR-54008, 
contributed by Alex Sigal and Tulio de Oliveira; SARS-Related Coronavirus 2, Isolate hCoV-19/Japan/TY7-503/2021 (Brazil 
P.1), NR-54982, contributed by National Institute of Infectious Diseases. The viruses were obtained as passage 5 of SARS-CoV-2 
isolate (USA-WA1/2020) and passage 2 or 3 of Alpha (hCoV-19/England/204820464/2020), Beta (hCoV-19/South Africa/KRISP-
EC-K005321/2020) and Gamma (hCoV-19/Japan/TY7-503/2021). The Delta variant was passage 5 of a clinically isolated strain 
(SARS-CoV-2/human/GBR/Liv_273/2021, GenBank accession OK392641). Variants were cultured in Vero E6 cells maintained 
in DMEM with 4 % FBS and 0.05 mg ml−1 gentamicin at 37 °C and 5 % CO2. Then, 48 h post-inoculation, virus was harvested and 
stored at −80 °C until used. All SARS-CoV-2 work was conducted in a containment level 3 laboratory.

Preparation of saliva
Stimulated saliva was collected at Unilever Research Port Sunlight during November 2019 from six donors over 2 days. Healthy 
donors, three male, three female, age 18–60 years old, provided a stimulated daytime saliva sample for which they were given a 
piece of gum to chew (Wrigley’s Turbulence) [30]. Subjects were given a maximum of five sterile 30 ml containers in which they 
were asked to provide a 20–25 ml sample of saliva per container. Subjects were requested to leave 30 min after eating or drinking 
before providing a saliva sample.

Methodology. Inactivation of SARS-CoV-2 variants by mouthwash formulations in the presence or absence of human saliva was 
assayed using ASTM International Standard E1052-20 methodology.

Results. Appropriately formulated mouthwashes containing 0.07 % cetylpyridinium chloride but not 0.2 % chlorhexidine com-
pletely inactivated SARS-CoV-2 (USA-WA1/2020, Alpha, Beta, Gamma, Delta) up to the limit of detection in suspension assays. 
Tests using USA-WA1/2020 indicates that efficacy is maintained in the presence of human saliva.

Conclusions. Together these data suggest cetylpyridinium chloride-based mouthwashes are effective at inactivating SARS-
CoV-2 variants. This indicates potential to reduce viral load in the oral cavity and mitigate transmission via salivary aerosols.
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The collected samples were stored overnight at 4 °C. A second collection from the same subjects was performed on the following 
day and the saliva from day 1 and day 2 was pooled together, decanted into bottles and stored at −80 °C prior to gamma irradiation 
(Systagenix, UK, Cobolt 60 turntable, dose rate 1.2 kGy/h, minimum dose 32.1 kGy) sufficient to achieve sterilization [31]. After 
sterilization saliva was stored in sealed bottles at 4 °C prior to testing.

Virus inactivation by different mouthwash formulations
Mouthwash formulations (Table 1 and Fig. 1) were assessed following the ASTM International Standard E1052-20 [32]. Briefly, 
900 µl of mouthwash formulation was added to 100 µl of virus suspension (SARS-CoV-2, USA-WA1/2020), containing 4 % FBS 
and incubated for 30 s. After the 30 s incubation, 9 ml of Dey and Engley neutralizing broth (DE broth) was added and 25 µl of 
the sample was transferred into a dilution series for quantification. The viral inoculum was quantified before each experiment. 
All experiments were carried out in triplicates. SARS-CoV-2 titre was calculated using standard plaque assays as previously 
described [33]. Briefly, samples were serially diluted in DMEM containing 2 % FBS and incubated with Vero cells for 1 h. After 
incubation, an overlay with DMEM 2 % FBS, 0.1 % gentamycin and 0.4 % agarose was applied to the cells. The cells were allowed 
to incubate for 72 h at 37 °C with 5 % CO2. After incubation, the cells were fixed with 10 % formalin solution, and stained with 
0.25 % Crystal Violet.

Table 1. Mouthwash formulations examined for SARS-CoV-2 inactivation

Treatment Code

Proprietary commercially available formulation containing 0.07 % CPC with flavour and mix of herbal extracts (0 % ethanol) MW-A

Proprietary commercially available formulation containing 0.07 % CPC with flavour
(0 % ethanol)

MW-B

0.2 % CHX digluconate with flavour (7 % ethanol) MW-C

70 % ethanol in distilled water Positive control

Distilled water Negative control

CHX, Chlorhexidine; CPC, cetyl pyridinium chloride.

Fig. 1. Structures of cetylpyridinium chloride (CPC) and chlorhexidine (CHX).
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Virus inactivation by mouthwash in the presence of saliva
To assess if human saliva alters the effectiveness of CPC mouthwash, 800 µl of MW-B mouthwash formula was added to 100 µl 
of human saliva mixed with 100 µl of SARS-CoV-2 (USA-WA1/2020) inoculum. The solution was incubated for 30 s and 9 ml of 
DE broth was added. As a control, 800 µl of MW-B mouthwash formula was added to 100 µl of sterile water and 100 µl of virus 
inoculum, with 9 ml of DE broth added after 30 s of incubation. Experiments were carried out in duplicate.

Saliva, neutralization, and cytotoxicity assays
To assess if human saliva has inherent virucidal action against SARS-CoV-2 (USA-WA1/2020) 100 µl of virus inoculum was 
added to either 800 µl of sterile water and 100 µl of irradiated human saliva (dilute saliva), or 900 µl of irradiated human saliva 
(neat saliva) for a 5 min incubation. After 5 min had elapsed, a 25 µl sample was placed into a dilution series. Neutralization and 
cytotoxicity assays were performed following the ASTM International Standard E1052-20 [32]. Briefly, neutralization controls 
were carried out by adding 9 ml of DE broth to 900 µl of mouthwash formula. To this, 100 µl of virus suspension was added for 
30 s and 25 µl removed to a dilution series. Samples (25 µl) from each condition were serial diluted tenfold and quantified via a 
standard plaque assay. Plaques were counted to determine viral titre. To determine the cytotoxicity of the mouthwashes, 100 µl 
of 4 % DMEM was added to 900 µl of test mouthwash formula for 30 s. To this 9 ml of DE broth was added and 25 µl placed into 
dilution series. Samples (25 µl) from each dilution were processed by standard plaque assay and cell viability was evaluated at day 
3 post-inoculation. All experiments were carried out in triplicate.

Results
Comparison of CPC- and CHX containing mouthwashes
We tested the ability of CPC and CHX to inactivate SARS-CoV-2 (USA-WA1/2020). Following a 30 s incubation in the presence 
of the test mouthwashes a reduction in viral titre of ≥4.0log10 p.f.u. ml−1 was observed with MW-A and MW-B and of <2.0 log10 
p.f.u. ml−1 for MW-C. No reduction of viral titre occurred in the water control and however complete inactivation was observed 
by the 70 % ethanol control. All treatments were effectively neutralized by the addition of DE broth (Fig. 2). Cytotoxicity assays 
showed no cytopathic effect of the mouthwashes on Vero E6 cells at the dilutions tested. The limit of detection (LOD of the assay 
was 2.0log10 p.f.u. ml−1.

Fig. 2. Mouthwash formulas were tested for virucidal action against SARS-CoV-2 (USA-WA1/2020). Mouthwashes were incubated with SARS-CoV-2 
inoculum for 30 s. Both MW-A and MW-B reduced to below the LOD, while MW-C reduced viral titre by 1.26log

10
 p.f.u. ml−1 compared to the water control. 

LOD=2.0log
10

 p.f.u. ml−1. Viral titres recovered from the water control averaged 6.12log
10

 p.f.u. ml−1, while viral titre recovered from neutralization 
controls were within 1.0log

10
 p.f.u. ml−1 indicating all virucidal activity occurred within 30 s of incubation. LOD (2.0log

10
 p.f.u. ml−1) is shown across the 

graph with a dotted red line. Error bars represent standard deviation of triplicates, while red dots are experimental data values and blue dots control 
values.
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Inactivation of SARS-CoV-2 variants by test products
We also tested the ability of CPC and CHX to inactivate SARS-CoV-2 variants of concern, Alpha, Beta, Gamma and Delta. 
Following the 30 s incubation of Alpha with MW-A and MW-B an average reduction of 3.11 log10 p.f.u. ml−1 to below the LOD 
was seen. Incubation of Beta with test products saw an average reduction of 4.1 log10 p.f.u. ml−1, Gamma saw an average reduction 
of 3.36log10 p.f.u. ml−1, and Delta saw an average reduction of 4.52 log10 p.f.u. ml−1, all below the LOD (Table 2). In assays carried 
out with the variants, no reduction was seen in the water control and reduction below the LOD was seen in the 70 % ethanol 
control. The ability to achieve a 4.0log10 p.f.u. ml−1 in the variant assays was dependent on titres of SARS-CoV-2 variants following 
standard propagation methods.

Testing in the presence of human saliva
Under normal usage mouthwashes must be functional in the presence of human saliva, hence investigations were undertaken 
to assess whether saliva displays any measurable endogenous virucidal activity against SARS-CoV-2 (USA-WA1/2020) and to 
assess whether saliva acts as an inhibitory ‘soil’ quenching the virucidal function of mouthwash formulations. The endogenous 
virucidal activity of neat and dilute human saliva was measured over a contact time of 5 min (Fig. 3a) during which no significant 
reduction in viral load was observed compared to the water control. Viral titres of 5.70log10 p.f.u. ml−1, 5.61log10 p.f.u. ml−1 and 

Fig. 3. Irradiated human saliva has no effect upon the viral titre of SARS-CoV-2 as compared to the water control after incubation with inoculum for 
5 min. Neat saliva had a ratio of eight parts water to one-part irradiated human saliva to one-part virus inoculum, while dilute saliva had a ratio nine 
parts irradiated human saliva to one-part virus inoculum (a). Human saliva does not inhibit the virucidal activity of mouthwash formulas proven to 
reduce the titre of SARS-CoV-2. MW-B was able to reduce viral titre to below the LOD both in the presence of irradiated human saliva and without. 
Human saliva was added in a ratio of eight parts MW-B to one-part irradiated human saliva to one-part virus inoculum (b). LOD (2.0log

10
 p.f.u. ml−1) is 

shown across both graphs with a dotted red line. Error bars represent standard deviation, while red dots are experimental data values and blue dots 
control values.

Table 2. Mouthwash formulas that were proven to work against SARS-CoV-2 (USA-WA1/2020) were then tested against Alpha, Beta, and Gamma and 
Delta variants of SARS-CoV-2. Both MW-A and MW-B were able to reduce the viral titre of all three variants to below the limit of detection (2.0log

10
 p.f.u. 

ml−1) within 30 s

Average titre (Log10 p.f.u. ml−1) Reduction

Variant Pango lineage MW-A MW-B 70 % ethanol

Alpha B.1.1.7 3.11 3.11 3.11

Beta B.1.351 4.11 4.11 4.11

Gamma P.1 3.36 3.36 3.36

Delta B.1.617.2 4.52 4.52 4.52

p.f.u., plaque forming units.
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5.45log10 p.f.u. ml−1 were recovered from the neat saliva, dilute saliva incubation and the water control, respectively. It is essential 
that mouthwashes maintain efficacy in the presence of human saliva. To investigate this, we examined if the virucidal efficacy 
of MW-B was altered by saliva. We found that MW-B was still capable of inactivation of SARS-CoV-2 to below the LOD in the 
presence of saliva, indicating that CPC retained efficacy despite the soil load (Fig. 3b).

Discussion
Our results confirm that mouthwash formulations containing 0.07 % CPC, inactivate SARS-CoV-2 by up to 99.99 %, representing 
a value below the LOD after a contact time of 30 s. In contrast, a mouthwash containing CHX (0.2 % chlorhexidine gluconate), 
exhibited poorer virucidal activity against SARS-CoV-2. Our observations are consistent with others, where multiple different CPC 
mouthwash formulations have been shown to effectively inactivate SARS-CoV-2 in vitro, whereas CHX containing mouthwashes 
are reported to have modest ability to inactive SARS-CoV-2 [10, 25, 34]. The virucidal action of CPC mouthwash was maintained 
in the presence of whole human saliva, consistent with human clinical trials, which report that rinsing with CPC mouthwash can 
lower SARS-CoV-2 salivary count for several hours after use [11, 35].

Over the course of the global pandemic, several SARS-CoV-2 variants have emerged with mutations changing the amino acid 
sequence of the receptor-binding domain of the spike protein [36]. Four variants of concern, Alpha, Beta, Gamma and Delta 
[37], were effectively inactivated within 30 s by both 0.07 % CPC mouthwashes, with a reduction in viral titre below the LOD and 
equivalent to the 70 % ethanol control. As the CPC molecule disrupts the viral lipid envelope and the membrane is unchanged 
by mutations, our data supports the likely efficacy of CPC mouthwash in reducing viral load irrespective of the SARS-CoV-2 
variant. It is interesting to note, as highlighted in Table 2, that SARS-CoV-2 variants displayed reproducible differences in titre. 
Although elucidating the exact mechanisms underpinning this observation are beyond the scope of this report, recent work [38] 
has suggested that natural variations in the SARS-CoV-2 viral accessory protein, ORF3a and non-structural protein, NSP2, may 
impact infectivity in laboratory models and we believe further investigation of such effects would assist the global response to 
the current pandemic.

Recently the oral cavity has been proposed to have a direct role in COVID-19 disease severity based on a proposed oral-vasculo-
pulmonary infection route. Poor oral hygiene with plaque build-up, subsequent gingivitis and periodontitis facilitates direct 
entry of the virus via the oral gingival sulcus and periodontal pockets enabling infection of the circulatory system and lungs [9]. 
CPC mouthwashes with anti-plaque and virucidal activity against SARS-CoV-2 could have the potential to lower viral count and 
lessen the risk of severe lung disease in COVID-19 patients.

In conclusion, two mouthwashes containing 0.07 % CPC were effective at inactivating SARS-CoV-2, within 30 s with greater than 
4.0log10 p.f.u. ml−1 reduction in viral titre. Moreover, virucidal activity of CPC was maintained in the presence of whole human 
saliva. Both 0.07 % CPC mouthwashes were as effective as 70 % ethanol against four variants of concern; Alpha, Beta, Gamma and 
Delta suggesting these CPC formulations possess virucidal action against all variants. In contrast, under the same experimental 
conditions, a mouthwash containing 0.2 % chlorhexidine digluconate did not have substantial action against SARS-CoV-2 in 
vitro. Given the ongoing global pandemic, and the recognition of the significance of the oral cavity in infection, transmission and 
disease severity, daily use of an effective CPC mouthwash as part of a good oral hygiene routine, could be a low-cost and simple 
measure to reduce transmission risk.
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