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Abstract

Moso bamboo (Phyllostachy heterocycla cv. pubescens L.) is an economically important fast-growing tree. In order to gain
better understanding of gene expression regulation in this important species we used next generation sequencing to
profile small RNAs in leaf and roots of young seedlings. Since standard kits to produce cDNA of small RNAs are biased for
certain small RNAs, we used High Definition adapters that reduce ligation bias. We identified and experimentally validated
five new microRNAs and a few other small non-coding RNAs that were not microRNAs. The biological implication of
microRNA expression levels and targets of microRNAs are discussed.
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Introduction

Small non-coding RNAs (sRNAs) with the size of 20–24

nucleotides (nts) that are generated by one of the Dicer-like

proteins function in transcriptional or post-transcriptional regula-

tion of gene expression [1]. Plant sRNAs show high diversity and

one of the best characterized group of sRNAs is the microRNAs

(miRNAs), which are mainly 21 nts although some are 20, 22 and

24 mers. Some miRNAs are conserved across all plant species but

many newly identified miRNAs are species or family specific. In

addition to miRNAs, there are several groups of small interfering

RNAs (siRNAs) involved in the regulation of gene expression such

as heterochromatic small interfering RNAs (hc-siRNAs) that are

usually 24 mers [2], trans-acting small interfering RNAs (ta-

siRNAs) that are 21 mers [3] and anti-sense origin siRNAs that

are produced from overlapping anti sense transcripts [4]. sRNAs

are involved in diverse biological processes including develop-

ments and responses to environmental changes [5] thus it is

important to characterize sRNAs in non-model but economically

important plants.

Bamboo is one of the most important forest resources and

belongs to the grass family. There are more than 1500 species of

bamboo within 87 genera [6]. Bamboo has relatively long period

of vegetative growth varying from a few years to decades, which

makes it hard for traditional genetic improvement. The advance in

next generation sequencing (NGS) technology opens new oppor-

tunities for studying the molecular biology of bamboo. The

genomic sequence of Moso bamboo (Phyllostachy heterocycla cv.
pubescens L.) has been reported recently and is becoming a

valuable resource [7]. Moso bamboo is a large fast-growing woody

bamboo and a major bamboo species for timber and food

production in Asia. mRNA and miRNA analysis has been carried

out using developing culms during fast growing stage [8], where

RNA-seq libraries were constructed using the Illumina method.

Many conserved miRNAs were found and putative new miRNAs

were predicted. However, their expression levels were not

confirmed experimentally. In addition, some miRNAs were found

in the leaf tissues of ma bamboo (Dendrocalamus latiflorus L.) [9],

but the genomic sequence is not available for this species therefore

the analysis could not be completed.

High throughput sRNA studies rely on NGS results; however,

different NGS platforms often produce different sRNA profiles

[10]. The difference has been attributed to ligation bias due to the

preference of RNA ligases to join molecules (in this case sRNAs

and adapters) that can anneal to each other and form a structure

favoured by the ligase [11–13]. Therefore libraries generated with

different adapters produce different sRNA profiles. Since different

NGS platforms or even different versions of the library generation

kit for the same platform (such as Illumina v. 1.0, v. 1.5 and

TruSeq) contain different adapters, these platforms and kits

produce different sRNA profiles because they all rely on adapters

with fixed sequences that determine the ligation bias. Adapters

with degenerated nucleotides at the ligating ends (called High

Definition (HD) adapters) can reduce the ligation bias because

sRNAs can anneal to a pool of different sequences instead of a

single adapter sequence [12,13]. sRNA libraries generated with

HD adapters were found to recover more different sRNA

sequences and the abundance of a sRNA sequence read correlated
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more quantitatively with the real expression level [13]. Here, the

HD adapters were used for cloning the sRNAs in the leaves and

roots of moso bamboo seedlings. The sRNA profiles were analysed

and the expression of the new miRNAs with expressed miRNA*

sequences were confirmed by Northern blot analysis.

Materials and Methods

Plant materials
The seeds of Moso bamboo were soaked in 0.4% KMnSO4

solution for 6 hrs, rinsed with distilled water five times, and further

soaked in distilled water overnight. The soaked seeds were planted

in moist vermiculite in a closed container and kept at 25uC under

light with intensity of 100–200 mmol?m22?s21 for two weeks

followed by removing the cover film of the container so that the

seeds were kept in the same container for about 2 months under

the same growing conditions. The seedlings were transferred to

pots with turfy soil and grown under the same conditions. The leaf,

stem and root tissues were harvested and stored in liquid nitrogen

when the seedlings were at 5–6 leaf stage.

RNA extraction and small RNA library construction
Total RNA was extracted by using TRI Reagent Solution

(Ambion) following the manufacturer’s protocol. Small RNA

fractions of the leaf and root total RNA samples were further

isolated by using mirVanamiRNA Isolation Kit (Ambion) follow-

ing the protocol provided by the manufacturer. 2 mg of sRNA

from each sample was ligated to 39 and 59 HD adapters [13] by

using the ScriptMiner Small RNA-seq Library preparation Kit

(Epicenter) following its protocol (but replacing the adapters

provided in the kit with HD adapters with identical sequences but

containing the four degenerated nucleotides HD tag). The ligated

products were then reverse transcribed and PCR amplified. The

PCR products expected to contain 20–24 bp cDNA inserts were

gel-purified and sequenced on the Illumina HiSeq2500 sequencer.

Northern blot analysis
Northern blot analysis was used to confirm the expression levels

of known miRNAs and verify the new miRNAs and some other

new sRNAs following the previously published protocol (Lopez-

Gomollon et al. 2012). Briefly, 5 mg of total RNA from stem, root

and leaf tissues were denatured and loaded into denaturing 16%

polyacrylamide gel. The RNA was transferred to Hybond NX

(Amersham) nylon membrane through semi-dry electrophoresis

transfer system (Bio-Rad), and chemical cross-linking was done at

60uC for 90 minutes by using 1-ethyl-3-(dimethylaminopropyl)

carbodiimide (Sigma). The probes were generated by labelling the

oligonucleotides that were reverse complementary to the sRNAs of

interest with cP32-ATP. The membranes were hybridized with the

probes at 37uC overnight. The list of the probe sequences used for

northern blot is provided in supplementary Table 1.

Bioinformatics analysis
We used version 1.0 of the bamboo genome [7] and the

annotations available on the ICBR-CAFNET website (http://202.

127.18.221/bamboo/down.php). We downloaded the bamboo

chloroplast genome, accession NC_015817 from (http://

chloroplast.ocean.washington.edu) and used the publicly available

annotations [14]. First, the fastq files from NGS were converted to

fasta files and sequence reads with no Ns were kept for further

analysis. Next, the first 8 nt of the 39 adapters were identified and

removed and then four nucleotides on the 59 and 39 ends of the

reads were trimmed (which corresponded to the NNNN tags on

the HD adapters; see: Sorefan et al. 2012) using the UEA sRNA
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Workbench [15]. The sequence reads were mapped to the

bamboo genome and the bamboo chloroplast genome with 0

mis-matches, in non-redundant format, using PatMaN [16]. The

abundance of sequenced reads was normalized to the total number

of reads in the sample, as indicated in [17]. The differentially

expressed reads were identified using offset fold change as

described in [18], using an offset of 20. The miRNAs were

identified using the miRCat and miRProf tools within the sRNA

Workbench [15] and custom made Perl scripts (Strawberry Perl v

5.18.2.1). The miRNA targets were predicted using the target

prediction tool within the UEA sRNA Workbench [15]. The rules

used for target prediction are based on those suggested by Allen et

al. and Schwab et al. [19,20]. Specifically, no more than four

mismatches between miRNA and target (G-U bases count as 0.5

mismatches) are allowed, no more than two adjacent mismatches

in the miRNA/target duplex are permitted, no adjacent

mismatches in positions 2–12 of the miRNA/target duplex (59 of

miRNA) and no more than 2.5 mismatches in positions 1–12 are

accepted, no mismatches in positions 10–11 of miRNA/target

duplex are permitted. In addition, the minimum free energy

(MFE) of the miRNA/target duplex should be . = 74% of the

MFE of the miRNA bound to its perfect complement.

Results

sRNA libraries from bamboo leaf and root
About 10 million (M) and 18 M raw reads were obtained from

deep sequencing of bamboo leaf and root sRNA libraries,

respectively. About 9 M (leaf) and 12 M (root) reads contained

the 39 adapter preceded with potential sRNAs that were 17–33 nts

(Table 1). The root library contained ,2.9 M unique sequences

while the leaf library was made up of ,1.8 M unique sequences,

thus the overall sequence complexities (defined as the ratio of

unique reads to all reads) for the two libraries were 16–17%.

About 83% and 74% of the total reads in leaf and root library

were mapped to the published moso bamboo genome (Peng, 2013

#60). Among the genome matching sRNAs, 5.2% of the reads in

leaf library and 3.5% of the reads in root library were mapped to

coding region. Distribution of read mapping to other genomic

regions is shown in Table 1.

Similar to other plant species, size class distribution was bimodal

where the most abundant sequences were 24 mers followed by the

21 mers in leaf library. The root library showed a slightly different

size class distribution because the most abundant 24 mers were

followed by 31 mers and even the 23 mer sRNAs were slightly

more abundant than the 21 mers (Figure 1a). The 24 mer reads

showed the highest complexity while the 21 and 31 mer sequences

had very low complexity (Figure 1b and 1c). The majority of

transposon mapping sRNAs were 24 mers and 40% of unique

24 mer reads mapped to transposons (Supplementary Figure 1).

Chloroplast mapping reads
The sRNAs in leaf and root libraries mapped to the chloroplast

genome exhibit very strong sequence, sequence abundance and

distribution pattern differences. We found that 25% of the total

reads in leaf library were mapped to the chloroplast genome while

this percentage was only 0.3% in root libraries (Table 1). Nearly

50% of the 100 most abundant sRNAs were mapped to the

chloroplast genome in leaf library but none in root library.

Approximately 70% of the chloroplast genome matching reads

were mapped to rRNA and tRNA genes, ,23% of the reads

mapped to intergenic regions and 5.6% to protein coding regions.

The remaining reads were mapped to the junction sequences

crossing coding and non-coding sequences and repeat sequences

(Table 2).

The size class distribution of chloroplast matching reads does

not show enrichment for any particular size sRNAs (Supplemen-

tary Figure 1), but complexity is very low for the rRNA, tRNA and

intergenic region mapping sRNAs (Table 2). The highly accumu-

lated sRNAs were mapped to a few specific loci, which are shown

in the sRNA presence plots for the chloroplast genome (Figure 2).

Many sRNA loci were less than 100 bp away from the coding

regions such as atpH, rbcL, psaJ, clpP, psbH, rpoA and rps3, and

some were about 100–500 bp away from the coding regions of

psbZ, ndhJ, atpE, rpl33, rpl22, rpl23 and rps7. Some of these

sequences were the footprints of pentatricopeptide repeat (PPR) or

PPR-like protein binding sites that were previously experimentally

identified or predicted in barley and Arabidopsis [21].

The most abundant sequence among the chloroplast genome

matching sRNAs is a 31 nt long sequence: TATCGAGTA-

GACCCTGTCGTTGTGAGAATTC. The first nucleotide of

this sRNA maps to a position that is 59 nt upstream of the

translational start site of rbcL. In barley, that position is the start

transcriptional start site and the first ,30 nts of the 59UTR was

Figure 1. Overall summary of genome matching reads. (a) Size
class distribution for total reads (redundant reads); (b) size class
distribution for unique reads (non-redundant reads); (c) Complexity
distribution. Complexity is defined as the ratio between unique reads
and redundant reads.
doi:10.1371/journal.pone.0103590.g001
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the predicted binding site of the barley MRL1-PPR protein [21].

This 31 nt sRNA was further detected by northern blot analysis

(Figure 3) only in leaf tissue and it is most likely a PPR protected

RNA fragment.

Known miRNAs
Based on sequence similarity to miRNAs in miRBase (http://

www.mirbase.org/; release 20) [22], 22 miRNA families with

normalized abundance above 100 were identified (Table 3). In

total, 75 miRNA and 24 miRNA* variants of these families were

found (Supplementary Table 2). Among them, three miRNAs

miR528, miR444 and miR1432 are likely to be monocot specific

[23,24]. These miRNA variants were mapped to the bamboo

genome and the sequences of their flanking regions were further

investigated for potential hairpin structure. This analysis resulted

in 141 precursor loci, out of which 13 had both mature and

miRNA* sequences (Figure S2 and Table S3).

In root library, the most abundant sequences were phe-miRNA-

156a, 156b and 168 with normalized read value around 30, 000

(Table 3). Their read numbers were about 3–4 times higher than

in the leaf library where they also appeared to be accumulated at

high levels. Other abundant miRNAs were phe-miRNA-156c,

-159a, -159b, -162a, -166a, -167a, -169, -396a, and -535 with

normalized read value above 1,000, and phe-miRNA-160, -162b,

-164a, -164c, -166b, -166c, -167b, -169a, -169b, -171, -319, -396b,

-397, -398, -399, -528, -827 and -3979 with read numbers above

100. Among these miRNAs, the read numbers of some miRNAs

were below 20 in the leaf library such as phe-miRNA-399, -3979

and some variants of phe-miRNA-164 and 169, which were more

than 40 to hundreds times lower than in the root libraries (Table 3

and Table S4).

In the leaf library, the most abundant sequences were phe-

miRNA-156b, -167a, -397, 528 and -535 with normalized read

value above 10,000. Particularly, the read numbers of phe-

miRNA-528 and -397 were above 50,000, which were above 90

times more than in the root libraries. The total read numbers of

these miRNAs took up 1.4% of the entire library. Other miRNAs

with moderate levels are phe-miRNA-156a, -159a, -162a, -164b -

168, -169b, -396a, -408, -444a, -444b, and -1432 with read

numbers above 1,000; and phe-miRNA-159b, -162b, -164a,

-166a, -167b, -167c, -319, -396b, and -827 with normalized read

value above 100. Among these phe-miRNA-164b, -167a, -167b,

-408, -444, and -1432 were much more abundant in leaf than in

the root library. However, not all the variants in the same miRNA

families showed a similar difference between the two libraries.

Some miRNA variants show rather big differences in the two

libraries such as phe-miRNA-167, -169 and -164 (Table 3 and

Table S4). For example, we identified three variants of phe-

miRNA-164 in both libraries, and both libraries contained similar

amount of phe-miRNA-164a. However, the leaf library had more

phe-miRNA-164b and root library contained more of phe-

miRNA-164c.

New miRNAs identified in Moso bamboo
In addition to the known miRNAs that have been identified in

other species, we looked for new miRNAs that have not been

described in any species. We searched the two libraries for

potential new miRNAs using miRCat [25]. This algorithm

identifies potential hairpin structures at the flanking regions of

genome mapping sequences, considers the percentage of miRNA

and miRNA* reads out of the total number of reads that map to

the hairpin sequence (pre-miRNA sequence) and looks whether

the expected miRNA* sequence has also been sequenced. Using

the first two criteria, we identified seven potential new miRNAs
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with total normalized read value in the two libraries above 100

(Table 4 and Supplementary Figure 3). Since the miRNA*

sequences of several conserved miRNAs were not present in our

libraries, we included the two potential new miRNAs without

sequenced miRNA* (New-6 and New-7) in Table 4 because their

miRNA* may be present in future sRNA libraries. However, at

present those two cannot be classified as miRNAs. The new

miRNA, New-1, had high read numbers in both libraries. New-2

was more abundant in the root library while, New-3, New-4 and

New-5 were more abundant in the leaf library. These five new

miRNAs were also confirmed by Northern blot analysis and their

expression profile matched the expected pattern based on the

sequencing results (Figure 3).

miRNA targets
The database of coding sequences from the published bamboo

genome was used as input for the identification of putative targets

of bamboo miRNAs. Many mRNAs involved in various

biochemical procedures were predicted as targets for conserved

miRNAs (Table 3, Supplementary Table 5). The majority of the

predicted targets of the conserved miRNAs were also conserved

and confirmed in other plant species (Table 3).

phe-miRNA-528, -397, -408, -444 and miRNA-1432 are the

most differentially expressed miRNAs between the two libraries

with higher accumulation in leaf tissues (Supplementary table 4).

Among these, phe-miRNA-528, 444 and miRNA-1432 were

found to be monocot-specific so far [23,24]. Their predicted

targets did not include the ones that were confirmed in other

monocots [24,26,27] (Table 3). Nevertheless the putative targets of

the two most abundant miRNAs, miRNA-528 and miRNA-397,

include several family members of laccase precursors (Supplemen-

tary Table 5). In addition, the predicted targets of miRNA-528

and miRNA-408 include several plastocyanin-like domain con-

taining proteins, multicopper oxidase domain containing proteins

and polyphenol oxidase.

Using the current rules and coding sequence annotation, no

putative targets were predicted for the new miRNAs.

Other groups of sRNAs
We searched our sRNA libraries to identify the conserved

miRNAs that target ta-siRNA precursors such as miRNA-390,

miRNA-482 and miRNA-828. However, surprisingly we did not

find any of these miRNAs in either of the two libraries. Next we

tried to find the MIRNA genes for these miRNAs on the genome

using maize miRNA-482, tomato miRNA-828 (because miRNA-

828 has not been identified in any monocots so far) and bamboo

miRNA-390 [8] sequences. We did not find a potential gene for

miRNA-828 but it was expected as it seems to be dicot specific.

Figure 2. sRNA presence plot on the plastid genome for the root (a) and leaf (b) libraries. The abundance of the sRNAs is represented in
linear scale. The reads mapping to the positive and negative strands are indicated by the sign of the abundance (positive and negative, respectively).
The location of the chloroplast CDSs is indicated in red.
doi:10.1371/journal.pone.0103590.g002

Figure 3. Detection of bamboo miRNAs by Northern blot
analysis. The bottom panel shows the top half of the PAGE gel stained
with ethidium bromide showing equal loading of total RNA.
doi:10.1371/journal.pone.0103590.g003
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The mature maize miR-482 sequence mapped to 435 positions on

the bamboo genome (with 1 or 2 mis-matches); therefore we did

not investigate whether any of them produces miRNA. However,

we were able to identify a potential MIRNA-390 gene. Next we

tried to detect phe-miRNA-390 by northern blot analysis but our

attempt was not successful (Figure 3), therefore we did not look for

ta-siRNAs.

In addition to the sRNAs that were mapped to the well-

characterized non-coding and coding sequences about 37% of top

100 reads in root library and about 11% in leaf library were

mapped to intergenic or intron region. Among them, a series of

sRNAs ranging from 30–32 nucleotides were mapped to 14

different loci in the bamboo genome. One of them is the most

abundant sRNA in the root library which contributes more than

50% of 31 mer reads. The sum of their reads is about 16% of the

total genome matching reads in the root library. Using a probe

complementary to the most abundant 31 nt sRNA, Northern blot

analysis revealed a very strong signal in the root sample (Figure 3).

Accumulation of this sRNA was also confirmed in stem and leaf

tissues.

Discussion

In the present study, we have analysed the sRNA profiles in leaf

and root tissues of moso bamboo, one of the most important forest

grass. Several groups of sRNAs with known and unknown

functions were found in the sRNA libraries constructed by using

HD adapters. The accumulation of several sRNAs was verified in

the bamboo seedlings by northern blot analysis. The expression

patterns obtained by Northern blot analysis were consistent with

the sequencing results indicating the excellent quantitative

correlation between sRNA read numbers and its actual accumu-

lation in two different tissue samples. Thus, the HD adapters based

cDNA libraries appeared to be reliable for high through analysis of

sRNA populations in plant tissues.

Complex sRNA population in plant tissues
As in most plant sRNA libraries, 21 mer miRNAs and 24 mer

siRNAs were very abundant in the bamboo leaf and root sRNA

libraries. However, there were also differences between the two

tissues. For example, 25% of the sRNAs in the leaf library were

mapped to the chloroplast genome while very few reads in the root

library were derived from plastid. There is an obvious difference

between plastid development and chloroplast activity between the

tissues, which is also reflected at the sRNA level. A large number

of sRNAs were mapped to non-coding RNAs such as rRNAs and

tRNAs and UTRs or intergenic regions with extremely high

redundancy. Many of them were mapped to the PPR binding or

predicted PPR binding sites based on results in other plant species

indicating a valuable resource for future PPR binding site

prediction. The different sizes of sequences or accumulation of

these sRNAs in the two libraries may reflect the underlying

mechanisms in transcription or translation regulation of plastid

originated genes in these tissues.

In most previously published papers on sRNA profiling, the

proportion of rRNA/tRNA matching sRNAs has been smaller

than what we have found. However, the majority of the total RNA

consists of rRNAs and tRNAs are also very abundant. Neverthe-

less it will be interesting to understand in the future why some

sRNAs with high abundance were mapped to specific positions of

specific rRNAs or tRNAs. In addition, there are some other highly

abundant sRNAs that were mapped to intergenic or intron regions

and their accumulation levels also varied in the two tissues.

Further study of their origins and functions will help to understand

sRNA biology in plants.

However, it is unexpected that none of the known and

conserved TAS RNA targeting miRNAs were found or detected

in the leaf and root tissues of young bamboo seedlings. miRNA-

390 was cloned in the culm libraries of moso bamboo with

relatively low normalized read value [8], but not other miRNAs

such as miRNA482 and miRNA828. These two miRNAs were not

found in rice either.

The miRNA profiles are consistent with their biological
functions

A set of known conserved miRNAs was found in both libraries

in high abundance. Their predicted targets were also conserved or

confirmed in other plant species. These conserved miRNAs are

known to be important for leaf and root development by

Table 4. Putative new miRNAs.

abundance*

sequence length root leaf genomic Location miRNA star

New-1 GGCAAGTCTGTCCTTGGCTAC 21 4899.03 4478.41 PH01003459/60524–60544 CAGCCAAGGATGACTTGCCGC

PH01000289/15663–15683

PH01000289/65843–65863

PH01000289/120711–120731

New-2 GGCAGGTCTGTCCTTGGCTAC 21 2806.06 41.85 PH01000224/320759–320778 CAGCCAAGGAUGACUUGCCG

New-3 TCGTCGCAGGAGAGATGACGC 21 80.98 2727.07 PH01001122/158033–158053 TGGCGTCGTCTTCCTTGCGAC,
GCGTCGTCTTCCTTGCGACGA

New-4 TGGGCGAGTCTTCTTGGCTATG 22 11.57 179.19 PH01002310/112516–112537 TTAGCCAAGAATGGCTTGCCTA,
TAGCCAAGAATGGCTTGCCTAC

New-5 TCGGTTGCATTTGTAGTCCTA 21 10.52 274.67 PH01002844/54227–54247 TACGACTACAAATGCAACCGA

New-6 CTCCGAATTCTTGACAAACCGA 22 180.90 100.71 PH01001421/264619–264640 no

New-7 TTGCACTTGTCGACGGAGTTCC 22 46.28 149.11 PH01000975/466681–466702 no

PH01205740/575–596

*normalized read value.
doi:10.1371/journal.pone.0103590.t004
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regulating the expression of transcription factors involved in organ

development such as miRNA-156, -167, -166, -159, -169, -319, -

164, -160, -444, -171, -396 and miRNA-535. For example, both

miRNA-160 and miRNA-164 are required for root development

in Arabidopsis [28,29] while miRNA-164 is also required for

vegetative shoot development [30,31]. Along with miRNA-319,

miRNA-164 control leaf senescence [32,33]. mir319 also regulates

cell proliferation and leaf morphogenesis mediated by the

conserved miR396–GRF module [34]. Mir159 is essential for leaf

morphogenesis [35,36] and miRNA-167 plays a role in the

development of adventitious root in both dicots and monocots

[37–39].

Some of the above conserved miRNAs and other conserved

miRNAs such as miRNA-398, -399, -168 and -162 also respond to

environmental stresses and regulate nutrient uptake in both leaf

and root tissues [26,40–45]. Although these miRNAs were

expressed abundantly in both root and leaf tissues, the variants

of some miRNA families exhibited tissue preference, which may

be correlated with some tissue specific targets and/or tissue specific

regulation under environmental stresses. Some miRNAs exhibit

quite dramatic expression difference between the two tissues. For

example, phe-miRNA-156 was more abundant in roots particu-

larly one of its variants. Over-expressing of tomato miRNA-156

induces the development of high density of airy roots along the

stem [46]. The higher accumulation of bamboo miRNA-156 may

be correlated with its dense adventitious roots and airy roots along

the stem which help with its growth in poor soil. On the other

hand miRNA-528, -397 and -408 were expressed at much higher

levels in bamboo leaf tissue. miRNA-528 is also very abundant in

rice seedlings and young maize leaf tissues [47,48]. It is expressed

in maize shoot apex and leaf primordial and vasculature [49].

Through qRT-PCR, miRNA 397 and miRNA 528 were found to

most abundant in the leaves of Pinellia pedatisecta S. [50]. The

experimentally confirmed target in rice is Os06g37150 encoding

an ascorbate oxidase [27], and IAA-alanine resistance protein 1

(IAR1) gene [26]. One confirmed target in maize is copper/zinc

superoxide dismutase [44]. However, none of these genes’

homologs were predicted to be the targets of bamboo miRNA-

528. Instead, phe-miRNA-528 more likely targets polyphenol

oxidase genes including the laccase genes, another putative

polyphenol oxidase, a putative peroxidase and plastocyanin-like

proteins. In the meantime, miRNA-397 and miRNA-408 were

predicted to target different laccases and a plastocyanin-like

protein and other polyphenol oxidases, respectively. Both poly-

phenol oxidases and plastocyanin proteins are copper containing

oxidases. miRNA-397 has been confirmed to be involved in cell

wall development by down-regulating laccases in Arabidopsis and

poplar [51]. Both miRNA-528 and miRNA-397 also respond to

diverse biotic and abiotic stresses including low copper availability

[26,40,41,43]. Thus these three miRNAs that were preferentially

expressed in leaf tissues may work together in regulating stress

response and copper homeostasis. For example, they may down

regulate the expression of copper-containing proteins to accom-

modate the optimum availability of copper for photosynthesis, in

order to store enough energy for rapid growth.
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Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by

complex regulation of AUXIN RESPONSE FACTOR transcripts and

microRNA abundance. Plant Cell 21: 3119–3132.

39. Meng Y, Huang F, Shi Q, Cao J, Chen D, et al. (2009) Genome-wide survey of

rice microRNAs and microRNA–target pairs in the root of a novel auxin-

resistant mutant. Planta 230: 883–898.

40. Gustafson AM, Allen E, Givan S, Smith D, Carrington JC, et al. (2005) ASRP:

the Arabidopsis small RNA project database. Nucleic Acids Res 33: D637–D640.

41. Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, et al. (2012)

Role of microRNAs and other sRNAs of plants in their changing environments.

J Plant Physiol 169: 1664–1672.

42. Sunkar R, Girke T, Jain PK, Zhu J-K (2005) Cloning and characterization of

microRNAs from rice. PLant Cell 17: 1397–1411.

43. Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other

small RNAs from Arabidopsis. Plant Cell 16: 2001–2019.

44. Xu Z, Zhong S, Li X, Li W, Rothstein SJ, et al. (2011) Genome-wide

identification of microRNAs in response to low nitrate availability in maize

leaves and roots. PloS one 6: e28009.

45. Zhao B, Liang R, Ge L, Li W, Xiao H, et al. (2007) Identification of drought-

induced microRNAs in rice. Biochem Biophys Res Commun 354: 585–590.

46. Zhang X, Zou Z, Zhang J, Zhang Y, Han Q, et al. (2011) Over-expression of sly-

miR156a in tomato results in multiple vegetative and reproductive trait

alterations and partial phenocopy of the sft mutant. FEBS Lett 585: 435–439.

47. Kang M, Zhao Q, Zhu D, Yu J (2012) Characterization of microRNAs

expression during maize seed development. BMC Genomics 13: 360.

48. Liu B, Li P, Li X, Liu C, Cao S, et al. (2005) Loss of function of OsDCL1 affects

microRNA accumulation and causes developmental defects in rice. Plant Physiol
139: 296–305.

49. Javelle M, Timmermans MC (2012) In situ localization of small RNAs in plants

by using LNA probes. Nat Protoc 7: 533–541.

50. Wang B, Dong M, Chen W, Liu X, Feng R, et al. (2012) Microarray

identification of conserved microRNAs in Pinellia pedatisecta. Gene 498: 36–40.

51. Lu S, Li Q, Wei H, Chang M-J, Tunlaya-Anukit S, et al. (2013) Ptr-miR397a is

a negative regulator of laccase genes affecting lignin content in Populus
trichocarpa. Proc Natl Acad Sci USA 110: 10848–10853.

Bamboo Small RNAs

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e103590


