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Abstract

Background: Genome-wide association studies are often limited in their ability to attain their full
potential due to the sheer volume of information created. We sought to use the random forest
algorithm to identify single-nucleotide polymorphisms (SNPs) that may be involved in gene-by-
smoking interactions related to the early-onset of coronary heart disease.

Methods: Using data from the Framingham Heart Study, our analysis used a case-only design in
which the outcome of interest was age of onset of early coronary heart disease.

Results: Smoking status was dichotomized as ever versus never. The single SNP with the highest
importance score assigned by random forests was rs201 1345. This SNP was not associated with age
alone in the control subjects. Using generalized estimating equations to adjust for sex and account for
familial correlation, there was evidence of an interaction between rs201 1345 and smoking status.

Conclusion: The results of this analysis suggest that random forests may be a useful tool for
identifying SNPs taking part in gene-by-environment interactions in genome-wide association studies.

Background development of novel therapeutics, intervention strate-
The prospects and promises of the completed Human  gies for personalized treatment of common diseases, and
Genome Project include improvement in the new diagnostic methods for both rare and common
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diseases. While completion of the project took years,
recent technological advances have reduced costs such
that genome-wide association studies (GWAS) are a
popular design for genetic epidemiological studies.
However, the computational matrix remains daunting,
often with genotypes from several hundred thousand
SNPs collected on thousands of individuals.

Coronary heart disease (CHD) is a common disorder
with multiple risk factors and a recognized likelihood of
significant gene-by-environment interactions. As an
example, a candidate gene approach has shown that
the hazard ratio of composite cardiovascular disease is
elevated preferentially in smokers having the APOE ¢4
allele, with a significant interaction between genotype
and smoking status [1,2].

Though GWAS may include hundreds of thousands of
single-nucleotide polymorphisms (SNPs), current com-
putational and practical limitations often prevent
researchers from fully exploiting the genetic information
available. The rate at which genetic data are generated
greatly outpaces our ability to fully analyze them. Many
studies are faced with difficult choices to make the
analyses feasible. Even though there is evidence that
many diseases do not follow the single-gene mendelian
inheritance model, genetic analyses frequently cannot
account for all possible interactions due to limited
computational resources.

For these reasons, machine learning has become
increasingly popular with large genetic datasets. Machine
learning involves iterative building of predictive models
from complex datasets, and has the potential to resolve
these genome-wide computational challenges. The ran-
dom forest (RF) algorithm, a type of machine learning,
can be used to reduce the data and identify potential
gene-by-environment interactions. This approach is an
appealing alternative to other analytical methods for
GWAS that typically base selection of “significance”
entirely on p-values. As a part of Genetic Analysis
Workshop 16 (GAW16), this paper explores the ability
of RF algorithms to identify SNPs that may be involved
in gene-by-smoking interactions related to our outcome
of interest, age of early onset CHD.

Methods

Dataset

The Framingham Heart Study (FHS) GWAS data
(GAW16 Problem 2) was used in this analysis. The
data includes genotype, phenotype, environmental
exposure status, and family structure information on
7,130 participants from three enrolment periods with
cohort follow-up of over 100,000 person-years
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(estimated). Local institutional review board approval
was obtained.

Study design

We used age at incident of CHD or censoring as the
outcome variable. Hard CHD was classified as recog-
nized myocardial infarction diagnosed through an
electrocardiogram or enzymes, coronary insufficiency,
or death attributed to CHD. The Third Generation of
FHS was excluded from analyses because there was no
follow-up information available beyond enrollment,
there were only 26 cases of CHD, and most of these
were considered previously existing due to minimal
information at the enrollment visit regarding the CHD
incident date.

Dense genotyping of approximately 550,000 SNPs across
22 autosomal chromosomes for each FHS subject was
performed by Affymetrix using the 250 k Sty, 250 k Nsp,
and the supplemental 50 k platforms (GeneChip Human
Mapping 500 k Array Set and the 50 k Human Gene
Focused Panel). Quality control of the genotype data was
performed with PLINK v1.0.3 [3,4]. SNPs were elimi-
nated if the minor allele frequency was <5% (111,290
SNPs), if >5% of the data was missing for a single
SNP (31,975 SNPs), or if the genotype frequencies
deviated significantly from Hardy-Weinberg equilibrium
(p < 0.001; 12,622 SNPs). A total of 355,649 SNPs met
all quality-control criteria. Additionally, 29 individuals
missing data for >5% of the SNPs were removed.

Phenotype and exposure information were tabulated
with SAS v9.1.3 (SAS Institute Inc, Cary, NC) and a
categorical ever/never smoking status variable was
created using the most recent data from a visit before
incident CHD. To account for potential period effects,
we estimated the decade of birth for each participant and
created a categorical variable for each decade. While the
RF algorithm cannot account for pedigree explicitly, we
created binary indicators for each family ID to include as
covariates. We used perl scripts for data management,
creating a singe flat file that merged genotype, pedigree,
phenotype, and exposure data.

RF analysis

The RF algorithm is a machine-learning classifier made
up of many decision trees and has qualities well suited
for genome-wide, gene-by-environment and gene-by-
gene interaction studies [5]. Each tree is built from a
training set constructed by sampling a number of cases
with replacement at random from the data. At a given
node (i.e., decision point), the algorithm finds the
variable that partitions the remaining cases into two
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subsets, L and R, so as to maximize the heuristic best-
split criterion:

2 2

1 1
— 2 outcome(x) | +— Z outcome(x)
IL| IR]

xel xeR

The procedure continues recursively, so that the subsets
L and R are partitioned by left and right child nodes,
respectively, and terminates when the partitions are
sufficiently small. The resulting terminal nodes are
assigned values equal to the mean of the outcome (i.e.,
age) in the corresponding partitions. This process is
repeated to produce many decision trees (a forest)
whose predicted outcomes are combined into a single
value by taking a majority vote (for categorical out-
comes) or finding the mean value (for numerical
outcomes). The data that were excluded from the
training set form the testing set, which is used to
gauge the accuracy of a tree. To measure the importance
of a particular variable on a given tree, the values of
that variable are randomly permuted among the data
in the testing set and the predictions are recomputed.
The difference between the two predictions provides
a measure of variable importance, with important
variables showing a larger discrepancy between the
predictions.

The RF was run using a derivative of the publicly
available RF regression code [6], rewritten in the C
programming language. The new program follows the
same approach described by Breiman, but adds memory
management optimizations that make it feasible to
perform a RF analysis using several hundred thousand
input variables [7]. Each tree was built using 224 cases
sampled with replacement from the total pool of 224 cases
via bootstrap aggregating, a process that allows for
simulation of larger data sets and minimizes overfitting
that can occur in traditional training/validation set
design. Following Breiman’s recommendations, one-
third of the input variables (includes all SNPs, covari-
ates, and binary family ID variables) were randomly
chosen for consideration at each node in a decision tree,
and the variable from this subset that produced the best
(heuristic) split was found. The tree nodes were
recursively split until at most five cases remained in
each terminal node.

The inclusion in the data set of multiple members from a
single family could result in a SNP mistakenly being
reported as important. To guard against this possibility,
the importance of the family ID variable was also
measured. If a SNP appeared to be important solely
due to similarity between family members, then the
family ID variable would also be reported as important.
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SNPs identified as important by RF for determining the
outcome (age of CHD onset) were run in the controls to
determine whether the association was age-related.
Smoking status was treated as a simple covariate in the
RF model. The interaction between the SNP, smoking
status, and CHD was then determined using generalized
estimating equations (GEE) via PROC GENMOD in SAS
to account for family structure and adjust for sex. The
number of alleles was treated as a class variable,
therefore assuming no genetic model.

Results

From the combined Original Cohort and Offspring
Cohort of FHS, there were 224 incident CHD cases and
2,909 controls with complete data meeting the quality
control criteria discussed above; 166 of the cases were
classified as ever-smoked at the visit before the incident
event, and of the 224 cases, there were 167 unique
family IDs (i.e., there was only one individual in the
family) and only 38 cases were a first-degree relative of
one of the other cases. Among controls, 1,530 were
classified as “ever smoked” at the last visit with available
data. The RF algorithm generates a variable importance
score for each variable included in the analysis. After
ranking the covariate importance score in each of four
runs of RF using 500 trees each, there was one SNP
(rs2011345) that ranked as the most important SNP and
within the top 10 of all ranked covariates in three of the
four runs (Table 1). The GEE results for the selected SNP
showed a main effect for both the SNP and smoking
status, as well as evidence of an interaction. The
interaction term was significant by a -2 log likelihood-
ratio test comparing the full and reduced models
(p-value = 0.002). In the 0-allele group, non-smokers
had a mean age of incident CHD of 75.1 yr compared to
70.7 yr among smokers (Figure 1). This was not
statistically significant (Wald p-value of 0.19). There
was a statistically significant difference between smokers
and non-smokers in the 1-allele group, where non-
smokers had a higher mean age of incident CHD
compared to smokers (67.7 vs. 61.3 yr), with a Wald
p-value of 0.003. The 2-allele group did not differ
statistically (Wald p-value 0.30), but the direction of the
relationship differed such that smokers had a slightly
higher mean age of incident CHD (62.8 vs. 66.2 yr).
Similar results were obtained using t-tests when ignoring
family membership and when different correlation
matrices were specified in the GEE procedure.

To determine whether the identified SNP was generally
associated with age rather than age at CHD onset, the
same analysis of 12011345 was run among the control
group with age at last contact as the outcome, and there
were no statistically significant main effects or
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Table I: Top 10 covariates returned by four RF runs with 500 trees
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Run | Run 2 Run 3 Run 4*

Rank Covariate Importance Covariate Importance Covariate Importance Covariate Importance
| Birth decade 1900 16.3077  Birth decade 1900  20.2087  Birth decade 1900 17.6408  Birth decade 1900 19.6011
2 Birth decade 1930 8.8219 Birth decade 1930 8.2609 Birth decade 1930 11.7332  Birth decade 1930 10.2538
3 Smoking 1.7807 Smoking 2.5351 Birth decade 1920 1.7106 Smoking 2.8397
4 Birth decade 1920 [.1131 Birth decade 1920 0.6642 Smoking 1.6917 Birth decade 1920 1.6002
5 Sex 0.9290 rs2011345_C 0.4265 Sex 0.8159 Sex 0.4328
6 rs2011345_C 0.4912 rs32732_G 0.3341 rs3866685_A 0.2945 rs2566762_T 0.2865
7 rs9349061_T 0.4427 rs17456025_A 0.3095 rs2011345_C 0.2915 rs549582_T 0.2757

rs732998_T 0.2739 rs2396500_G 0.2993 rs4849404_C 0.2714 rs963274_T 0.2424
9 rs949753_G 0.2719 Sex 0.2935 Birth decade 1910 0.2694 rs4490198_G 0.2059
10 rs1686567_A 0.2664 rs6565249_T 0.2538 rs12052316_A 0.2594 rs17456025_A 0.2047

2rs2011345 was ranked 30, with an importance score of 0.1268.

interactions present. This suggests that the association
found among the cases is not due only to the age or
survival of the participants.

Conclusion

Given the computational challenges of gene-by-environ-
ment interaction analysis in the setting of GWAS, we
sought to optimize a publicly available machine learning
algorithm to minimize hardware limitations. The opti-
mizations were mostly related to memory use. Compar-
ing execution speed using datasets smaller than the full
FHS GWAS data, the optimized code ran in about 1/30"
of the time needed to execute the original code. Future
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Mean age of CHD event among non-smokers and
smokers by rs2011345 C allele count. Age of CHD
onset adjusted for sex and family membership. Vertical bars
represent 95% confidence intervals.

analyses could include formal testing of the computa-
tional efficiency with increasing dataset sizes.

The optimized RF algorithm identified smoking status
and the 152011345 SNP as important classifiers in RF.
Subsequent regression models confirmed that the SNP
and smoking status had significant main effects with the
outcome, and also a significant interaction. While RF
deemed this SNP important, it may have been overlooked
had the analysis been based exclusively on regression and
p-values. Out of the 355,649 SNPs tested in standard tests
of association using linear regression, rs2011345 ranked
as the 2,111™ smallest p-value (p = 0.006) in a sex-
adjusted model, and only the 29,776™ smallest p-value
(p = 0.079) for the sex-adjusted SNP-by-smoking status
interaction model in PLINK (treating allele count as a
linear variable). Other important covariates identified by
the RF runs included sex, smoking status, and decade of
birth-the latter picking up a potential survival bias where
older individuals included in the study are more likely to
have a later age of onset.

Whereas the relative magnitude of this interaction
compared with all other potential interactions is
presently untested, the following correlative information
is of interest. SNP rs2011345 is approximately 11 kb
from the 3" end of the flavin-containing monooxygenase
4 gene (FMO4, Map Viewer build 36.3). This region
appears to be in linkage disequilibrium with the last two
exons of FMO4 in the CEU cohort from the HapMap
project (build 36). This gene is part of a family of
enzymes involved in the metabolism of nicotine and
other tobacco-related products. Additionally, this region
(1g24) has been linked to essential hypertension [8].
Thus, the highest ranked candidate of this optimized RF
algorithm has at least minimal biological plausibility
worth exploring in future studies of CHD.

Our study has a few limitations. First, sample size
limitations should be considered; while the interaction
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between rs2011345 and smoking was statistically sig-
nificant, the study contained only 224 incident cases of
CHD. Second, the interpretation of results is also limited
by a relatively crude measure of smoking exposure. The
available information on smoking behavior only pro-
vided a cross-sectional glimpse of the subject’s smoking
habits and, in some cases, incident CHD occurred a
decade or more after the last known smoking status.
Furthermore, the RF algorithm cannot account for
familial correlation using traditional approaches. How-
ever, we were able to confirm the RF findings using a
GEE model that accounts for familial correlation. While
the 224 cases in this analysis did not have a large degree
of relatedness, it could be an issue in the larger FHS
population.

Future work addressing practical issues of RF may
enhance its attractiveness as an analysis tool for GWAS.
We used runs of 500 trees in this analysis and found the
top covariates in the output to be more stable than in
runs of 200 trees. Runs of 1,000 and 1,500 trees did not
produce markedly different results. Another important
problem is reconciling the different SNPs identified by
RF with traditional p-value based methods. Nonetheless,
it appears as though RF can provide an alternative to
traditional regression techniques to reduce the high-
dimensional data space of GWAS searching for gene-by-
environment interactions.
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