
����������
�������

Citation: Skrajnowska, D.; Jagielska,
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Abstract: A study was conducted to determine the effect of long-term supplementation with selenium
and copper, administered at twice the level used in the standard diet of rats, on the content of selected
elements in the femoral bones of healthy rats and rats with implanted LNCaP cancer cells. After
an adaptation period, the animals were randomly divided into two experimental groups. The rats
in the experimental group were implanted with prostate cancer cells. The rats in the control group
were kept in the same conditions as those in the experimental group and fed the same diet, but
without implanted cancer cells. The cancer cells (LNCaP) were intraperitoneally implanted in the
amount of 1 × 106 (in PBS 0.4 mL) at the age of 90 days. The content of elements in the samples
was determined by a quadrupole mass spectrometer with inductively coupled plasma ionization
(ICP-MS). In the femoral bones of rats with implanted LNCaP cells, in the case of the standard diet
and the copper-enriched diet, there was a marked decreasing trend in the content of the analysed
elements relative to the control rats. This may indicate slow osteolysis taking place in the bone
tissue. Contrasting results were obtained for the diet enriched with selenium; there was no significant
reduction in the level of these elements, and there was even an increase in the concentrations of
Fe and K in the bones of rats with implanted LNCaP cells. Particularly, numerous changes in the
mineral composition of the bones were generated by enriching the diet with copper. The elements that
most often underwent changes (losses) in the bones were cobalt, iron, manganese and molybdenum.
The changes observed, most likely induced by the implantation of LNCaP cells, may indicate a
disturbance of mineral homeostasis.

Keywords: selenium; copper; cancer; supplementation; elements

1. Introduction

Bone tissue, apart from its support and motor functions and protection of internal
organs, plays an important role in metabolic changes in the body, especially mineral
metabolism and hematopoietic processes [1,2]. In normal conditions, the entire human
skeleton undergoes remodelling over the course of about 5–10 years [3,4]. Bone remodelling
takes place due to the metabolic activity of osteoblasts, osteocytes, and osteoclasts [5,6]. The
process is hormonally regulated and depends on the presence of essential mineral elements.
The content of structural, trace, and toxic elements in the bones and their correlations are
also associated with the effect of environmental factors, diet, and disease [2,7–12]. Our
study analysed supplementation of the diet of rats with minerals that play an important
role in the functioning of the body, the effects of which are very closely associated with the
dose and degree of saturation. We analysed the effect of a chronic intake of selenium and
copper in the diet, at double the level used in the standard (unsupplemented) diet, on the
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content of selected minerals in the femoral bone of healthy rats and rats with implanted
LNCaP prostate cancer cells. The choice of these two elements was based on the assumption
that they can be considered in the context of anti- and pro-cancerous effects as well as
their significant role in bone metabolism [13–19]. Copper is a cofactor for the enzyme
lysyl oxidase, responsible for collagen crosslinking. Impairment of the activity of this
enzyme leads to a weakening of the bones. Moreover, at appropriate concentrations copper
indirectly scavenges free radicals as a cofactor of superoxide dismutase, and also directly
inhibits activity of osteoclasts [13,20,21]. On the other hand, excess copper can reduce lipid
metabolism and also generate lipid peroxidation and interfere with bone metabolism by
producing excess amounts of free radicals [14,22,23]. Copper deficiency can also lead to
bone developmental defects, hypoplasia, increased fragility due to decreased strength,
impaired bone formation, changes in cartilage, and increased risk of osteoporosis in elderly
people [14]. In addition, studies on genetic diseases such as Menkes syndrome and Wilson
disease, associated with severe copper deficiency and severe copper toxicity, respectively,
have made it possible to explain disturbances in processes involving copper, in both bone
tissue (osteomalacia, osteoporosis, and cartilage damage) and other tissues [24].

Copper also plays an important role in angiogenesis, including tumour angiogenesis,
by attaching to proangiogenic growth factors and increasing their affinity for endothelial
cells (as in the case of angiogenin), regulating the secretion of angiogenic cytokines (FGF1
and IL-1α), and inducing expression of angiogenic growth factors (e.g., VEGF) [15,25–28].

Selenium, as a component of selenoproteins functioning as antioxidants, significantly
influences bone metabolism, partially due to its important role in the proliferation and
differentiation of osteoclasts or osteoblasts, enhancing the differentiation of osteoblasts
by reducing free radicals [16,29,30]. Bone remodelling partially depends on a controlled
amount of reactive oxygen species (ROS). An excess of ROS inhibits the differentiation of
osteoblasts of bone marrow stem cells (BMSC) and stimulates the differentiation and for-
mation of mature osteoclasts [16,31,32]. This takes place through various mechanisms.
The main pathway regulating the balance between osteoblasts and osteoclasts is the
RANK/RANKL/OPG system (receptor activator of nuclear factor κB/receptor activator
of nuclear factor κB ligand/osteoprotegerin) [33]. Osteoprotegerin is a protein belonging
to the family of tumour necrosis factor receptors (TNFR). RANKL belongs to the family
of tumour necrosis factors (TNF) [34]. RANKL is produced by mature osteoblasts and
their precursors and by activated T cells. It is a factor activating the process of formation
of mature osteoclasts and a further cascade of signals essential for their differentiation,
fusion, functioning, and survival. RANK ligand acts through the RANK receptor located
on the surface of osteoclasts [34–36]. RANK ligand is strongly expressed on osteoblasts,
osteoclasts, primary mesenchymal cells surrounding cartilage, chondrocytes, endothelial
cells, activated T cells, and immature thymocytes (CD4/CD8) [34,36]. Osteoprotegerin is
capable of binding to RANKL (as a soluble receptor), which prevents RANKL from binding
to RANK. By binding RANKL, OPG blocks maturation, activates osteoclasts, and increases
their apoptosis [35–37]. The balance between RANKL and OPG regulates the development
and activation of osteoclasts, thereby regulating bone metabolism. Differentiation of os-
teoclasts can be regulated through activation of the receptor activator of nuclear factor
κB ligand (RANKL) or macrophage colony-stimulating factor (M-CSF). Administration
of Se has been shown to inhibit RANKL-induced gene expression and phosphorylation
of IκBα inhibitor, decreasing ROS production and silencing the osteoclast differentiation
signal [16,37]. Selenium may protect bone marrow stem cells from H2O2-induced inhibition
of osteoblast differentiation, including through activation of the signalling pathway of
ERKs (extracellular signal-regulated kinases), which are responsible for regulating cell
proliferation and differentiation [29]. In addition, in conditions of low Se concentrations,
osteoblasts show reduced expression of selenoproteins, especially glutathione peroxidases
(GPX) and thioredoxin reductases (TRR), and chromosome damage may occur, leading to
the appearance of micronuclei [38].
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Selenium deficiency in the diet of animals leads to a decrease in bone mineral density
(BMD) and bone volume by increasing bone resorption and microarchitectural changes [39].
In humans, the selenium level is inversely correlated with bone remodelling and positively
correlated with BMD, especially in postmenopausal women with euthyreosis [17] and in
healthy elderly men [19]. Adequate selenium intake has been inversely correlated with a
decreased risk of osteoporotic femoral neck fracture [40]. Selenium deficiency and gene
polymorphisms responsible for this element can lead to Kashin–Beck disease, which causes
impairment of bone growth and degenerative joint diseases [41–44]. Selenoproteins ex-
pressed in human foetal osteoblasts are believed to protect bone against oxidative stress,
which can contribute to the development of osteoporosis in later life, mainly by inhibiting
the differentiation of osteoblasts of bone marrow stem cells. Many studies have attempted
to verify the link between selenium in the diet or serum and bone mineral density (BMD),
osteoporosis, or osteoporotic fractures [45]. Of 10 representative studies on this subject,
2 showed that selenium in the serum and diet are probably positively correlated with
BMD [19,46] and 3 found that dietary selenium is negatively associated with osteoporotic
fractures [40,47,48]. One study found no link between dietary selenium and BMD [49] and
the other four found that neither dietary nor serum selenium is correlated with osteoporo-
sis [50–53]. The authors of the meta-analysis of these studies stressed that their conflicting
results may be due to factors such as differences in the study design. It remains unclear
whether selenium content in the diet and in the body can directly modulate BMD and
influence the pathogenesis of osteoporosis [45].

Another meta-analysis investigated whether there was a correlation linking bone
condition with selenium concentration in the blood, selenium intake with meals, and
the use of selenium supplements. The analysis included 21 studies: 10 cross-sectional
studies; 6 case–control studies; 2 randomized, double-blind, placebo-controlled studies;
2 cohort studies; and 1 longitudinal study [33]. Most of the studies showed a positive link
between selenium and bone health, BMD, and a reduced risk of osteoporotic fractures.
However, two large randomized studies found that selenium supplementation caused no
significant changes [54]. In the first study, conducted only in post-menopausal women, this
finding may have been due to a higher initial dietary selenium intake. In the second study,
conducted in older people with reduced selenium levels, measurement of bone turnover
markers after 6 months showed a significant linear decrease in the level of procollagen type
1 N-terminal propeptide (P1NP), which indicates reduced bone formation. No significant
effect of selenium supplementation on other bone formation markers was observed. Hence,
confirmation of a significant effect of selenium on bone health requires further randomized
clinical studies [55].

There are many hypotheses regarding the potential anticarcinogenic mechanism of
the action of selenium. The strongest positive effect may be the antioxidant activity of
glutathione peroxidase and selenoprotein P [18,56]. Selenium plays a role in the regulation
of protein folding, mediated by its effect on the necrosis and apoptosis of the endoplasmic
reticulum [57]. Apoptosis is the process of programmed suicidal cell death. It takes place via
several pathways, such as the endoplasmic reticulum stress pathway [58,59]. Necrosis, on
the other hand, is induced by external factors, mainly physical (e.g., low or high temperature
or radiation), and mechanical factors, which degrade cells [60]. Selenium also exerts a
stabilizing effect on DNA [18]. An inverse relationship was noted between the selenium
concentration in the blood and the risk of prostate cancer [18] and selenium was shown to
inhibit the proliferation of prostate cancer cells stimulated by exposure to cadmium [61,62].
However, the effect of selenium is highly subject to the dose–response relationship [61]. By
oxidizing or reducing external –SH groups and disulphide bridges of growth factors and
functional proteins, selenium functions as a redox switch. However, for this purpose, it
must reach a concentration for which a further increase allows it to initiate apoptosis, e.g., by
DNA-fragmenting methyl selenol (CH3SeH, a metabolite of selenium compounds) [18,63].
The capacity of selenium to cause the death of cancer cells is more pronounced in the case
of androgen-dependent lines. Androgens cause multiplication and oxidation in all prostate
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cells, healthy and cancerous. If selenium compounds reach a sufficient concentration,
they can inhibit the G1, G2, and S phase of the cell cycle, thereby preventing tumour
formation [64–66]. Selenium can also directly react with carcinogens (e.g., DMBA or
aflatoxins), preventing them from binding to DNA [67]. Many studies are conducted on the
relationships between selenium and cancer risk. Epidemiological studies and randomized
clinical trials show varied effects in humans. Preventive and therapeutic effects of selenium,
as well as carcinogenic effects, have been hypothesized. The authors of several studies
have reported a correlation between high selenium concentrations in the blood and the
appearance of cancer [18,68]. Some studies on breast cancer have demonstrated a protective
effect of selenium, while others have shown no association [18,69].

The materials for our study were the femoral bones of rats, because prostate cancer
shows a particularly strong tendency to form metastatic foci in this tissue [7,70]. Bone metas-
tases are usually located in the spine, ribs, pelvis, and femoral and humeral bones, where
they disturb physiological bone processes, haematopoiesis, and the immune system [71].
Two basic types of metastatic changes in the skeleton are distinguished: osteolytic (stim-
ulation of osteoclasts) and osteoblastic (stimulation of osteoblasts). Osteoblastic changes
can take place in the bones due to the production of fibroblasts, insulin-like and vascular
endothelial growth factors (FGF, IGF, and VEGF), and endotheline-1 by cancer cells [72].
Cancer cells involved in metastasis to the bones involve the host microenvironment in
this process. A well-known consequence of osteolytic metastases in the bones is hyper-
calcaemia, caused by the release of calcium stored in the bones [73–75]. Do other trace
minerals forming bone tissue undergo changes, and to what extent?

The aim of the study was to identify differences in the mineral composition of the
bones of rats with implanted LNCaP prostate cancer cells and to determine whether specific
modification of the diet, involving the use of additional copper and selenium ions, would
affect the content of elements in the bones.

2. Materials and Methods
2.1. Ethics Approval Statement

This research and guiding principles in the care and use of laboratory animals were
approved by the 2nd Local Ethical Committee on Animal Experiments at the Medical
University of Warsaw.

2.2. Dietary Ingredients

Labofeed H feed, used in this research, is intended for adult rats and provides them
with optimal conditions for growth and reproduction. Laboratory fodder Labofeed H was
purchased from the Morawski Feed and Concentrates Production Plant (Kcynia, Poland).

The diet contained the following compounds (per 1 kg): protein (210 g), fat (39.2 g),
fibre (43.2 g), ash (55 g), carbohydrates (300 g), vitamin A (15,000 IU), vitamin D3 (1000 IU),
vitamin E (90 mg), vitamin K3 (3 mg), vitamin B1 (21 mg), vitamin B2 (16 mg), vitamin
B6 (17 mg), vitamin B12 (80 µg), pantothenic acid (30 mg), folic acid (5 mg), nicotinic acid
(133 mg), Ca (10.0g), P (8.17 g), Mg (3 g), K (9.4 g), Na (2.2 g), Cl (2.5 g), S (1.9 g), Fe (250 mg),
Mn (100 mg), Zn (76.9 mg), Co (2.0 mg), I (1.0 mg), Cu (21.3 mg), and Se (0.5 mg).

2.3. Animal Experiments and Experimental Procedure

Forty-one healthy male Sprague-Dawley rats were obtained from the authorized
animal care unit of the Animal Laboratory, Department of General and Experimental
Pathology from the Medical University of Warsaw. The animals were housed under the
standard conditions at 22 ◦C, the relative humidity of 55%, and 12-h light–dark cycle. They
had free access to food (standard diet: Labofeed H) and deionized water (from Milli-Q
System (Merck, Millipore, Germany)). The experiment was conducted over 90 days. Before
the start of the experiment, animals were kept in the same cages 10 days for acclimatization
(10 days—rats’ age 60 to 70 days). After the adaptation period, the animals were randomly
divided into three dietary groups: standard diet and supplementation with Cu or Se. Every



Nutrients 2022, 14, 1285 5 of 21

dietary group was divided into the experimental group (with implanted cancer cells—Exp)
and the control group (without implanted cancer cells—Ctrl). The LNCaP prostate cancer
cells were injected intraperitoneally, in the amount of 1 × 106 (in PBS 0.4 mL), into the rats
at day 90 of their lifetime. The certified line of androgen-dependent human prostate cancer
cells was obtained from ATCC bank (American Type Culture Collection, Menassas, VA,
USA). LNCaP cells were maintained in DMEM medium supplemented with 10% (v/v) FBS,
sodium pyruvate (1 mM), penicillin (100 U/mL), and streptomycin (100 µg/mL) at 37 ◦C
in a 5% CO2 humidified atmosphere.

The rats were fed extra supplements suspended in deionized water, 0.4 mL daily, from
70 days until 150 days of age, when they were sacrificed by decapitation. The animals that
were fed only the standard diet (without supplementation) received 0.4 mL of water. The
doses of trace elements were selected based on the values used in the Labofeed H diet.
According to the level of trace elements in the Labofeed diet, the rats were fed, via gavage,
extra supplements of the following: double dose of Cu and Se.

The animals from both groups—experimental (Exp) and control (Ctrl)—were provided
with the minerals by oral gavage, in a solution:

- Copper—0.639 mg/mL (0.256 mg Cu(II)/day/rat, as CuSO4·5H2O in aqueous suspension);
- Selenium—0.018 mg/mL (0.0072 mg Se(VI)/day/rat, as Na2SeO4 in aqueous suspension).

The materials for the study were rat femoral bones. Following resection, the adjacent
soft tissues, i.e., the joint capsule and muscle, were removed from the bones, and then they
were frozen at −80 ◦C. Immediately before analysis, the bones were thawed, dried for 10 h
at 120 ◦C, and mineralized in a 5 mL 65% HNO3 solution (Plazmatronika mineralizer). Then,
deionized water was added to the digest solution to a volume of 10 mL. The content of ten
elements (Ca, K, Fe, Sr, Zn, Ni, Cu, Mn, Co and Mo) was determined in the digest solutions
by inductively coupled plasma mass spectrometry (ICP-MS), using the following dilutions:

(1) 5 fold for determination of Co, Cu, Mn, Mo, Ni, Se and Zn;
(2) 500 fold for determination of Ca, K, Sr and Fe.

2.3.1. Chemicals and Reagents

Calibration solutions were prepared daily from ICP multi-element standard Merck VI
(Merck, Darmstadt, Germany). Required dilutions of standard and samples after digestion
were obtained by using deionized water from Milli-Q System (Merck, Millipore, Germany).

2.3.2. Analytical Procedure

The content of elements in the samples was determined with the 5-point calibration
curve method (standards from 1 µg/L to 100 µg/L for Mg, K, Mn, Co, Cu, Ni, Sr, and
Mo; standards from 10 µg/L to 1000 µg/L for Fe, Se, and Zn; standards from 100 µg/L to
10,000 µg/L for Ca).

2.3.3. Instrumentation

Quadrupole mass spectrometer with inductively coupled plasma ionization, ICP-MS,
(Nexion 300D, Perkin Elmer Sciex, 940 Winter Street Waltham, MA 02451, USA) was used.
Solutions were directly introduced into the Meinhard nebulizer and quartz cyclonic spray
chamber. The spectrometer working conditions (Table 1) were verified daily and optimized
in order to obtain the lowest level of oxides and double charged ions as well as the maximal
sensitivity of isotopic detection.

2.4. Statistics

Student’s t-test was used to compare the content of individual elements in the control
vs. experimental groups, separately for each diet. Differences between groups were
considered significant at p < 0.05. For the comparison of all groups, first the Kruskal–
Wallis test was performed. At each step, all obtained p-values were corrected using the
Benjamini–Hochberg FDR approach. Statistical tests were performed in R version 4.1.2
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(https://www.r-project.org/ (accessed on 1 January 2022)), using rstatix 0.7.0 library (https:
//rpkgs.datanovia.com/rstatix/ (accessed on 1 January 2022)). Box plots were generated
using ggplot2 version 3.3.5 (https://ggplot2.tidyverse.org/ (accessed on 1 January 2022))
and ggpubr version 0.4.0 libraries (https://rpkgs.datanovia.com/ggpubr/ (accessed on
1 January 2022)), for box plots with dot plots. PCA analysis was performed using the
MetaboAnalyst 5.0 platform (https://www.metaboanalyst.ca/ (accessed on 1 January 2022 ))
and the data were log-transformed and Pareto-scaled before the PCA analysis.

Table 1. The spectrometer working conditions.

ICP-MS Nexion 300 D

plasma power, W 1350

nebulizer gas flow (AR), L min−1 0.9

dwell time, ms 50

readings 5

sweeps 1

replicates 3

monitored isotopes
27Al, 24Mg, 39K, 43Ca, 51V, 55Mn, 57Fe, 59Co, 63Cu,

60Ni, 66Zn, 78Se, 88Sr, 95Mo, 111Cd, 208Pb

3. Results
3.1. Experimental to Control Group Comparison

Mean values with standard deviations for the content of 10 elements (Ca, K, Fe, Sr, Zn,
Ni, Cu, Mn, Co, and Mo) in the bone of rats are presented in Table 2, separated for different
diet groups and for different treatment groups: Exp (experimental with implanted cancer
cells LNCaP) and Ctrl (control without implanted cells LNCaP).

The experimental-to-control ratios (%) for the content of elements indicate a downward
trend in most cases. The reverse tendency was noted only in the group receiving a selenium
supplement, in which the content of two elements (K and Fe) increased in the bones of rats
with LNCaP implantation (by 42% and 43%, respectively). An especially large number of
differences in the mineral composition of the bones between the groups with and without
implanted LNCaP were generated by the copper-supplemented diet. In the group of rats
receiving this diet, there were significant reductions in the content of Mo (by 69%), Co
(59%), Mn (54%), Cu (61%), Ni (50%), Zn (32%), and Fe (33%) in the bone tissue of rats with
implanted LNCaP cells in comparison with the control group receiving the same diet, but
without LNCaP implantation. There were no changes in the concentration of Ca, K, and Sr
(Table 2).

In the group of rats receiving the standard diet (without supplementation) there was
a statistically significant reduction in Ca (by 24%), Sr (9%), Mn (13%), Co (22%), and Mo
(83%) in the bone tissue of rats with implanted LNCaP cells in comparison to the control
group that also received the standard diet (Table 2).

https://www.r-project.org/
https://rpkgs.datanovia.com/rstatix/
https://rpkgs.datanovia.com/rstatix/
https://ggplot2.tidyverse.org/
https://rpkgs.datanovia.com/ggpubr/
https://www.metaboanalyst.ca/
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Table 2. Mean values ± standard deviation and direction and percentage of changes in the elements in the bones of rats with cancer receiving various diets as
compared to the control group on the same diet.

Group/
Diet

n = 6–8

Ca
(g/kg

Dry Mass)

Zn
(mg/kg

Dry Mass)

K
(mg/kg

Dry Mass)

Fe
(mg/kg

Dry Mass)

Sr
(mg/kg

Dry Mass)

Ni
(mg/kg

Dry Mass)

Cu
(mg/kg

Dry Mass)

Mn
(mg/kg

Dry Mass)

Co
(mg/kg

Dry Mass)

Mo
(mg/kg

Dry Mass)

CtrlSt
ExpSt

291 ± 38 45.3 ± 4.3 2018 ± 206 1411 ± 158 70.1 ± 2.7 3.71 ± 0.69 0.494 ± 0.261 0.160 ± 0.014 0.136 ± 0.016 0.047 ± 0.010
221 ± 18 * 41.3 ± 6.0 1561 ± 125 1281 ± 184 63.5 ± 5.8 * 3.36 ± 0.55 0.272 ± 0.084 0.140 ± 0.010 * 0.106 ± 0.015 0.008 ± 0.005
↓ 24% ↓ 9% ↓ 23% ↓ 9% ↓ 9% ↓ 9% ↓ 45% ↓ 13% ↓ 22% ↓ 83%

(p = 0.002) (ns) (ns) (ns) (p = 0.029) (ns) (ns) (p = 0.017) (p = 0.007) p = 4.67 × 10−6

CtrlCu
ExpCu

222 ± 17 66.3 ± 2.6 1827 ± 262 1289 ± 180 61.2 ± 2.4 8.1 ± 0.46 0.488 ± 0.045 0.327 ± 0.048 0.314 ± 0.009 0.070 ± 0.012
243 ± 23 45.1 ± 4.3 * 1562 ± 191 866 ± 155 * 58.6 ± 5.5 4.07 ± 0.59 * 0.298 ± 0.039 * 0.149 ± 0.013 * 0.129 ± 0.017 * 0.022 ± 0.005 *
↑ 10% ↓ 32% ↓ 15% ↓ 33% ↓ 4% ↓ 50% ↓ 61% ↓ 54% ↓ 59% ↓ 69%
(ns) (p = 9.93 × 10−8) (ns) (p = 0.001) (ns) p = 2.23 × 10−6 p = 2.23 × 10−6 p = 2.23 × 10−6 p = 2.23 × 10−8 (p = 0.001)

CtrlSe
ExpSe

256 ± 76 43.5 ± 4.3 1692 ± 463 887 ± 262 59.6 ± 18.0 4.08 ± 0.4 0.308 ± 0.051 0.179 ± 0.059 0.129 ± 0.012 0.040 ± 0.026
254 ± 22 45.0 ± 2.1 2402 ± 424 * 1272 ± 106 * 66.7 ± 4.3 3.76 ± 0.21 0.283 ± 0.027 0.157 ± 0.003 0.147 ± 0.007 0.031 ± 0.003
↓ 1% ↑ 3% ↑ 42% ↑ 43% ↑ 12% ↓ 8% ↓ 8% ↓ 12% ↑ 14% ↓ 23%
(ns) (ns) (p = 0.008) (p = 0.002) (ns) (ns) (ns) (ns) (ns) (ns)

ExpSt—experimental standard diet with LNCaP and CtrlSt—control standard diet without LNCaP; ExpCu—experimental copper-supplemented diet with LNCaP and CtrlCu—control
copper-supplemented diet without LNCaP; ExpSe—experimental selenium-supplemented diet with LNCa and CtrlSe—control selenium-supplemented diet without LNCaP; n—total
number of rats. Comparative control to study on the same diets—* statistically significant (p-value above 0.05); ns—no statistically significant); ↓—decrease; ↑—increase.
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3.2. Comparison of Diet Groups
3.2.1. Dietary Supplementation with Copper Relative to Other Experimental Groups

In the case of copper supplementation, changes were noted in the bones of rats for
all 10 elements analysed, i.e., Ca, Co, Fe, Cu, K, Zn Mo, Mn, Sr, and Ni. The following
statistically significant relationships were obtained (Figure 1):

- The greatest number of statistically significant differences between nearly all groups
was shown for the levels of Fe, Co, Mo, Ni, and Zn. It is particularly worth noting
the significant decrease in the content of these elements in the groups with implanted
LNCaP cells (ExpCu) in comparison with the control group (CtrlCu) without im-
planted cancer cells.

- In the case of Ca and Mo, a decrease was noted in the experimental groups whose diet
was not supplemented (ExpSt) relative to the corresponding control group (CtrlSt).
Comparison of the control groups with and without copper supplementation (CtrlCu
vs. CtrlSt) also showed a decrease in Ca levels, but an increase in the content of Co in
the control group receiving additional copper (CtrlCu).

- Comparison of groups ExpSt and CtrlCu showed an increase in Co, Mn, Mo, Ni, and
Zn levels in the control group. Comparison of ExpCu vs. CtrlSt revealed a decrease in
K, Sr, and Fe in group ExpCu.

- Single changes were observed for K and Sr.
Nutrients 2022, 14, x FOR PEER REVIEW 8 of 21 
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Figure 1. Analysis of concentrations of elements in four experimental groups: CtrlSt—control standard
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diet without LNCaP (blue boxplot); ExpSt—experimental standard diet with LNCaP (red boxplot);
CtrlCu—Cu supplementation diet without LNCaP (dark blue boxplot); ExpCu—Cu supplementation
diet with LNCaP (dark red boxplot); p-value: <0.0001 ****, 0.0001–0.001 ***, 0.001–0.01 **, 0.01–0.05 *.

In the multivariate analysis, principal component analysis (PCA) separated one group
(CtrlCu) from the other three, showing that copper supplementation in rats without LNCaP
implantation had a clear influence on bone composition (Figure 2).

3.2.2. Dietary Supplementation with Selenium Relative to Other Experimental Groups

In the case of selenium supplementation, changes in the bones were observed for six
elements: Ca, Co, Fe, K, Mo, and Ni. The following statistically significant relationships
were obtained (Figure 3):

- The greatest number of changes was noted for Mo. There was a significant decrease in
its content in group ExpSt relative to groups CtrlSt, CtrlSe, and ExpSe.

- For iron, there was a decrease in the bones of rats in group CtrlSe relative to groups
CtrlSt and ExpSe.

- Potassium content increased in the bones of rats with implanted LNCaP (ExpSe) in
comparison to the control group on the same diet (CtrlSe) and ExpSt.

- Single changes were observed for Ca (CtrlSt vs. ExpSt), Co (ExpSt vs. ExpSe), and Ni
(ExpSt vs. CtrlSe).

Principal component analysis indicated that the presence of cancer cells had a marked
effect on the bone composition of rats on the standard diet (ExplSt is separated from the
other groups, Figure 4).
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Figure 4. The principal component analysis performed on four groups: rats on the standard diet with
LNCaP (dark red dots—ExpSt); rats on the standard diet without LNCaP (red dots—CtrlSt); rats with
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LNCaP (blue dots—CtrlSe).

4. Discussion

The most common prostate diseases, which are primarily diagnosed in older people,
are benign prostatic hyperplasia (BPH) and prostate cancer (PCa). BPH is an increase in the
volume of the prostate due to cellular proliferation of the prostate tissue surrounding the
urethra [76–78]. Prostate cancer (PCa) is the second cause of death from oncological diseases
in Western countries. In 2020, there were 1,414,259 new cases in men of all ages [79,80]. The
disease usually begins asymptomatically in the form of a small focus located only in the
outer part of the prostate. Over time, the patient begins to have symptoms, such as frequent
urination and difficulty urinating due to proliferation of the cancer and infiltration into the
prostate and periprostatic tissue. Subsequently, the cancer cells migrate via the blood and
lymph vessels to other tissues, where they form metastases and are the main cause of the
death of the patient. Prostate cancer shows a strong tendency to form metastatic foci in
the bones, lymph nodes, and lungs [81,82]. However, in most patients the site of tumour
invasion is the microenvironment of the bone marrow. Bone is a metabolically active tissue,
which means that bones will be affected both by illness and by overall nutritional status.
The organic matrix of bone consists of osteoclasts, osteoblasts, osteocytes, scleroproteins,
globular proteins (osteonectin and osteocalcin), and substances such as proteoglycans and
glycoproteins. The inorganic matrix is mainly hydroxyapatite (calcium, phosphorus and
magnesium), as well as small quantities of trace elements (Fe, Zn, Cu, B, Se, As, W, U, Ti, Sr,
Si, Na, K, Mo, Pt, Hg, Mn, Li, Ge, Ga, F, Co, Cd, and Al), which can be essential or toxic
depending on their concentration [14]. Skeletal tissue, like the entire body, is constantly
undergoing changes, in this case through resorption by osteoclasts and the formation
of new cells by osteoblasts. In addition to macroelements such as calcium, phosphorus
and magnesium, which play an important and well-known role in bone formation, trace
elements also affect bone metabolism [83]. These elements can be incorporated into the
bone mineral matrix, influence the proliferation or activity of osteoblasts or osteoclasts,
and serve as cofactors for key enzymes taking part in the mineralization of bone tissue.
Noor et al. [84] showed that the concentrations of B, Al, S, V, Co, Mo, Te, Ba, La, Ni, and As
in osteoporosis are elevated relative to healthy bones. In contrast, the concentrations of Na,
Mg, P, K, Ca, Cr, Pd, Ag, Mn, Fe, Cu, Zn, Rb, Sr, Pb, and Se were lower than in the bone
tissue of healthy subjects.
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Our study showed that implantation of cancer cells clearly alters the content of ele-
ments in the femoral bones of rats fed a standard diet, and that enrichment of the diet with
selected elements modifies these changes. Thus, supplementation of the diet of rats with
selenium in conditions of implantation of prostate cancer cells caused a marked decrease in
the frequency of changes in the mineral composition of the bone tissue, while supplemen-
tation with copper markedly increased the differences in the content of these elements in
conditions of implantation of prostate cancer cells.

Copper has a very important role in the skeletal system. Many studies have confirmed
that Cu deficiency impairs the mechanical strength of bones by reducing the crosslinking
of elastin and collagen. Collagen cross-linking disorders have been correlated with im-
paired activity of lysyl oxidase, which forms crosslinks derived from lysine. Cu deficiency
also decreases the activity of superoxide dismutase, thereby increasing the activation of
osteoclasts and bone resorption [83,85,86]. In vitro studies have shown a positive effect of
copper on cells regulating bone metabolism, e.g., by inhibiting osteoclast resorption [21].
Other authors emphasize the effect of the dose. Thus, low Cu concentrations (0.1% w/w)
improved the viability and growth of osteoblastic cells, whereas higher concentrations (2.5%
and 1% (w/w)) proved to be cytotoxic [87]. In our study, we used a copper dose amounting
to double the level used in the standard diet. Parameters such as body and organ weight,
appetite, and the general condition of animals, as well as the state of the hair and nails,
were satisfactory. The content of minerals in the diet of laboratory animals depends on their
age, physiological condition, and the purpose of the experiment (surplus or deficiency).
In accordance with recommendations by the Federation of European Laboratory Animal
Science Associations, rats’ requirements for individual nutrients is based on their content
in feed [88]. The feed used in our study, Labofeed H, is meant for adult rats and provides
them with optimal conditions for growth and reproduction. The content of Cu and Se
is 21.3 mg and Se 0.5 mg/kg feed, respectively. Additional supplementation in individ-
ual groups allowed for total intake of 63.9 mg Cu and 1.5 mg Se/kg feed. Pathological
changes in the liver and kidneys appear when diets contain more than 1.000 mg/kg Cu,
and significant weight loss is observed in the case of diets containing 2.000 mg Cu/kg [88].
Therefore, it seems that the considerable loss of minerals from the bones could not have
been caused by copper supplementation alone, especially since a similar effect was noted
in the case of the standard diet. It was most likely the implantation of LNCaP cancer
cells that induced the changes in the femoral bone tissue, but copper supplementation
generated the most changes in mineral composition; in addition to molybdenum, these also
included reductions in zinc, iron, nickel, manganese, and copper. It should also be noted
that the elements that most often underwent changes in our experiment were manganese,
molybdenum, cobalt, and iron. Among all elements analysed, the greatest decrease was
noted for the concentration of molybdenum in the bones of rats with LNCaP, with (by 69%)
and without (83%) copper supplementation. Molybdenum is an essential trace element
that serves as a cofactor for several redox enzymes, but its physiological role is largely
unknown [89], and studies evaluating the relationship between biomarkers of exposure to
Mo and the state of bones are lacking [90]. Excess copper in the body is known to reduce
concentrations of molybdenum, while excess molybdenum reduces the level of copper,
increasing the amount excreted in the urine and interfering with its absorption from the
gastrointestinal tract. This is because molybdenum in the intestinal lumen creates insoluble
complexes with copper (copper molybdate and copper thiomolybdate), thereby preventing
its absorption and incorporation into plasma proteins, such as ceruloplasmin and other
proteins containing copper [91,92]. There are also reports that Mo exerts an effect on cell
proliferation independently of Cu status in an unknown mechanism. Excess Mo with
the diet impairs cell proliferation within the growth plate, whereas the effects of copper
deficiency are more associated with the differentiation of chondrocytes. In this manner,
Mo can induce changes in longitudinal bone growth that differ from those arising from
Cu deficiency [93]. Molybdenum deficiency in the early stages of animal development
also inhibits growth [14,94]. Antagonism between copper and zinc and synergy between
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copper and iron are known as well [86]. Manganese has a broad spectrum of action as
a cofactor of superoxide dismutase and numerous enzymes involved in the synthesis of
cartilage proteoglycans, such as glycosyltransferase, xylosyltransferase, phosphohydro-
lase, and phosphotransferase [14,95]. Superoxide dismutase, which contains manganese,
protects osteoblasts from ROS emitted by osteoclasts [96]. Prolonged deficiency in the
bone can lead to abnormalities in bone tissue, impaired osteogenesis, thickening of the
bones, epiphyseal dysplasia, and inhibition of bone growth, as well as osteoporosis and
chondrodystrophy [84].

The second of the elements named above, i.e., cobalt, can modulate bone metabolism
and cause osteolysis, but reports of this type mainly concern cobalt from implants [97].
Cobalt ions have been shown to influence the proliferation, size, and shape of osteoblasts.
The pathogenesis of osteolysis involves inhibition of osteoblast function and stimulation
of the production and secretion of chemokines (TGF-β1, TNF-α, IL-β 1, IL-6, IL-8, and
MCP-1) from the osteoblasts, leading to inflammation and the differentiation, maturation,
and stimulation of osteoclasts in the periprosthetic area [97–99]. Moreover, cobalt ions
significantly inhibit osteoblast function by decreasing the activity of alkaline phosphatase
and through calcium deposition [99,100]. Divalent cobalt ions can also probably generate
oxidative stress in the osteoblasts, but the mechanism of action is unknown [101,102]. Sug-
gested mechanisms of the toxic effect of cobalt ions include radical generation, impairment
of cell membrane function, or inhibition of enzyme function.

Another element whose content decreased in the group of rats receiving a standard
diet, or a diet supplemented with copper, was iron. Iron is a cofactor of numerous enzymes,
including oxoglutarate-dependent 2-dioxygenase, which plays a key role in collagen syn-
thesis [39,103]. A study in which female rats were fed a diet with severely reduced iron
for 5 weeks showed a decrease in the number and thickness of trabeculae and in bone
strength, and an increase in trabecular separation. Apart from structural disturbances in
the bone tissue, iron deficiency can also affect markers of bone turnover. In a study by
Castro et al. [104], female rats were given an iron-poor diet for 40 days. This resulted in a
decrease in the level of the bone formation marker procollagen type I N-terminal propeptide
(P1NP) relative to the rats on a diet with normal iron levels, accompanied by an increase
in the concentration of tartrate-resistant acid phosphatase 5b (TRAP), parathormone, and
C-terminal telopeptides (CTX). These findings indicate that severe iron deficiency in hu-
mans may result in disorders of bone tissue formation and additionally increase bone
resorption [83]. However, moderate iron deficiency is not clearly linked to bone tissue
disorders. On the other hand, excessive accumulation of iron in the body is associated
with diseases such as haemoglobinopathy, haemochromatosis, or menopause with reduced
bone mass, osteopaenia, osteoporosis, altered bone microarchitecture, and elevated fracture
risk [105].

The effect of copper supplementation on the condition of bones has been assessed
in various studies, mainly in menopausal women [106–109]. Intake of 3 mg of copper
in the diet of healthy women for 2 years decreased vertebral bone density loss relative
to the control group without supplementation [107]. Baker et al. [108] studied the effect
of a 3-week diet with various levels of copper (1.6 mg/d vs. 0.7 mg/d vs. 6 mg/d) in
11 healthy men. Markers of bone resorption significantly decreased with the transition
from a copper-poor to a copper-rich diet. Therefore, it seems that copper in nontoxic doses
should not generate osteolytic changes in bone tissue.

A number of studies link Cu toxicity to the formation of reactive oxygen species,
which modify the structure and/or function of basic biomolecules. An excess of ROS
inhibits the efficiency of antioxidant systems and leads to DNA damage and peroxidation
of lipids and proteins. This may result in the development of degenerative diseases, in-
cluding cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders,
and chronic inflammation [110]. Patients with advanced metastasizing prostate cancer
have been shown to have higher levels of oxidative stress, measured as the degree of
susceptibility of serum lipids to peroxidation, in comparison with patients with locally
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advanced prostate cancer [111]. Oxidative stress follows increased ROS production and/or
simultaneous impairment of antioxidant capacity. ROS are constantly generated in healthy
cells, and small changes in redox homeostasis are necessary for natural regulation of cellular
functions by various mechanisms, such as activation or inactivation of transcription factors,
metabolic enzymes, membrane channels, and others [112]. Prostate cancer cells (PC), in
comparison to healthy cells, are characterized by innate oxidative stress, which distin-
guishes the aggressive phenotype of this disease [113]. Characteristic metabolic changes,
activation of androgen receptor, and mutation-induced mitochondrial dysfunctions take
place, while the effects of external environmental factors and metabolism of xenobiotics in-
ducing inflammation and hypoxia are increased [112]. However, the relationships between
oxidative stress, redox homeostasis, and activation of proliferation and survival pathways
in the healthy and cancerous prostate are not fully understood.

The other element used to supplement the diet of rats in our study was selenium.
Inadequate Se intake can result in increased ROS and oxidative stress, especially in people
with low levels of other antioxidants (e.g., vitamins E and C). Selenium is a component
of over 25 selenoproteins neutralizing free radicals, but there is a threshold of selenium
exposure below and above which no significant anticancer effect is observable [16]. Ad-
ditionally, different forms of selenium, by acting on different metabolic pathways, can
have varied effects. This could explain the discrepancies in the scientific literature, as sele-
nium intake considerably varies depending on geographic location [114]. Meta-analyses of
case-control studies have shown an inverse risk of PCa in men with high serum selenium
concentrations [115,116]. Other studies have not found that selenium supplementation
affects the incidence of PCa [117–119]. Taking into account the dose–response relationship
of all antioxidant supplements, another meta-analysis concluded that selenium may protect
against PCa only in populations with a low baseline serum concentration of selenium.

Selenium plays multiple roles in the cell, influencing the cell cycle, apoptosis, the
immune system, and the condition of bones [16,120–122]. Its role in bone metabolism is
very important. Nine selenoproteins have been shown to be expressed in human foetal
osteoblasts, which most likely contributes to protection against oxidative stress in the
bone microenvironment [16]. Bone marrow stromal cells (BMSC) cultured in a selenium-
deficient medium exhibited decreased expression of selenium-dependent enzymes such
as glutathione peroxidase and thioredoxin reductase, as well as chromosome damage,
which was later reversed by the addition of selenium [38]. Selenium deficiency in the
diet of rats increased bone resorption, not only due to the decrease in the activity of
selenium-dependent enzymes, but also to a decrease in calcium concentration, disturbed
growth hormone secretion in the pituitary gland, reduced insulin-like growth factor in the
plasma, increased concentrations of parathyroid hormone and 1,25-dihydroxyvitamin D,
and excessive excretion of calcium in the urine [16,39]. It is very likely that physiological
bone remodelling is highly dependent on adequate control of the effects of ROS. The results
of our study confirm the protective role of selenium in terms of loss of elements from bone
tissue. In animals receiving selenium supplements, fewer changes in the concentrations
of elements in the bone were noted during the neoplastic process in comparison with the
animals receiving a standard diet or a diet supplemented with copper. However, there were
also significant changes involving an increase in potassium and iron content in the tissue of
rats with implanted LNCaP in comparison to the group without implantation on the same
diet. The reason for this is unclear. Potassium in the body is closely linked to sodium and
calcium metabolism. Supplementation with both potassium citrate and calcium citrate can
lead to increased absorption of calcium, a reduction in markers of calcium resorption in the
urine and bone (C-terminal telopeptide of type 1 collagen and N-terminal telopeptide in the
urine), and a decrease in the serum concentration of parathyroid hormone (PTH) [123,124].
However, other studies have found that potassium imbalances do not strongly affect bone
metabolism [125]. In our study, the more than 40% increase in potassium content in the
bone may indicate progressive disturbances of sodium and calcium metabolism in the
body, despite the fact that the calcium content in the bone was not significantly altered
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in the group receiving the selenium supplement. The more than 40% increase in the iron
concentration in the bone is also difficult to explain. Excessive accumulation of iron in
various tissues, including bone tissue, is usually caused by genetic disorders, such as
haemochromatosis. It leads to increased bone resorption and slows down bone formation.
The result is low bone mass, increased frequency of fractures, an overall change in the bone
microarchitecture, and increased frequency of osteoporosis [105,126–128].

The data presented here show that implantation of LNCaP cancer cells in the conditions
of the experiment led to osteolytic changes in the bones, manifested as modified bone tissue
composition. Supplementation of the diet of rats with copper probably exacerbated these
changes, because losses of Ca, Mn, Sr, Co, and Mo were observed for the standard diet
and, additionally, losses of Zn, Fe, Ni, and Cu for the copper diet in the bones of rats with
implanted LNCaP relative to the control group. In the case of the diet with additional
selenium, no significant deficiencies of elements were noted, but there was a strong increase
in the content of potassium and iron, two important elements for bone health. At this
stage of research, it is difficult to conclude whether or not this is a beneficial process
in tumour development and metastasis. A limitation of our research was the lack of
histopathological examination of the bones, but both the mass and the strength of the
bone remained unchanged. Metastatic changes usually become visible after a long period,
but tumour cells can be initially present in secondary tissue and remain latent, or can be
present at the stage of replication and preparation for further expansion. Zeng et al. [16]
showed that selenium intake significantly inhibits the osteoblast inflammatory response to
metastatic breast cancer cells regulated by NF-kB activation. To conclude, osteolytic changes
resulting from metastasis are likely to be slowed down by supplementation with selenium
compounds. The optimum chemical form, dosage, and duration of supplementation remain
an open question.
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