
Multi-Omics Integration Reveals the Crucial Role of
Fusobacterium in the Inflammatory Immune Microenvironment
in Head and Neck Squamous Cell Carcinoma

Han Qiao,a Hui Li,b Xianhui Wen,a Xirong Tan,a Chongzhe Yang,c Na Liua

aDepartment of Experimental Research, State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University
Cancer Center, Sun Yat-sen University, Guangzhou, China
bZhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
cDepartment of Geriatrics, National Key Clinic Specialty, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China

Han Qiao and Hui Li contributed equally to this article. Author order was determined on the basis of seniority.

ABSTRACT The tumor microbiome is believed to have a profound impact on tumor
progression owing to its local colonization in the tumor microenvironment (TME). Using
the Cancer Microbiome Atlas (TCMA), a database of curated, decontaminated microbial
profiles for 3,689 oropharyngeal, esophageal, gastrointestinal, and colorectal tissue sam-
ples from 1,772 patients, we conducted a comprehensive multi-omics analysis to reveal
microbial signatures among various cancers and the potential mechanisms involved in
tumor progression of head and neck squamous cell carcinoma (HNSC). We found that
compared with other cancer types, the tumor-resident microbiome of HNSC accounted
for the highest bacterial abundance and strongest association with host TME signatures.
Fusobacterium was found to be enriched in HNSC tissues, which was associated with an
increased inflammatory effect and inferior prognosis. Moreover, we revealed that the
microbiota-associated inflammatory TME was attributed to the competing endogenouse
RNA (ceRNA) network and chromatin accessibility.

IMPORTANCE Studies on revealing the composition and potential mechanisms of
the tumor microbiome are still at an initial stage. We uncovered the potential contri-
bution of the tumor-resident microbiota on the immunosuppressive microenviron-
ment in HNSC, which will provide a new perspective for tumor microbiome research
and yield valuable insights into the clinical management of HNSC.
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Historical accounts linking cancer with microbes have developed over millennia,
and almost 16% of cancer cases worldwide can be attributed to infectious factors

(1). Notably, 11 kinds of microbes have been recognized as “oncomicrobes” by the
International Association of Cancer Registry (IACR), among which only Helicobacter
pylori belongs to Bacteria, and H. pylori also contributes to the carcinogenesis of gastric
cancer (2). Recently, additional tumor-associated bacteria have been gradually demon-
strated along with the update of microbial research technologies. However, emerging
evidence suggests that human cancer can be attributed not only to single pathogens
but also to disorders in our symbiotic microbiome (3).

Dysbacteriosis is reported to be involved in tumor carcinogenesis and progression
through various mechanisms, including mutagenesis and epigenetic and immune activity
changes of the host (4, 5). Bacteroides fragilis produces genotoxin B. fragilis toxin (BFT) and
causes the host DNA damage to initiate colorectal carcinogenesis (6); Fusobacterium nucle-
atum targets innate immune signaling and miRNA-mediated autophagy to result in che-
moresistance of colorectal cancer (7). In addition, the bacterial metabolite butyrate has
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been identified as a histone deacetylation inhibitor, suggesting that bacteria may influence
tumor progression by affecting chromatin accessibility (8). Interestingly, it has been high-
lighted that the gut microbiome can affect the response to anti-PD-1 immunotherapy,
suggesting the potential of the gut microbiome as a marker for the early prediction of the
treatment efficacy of immune checkpoint inhibitors (9–11).

Multiple tumors occur on the surfaces of the human body that communicate with
the outside world, such as the skin, oropharynx, respiratory tract, digestive tract, and
urinary tract. The “cross talk” between the microbiota of these areas and tumor pro-
gression, such as the relationship between gut microbiome and colorectal cancer, has
been studied extensively (12). Recently, studies have revealed the existence of intratu-
moral microbiota with metabolic activity across several cancer types using a combina-
tion of imaging, sequencing, and cultivation strategies and germfree mouse models
(13). The tumor-resident microbiota makes up an important part of the tumor microen-
vironment (TME), which is considered to affect tumorigenesis and progression on a
more local scale via regulation of the immune pathway, metabolism, and other func-
tions of the host (5).

The Cancer Microbiome Atlas (TCMA) is a database of curated, decontaminated mi-
crobial profiles for 3,689 oropharyngeal, esophageal, gastrointestinal, and colorectal
tissues from 1,772 patients based on whole-exome sequencing (WXS) and whole-ge-
nome sequencing (WGS) data that provides a useful tool for further exploring the func-
tion of microbes within indicated tumor tissues (14). In this study, combined with the
multi-omics data of matched samples in The Cancer Gnome Atlas (TCGA), we aimed to
reveal the microbial composition differences across various cancer types and further
explore the potential mechanism of microbiota-associated tumor progression in head
and neck squamous cell carcinoma (HNSC).

RESULTS
Distinct microbial diversity and composition are exhibited within various can-

cer types. We used the TCMA data set based on whole-genome sequencing (WGS),
including the purified microbial compositions from oropharyngeal, esophageal, gastro-
intestinal, and colorectal tissues, to analyze the microbial characteristics in patients
with HNSC (n = 196), esophageal carcinoma (ESCA; n = 94), stomach adenocarcinoma
(STAD; n = 205), rectum adenocarcinoma (READ; n = 69), and colon adenocarcinoma
(COAD; n = 183). The results showed that the bacteria within these tumor tissues
belonged mainly to Bacteroidetes, Firmicutes, Fusobacteria, and Spirochaetes at the phy-
lum level. Notably, HNSC tissues had more identified bacterial counts than other can-
cer types (Fig. 1A). No significant difference was observed in bacterial counts between
primary tumor (PT) and solid tissue normal (STN) tissues of different cancer types.
However, the alpha diversity in PT tissues of HNSC was lower than that of STN (Fig. 1B).
Beta diversity showed significant differential clustering of microbiota in five cancer
types, according to Bray-Curtis-based principal-coordinate analysis (PCoA) and permu-
tational analysis of variance (PERMANOVA) (Fig. 1C).

Next, we used the limma test to identify differential species between PT and STN
tissues. The results showed that genera such as Fusobacterium, Peptoanaerobacter, and
Staphylococcus were enriched in HNSC, while genera such as Prevotella were enriched
in ESCA and COAD. We observed that Helicobacter was enriched in the STN of STAD,
while Fusobacterium was enriched in the PT of READ, supporting that they are known
contributors to gastric tumorigenesis and colorectal cancer development, respectively
(Fig. 1D). Venn diagrams exhibited the intersection of differentially abundant genera
between the PT and STN in various cancer types (Fig. 1E).

Cluster classifications of immune characteristics distinguish prognosis in HNSC.
We analyzed the clinical characteristics related to the microbial diversity and composition of
tumor tissues, including gender, age, body mass index (BMI), smoking status, tumor purity,
stage, tumor mutational burden (TMB) index, molecular functional portrait (MFP) signature,
and immune characteristics defined by immune subtype, IPS score (defined as the number
of tumor-associated immune cells with positive ctla4 staining/total number of tumor-
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FIG 1 Distinct microbial diversity and composition exhibit within various cancer types. (A) The distribution of mean bacterial reads counts in head and neck squamous
cell carcinoma (HNSC), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), rectum adenocarcinoma (READ), and colon adenocarcinoma (COAD) tumor and
normal tissues were analyzed. Representative bacteria with high abundance at the phylum level are presented. (B) The differences in the bacterial counts (top) and the
alpha diversity (Shannon-index, bottom) were evaluated between primary tumor (PT) and solid tissue normal (STN) tissues. The comparison was performed with the
Wilcoxon rank sum test. (C) PCoA was performed after calculating the Bray-Curtis distance based on CLR-transformed data, and the shapes in the scatterplot represent
the five cancer types. PERMANOVA was used to calculate the significance of the bacterial beta diversity differences among various cancers (P , 0.001, top), and the
difference between the PT and STN tissues in each cancer type was calculated (bottom). (D) Volcano plot showing the differential genera based on the limma test
between the PT and STN tissues in each cancer type. A fold change less than zero indicated that the genera were enriched in tumors; otherwise, they were enriched in
normal tissues. (E) Venn diagram summarizing the occurrence profile of differentially abundant genera between the PT and STN tissues in various cancers.
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associated immune cells), lymph node status, B-cell receptor (BCR) diversity, and T-cell recep-
tor (TCR) diversity. The results of the Kruskal-Wallis test and Spearman analysis showed that
the reads count of the tumor microbiota correlated with a variety of immune characteristics
of HNSC, such as a negative correlation with lymph node status and BCR and TCR diversity
and a positive correlation with IPS:ctla4 (Fig. 2A). Based on this, we speculated that the high
abundance of tumor-resident bacteria in HNSC was related to an immunosuppressive
microenvironment.

By analyzing the TME signatures of HNSC by GSVA (Table S1), HNSC patients were
divided into three clusters by the NMF algorithm (Fig. 2B, Fig. S1, and Table S2).
Survival analysis showed significant differences among these three clusters, and cluster
2 had a more favorable prognosis than the other two clusters (Fig. 2C). Next, we ana-
lyzed the bacterial reads count, diversity, and composition differences among three
clusters. Cluster 2, with a favorable prognosis, had the lowest bacterial reads count,
while cluster 3 had the highest (Fig. 2D). No significant difference was observed in
alpha diversity among the three clusters (Fig. 2E). Additionally, clusters 1 and 3 had
similar beta diversity, from which that of cluster 2 was significantly different (Fig. 2F).
The limma test revealed that compared with that in cluster 2, HNSC in cluster 3 was
enriched with multiple species of the genus Fusobacterium such as Fusobacterium
nucleatum and Fusobacterium periodonticum (Fig. 2G).

Fusobacterium correlates with an inflammatory TME in HNSC. Based on the TME
signatures, we further found that cluster 1 was characterized by a high level of epithelial-
mesenchymal transition (EMT) signals, cluster 2 was mainly characterized by enrichment of
B cells, NK cells, and other lymphocytes, and cluster 3 was dominated by inflammatory cells
such as granulocytes (Fig. 3A). Compared with those in the other two clusters, high levels
of checkpoints, including PD-L1, PD-L2, LAG-3, B7-H3, and IDO, were observed in cluster 3
(Fig. 3B). In addition, we revealed that HPV16 tended to be enriched in cluster 2 (Fig. 3C).
By integrating an interaction network of TME features, checkpoints, virus abundance, and
differential species, we found that the bacteria abundant in clusters 1 and 3 were mainly
positively correlated with the characteristics of granulocytes, M1 signatures, angiogenesis,
and B7-H3 and negatively correlated with the characteristics of MHCII, effector cells, TIGIT,
and PD-1. It is notable that most viruses negatively interact with the differential species
(Fig. 3D).

We explored whether cluster 3 had more prominent inflammatory infiltration character-
istics in terms of gene expression and regulatory pathways than cluster 2. The limma analy-
sis showed that enriched genes in cluster 3 included EREG, PRRG1, SH2D5, and SLC31A2
(Fig. 3E and Table S3). Metascape analysis of these differential genes indicated that path-
ways enriched in cluster 3 included NF-kB, inflammatory, cell-cell adhesion, response to
bacterium, etc. (Fig. S2A). We constructed a protein-protein interaction (PPI) network with
enriched genes in cluster 3 (Fig. S2B), and minimal common oncology data elements
(MCODE) analysis demonstrated that there were three core interaction sets comprising typi-
cal inflammatory factors (Fig. 3F). Our results suggest a crucial role of the microbiota in the
immunoregulation of HNSC, and the enrichment of Fusobacterium is closely related to
inflammatory characteristics.

Mutation landscapes of microbiota-associated inflammatory genes in HNSC.
Based on the ImmPort data set (Table S4), we further revealed that immune genes,
including EREG, IL1A/B, and INHBA, were enriched in cluster 3 compared to those in
cluster 2, while CD79A, TNFRSF17, CCL19, etc. were decreased (Fig. 4A). The interaction
network between the enriched species and differentially expressed genes from cluster
3 was constructed, and it was found that the species were positively correlated with
enriched genes in cluster 3 and negatively correlated with the downregulated genes
(Fig. 4B). Low gene expression due to microbiota-mediated gene mutations has been
reported to play an important role in tumor development (5). We further constructed a
gene mutation map of downregulated genes in cluster 3 based on the TCGA data set.
However, we did not find any significant contribution of gene mutations to the expres-
sion of target genes, such as the presence of 5% abnormal gene expression in CD79A,
which was not determined by gene mutation changes (Fig. 4C).
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FIG 2 Cluster classifications of immune characteristics distinguish prognosis in HNSC. (A) The heatmap on the left panel shows the chi-square
values of the Kruskal-Wallis test in comparing the difference in bacterial counts (top) and alpha diversity (Shannon-index, middle) among

(Continued on next page)
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Microbiota-associated inflammatory TME attributes to the ceRNA network and
chromatin accessibility. We further utilized TCGA data sets, including long noncoding
RNA (lncRNA), microRNA (miRNA), mRNA, DNA copy number variation (CNV), methylation,
and assay of transposase accessible chromatin sequencing (ATAC-Seq), to clarify the pos-
sible mechanism of tumor-resident microbiota involved in regulating inflammatory genes
differentially expressed between clusters 2 and 3 in HNSC. The differentially expressed
lncRNAs and genes (DEGs), together with the miRNA and mRNA database, were used to
calculate the ceRNA networks, and only one ceRNA network concerning the LINC00707-
miR539-EREG axis was identified (Fig. 5A and Tables S5 to S6). The expression of

FIG 2 Legend (Continued)
patient discrete variables, and the R2 value for PERMANOVA in evaluating the difference in beta diversity (Bray-Curtis distance). The heatmap
on the right shows the Spearman r value between continuous variables and bacterial reads or alpha diversity, as well as the Mantel test r value
of beta diversity based on the variables. * indicates statistical significance (P , 0.05). (B) Based on TME signatures, HNSC patients were divided
into three clusters by the NMF algorithm. (C) Kaplan-Meier curves of the three clusters. Significance was calculated using the log-rank test. (D
and E) Differences in bacterial counts and alpha diversity among the three clusters. The comparison was performed with the Wilcoxon rank
sum test. (F) PCoA was performed after calculating the Jaccard distance based on the CLR-transformed data, and the different colors in the
scatterplot represent the three clusters. The significance of the microbial differences between the two groups was determined by PREMANOVA.
(G) Volcano plot (based on the limma results) showing the differentially abundant bacteria between clusters 2 and 1 (left panel), as well as
between clusters 2 and 3 (right panel).

FIG 3 Fusobacterium correlates with an inflammatory TME in HNSC. (A) Heatmap showing the clustering results based on TME signatures. (B) The differential
expression of immune checkpoints among the three clusters. The comparison between two groups was performed with the Wilcoxon rank sum test. (C)
Differences in virus signatures among the three clusters, with HPV and HHV being the sum of their respective subtypes. The comparison between two groups
was performed with the chi-squared test. (D) The cross-domain interaction networks across TME signatures, immune checkpoints, virus abundance, and
bacteria (differential species of cluster 2 compared with cluster 1 or cluster 3) were calculated by Spearman test. The interaction network was visualized with
Cytoscape software. The colors of nodes in the network represent different domains, and the green and purple edges indicate significant negative or positive
correlations between nodes, respectively. (E) Volcano plot (based on the limma results) showing the differentially expressed genes (DEGs) between clusters 2
and 3. (F) DEGs in cluster 3 were applied to construct PPI networks with Cytoscape software, and the three highly interactive modules were recommended by
the MCODE algorithm.
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FIG 4 Mutation landscapes of microbiota-associated inflammatory genes in HNSC. (A) The significantly downregulated (blue) and upregulated
(red) immune-related genes (based on ImmPort Portal) in cluster 3 compared to cluster 2. (B) Spearman association network of significantly

(Continued on next page)
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LINC00707 was positively correlated with the bacterial count of Fusobacterium or EREG
expression (Fig. 5B). Notably, the expression of LINC00707 in HNSC was higher than that
in other cancer types, as well as normal tissues (Fig. 5C). Additionally, LINC00707 was
mainly involved in hallmarks related to inflammation and immune escape (Fig. 5D). The
Cox regression analysis showed that LINC00707, EREG, and ceRNA were significant risk
factors for poor prognosis in HNSC patients (Fig. 5E). Survival analysis showed that
patients with higher levels of LINC00707, EREG, and ceRNA had a poor overall survival in
HNSC (Fig. 5F).

Subsequently, we analyzed the associations between EREG gene expression and
DNA CNV, methylation, and ATAC-Seq using the pan-cancer atlas (Fig. 5G) and found
that ATAC-Seq peak intensity of EREG was a significant factor affecting prognosis
(Fig. 5H). In summary, multi-omics analysis demonstrates that epigenetic mechanisms
such as the ceRNA network and chromatin accessibility play important roles in the
interaction between the microbiota and the inflammatory TME.

DISCUSSION

Dysbacteriosis has been linked to various health issues, including diabetes, inflamma-
tory bowel disease, cancer, and other diseases. Dominated by tissue swabs and stool
samples, the Human Microbiome Project and MetaHIT have immensely broadened our
recognition and understanding of the human microbiome in terms of these physical
sites (15, 16). Recently, based on intensely strict contamination control strategies, intratu-
moral bacteria have been identified and characterized with distinct compositions across
seven cancer types, and they are correlated with the response to immunotherapy (17).
Due to the crucial involvement of tumor-resident bacteria involved in cancer develop-
ment and the difficulty of obtaining clinical samples, the researchers have designed a
statistical model to analyze the prevalence of species across sample types from TCGA
through a series of rigorous contamination treatments, thus proposing the TCMA data
set (14). Based on this, combined with the multi-omics data of matched samples in the
TCGA, we conducted an in-depth analysis to reveal microbial composition differences
across cancer types and explore the potential mechanism of microbial-associated tumor
progression in HNSC.

By comparing the microbial characteristics among different cancer types, we found
that the microbiota of HNSC accounted for the highest bacteria reads count and had the
strongest association with TME signatures. Limited studies have investigated the rela-
tionship between the human microbiota and HNSC carcinogenesis and progression, of
which the oral microbiome has been mainly reported. The hypothesis that oral dysbac-
teriosis promotes HNSC development has been verified through antibiotic treatment
and germfree HNSC mouse models (18). A prospective study has revealed that
Corynebacterium and Kingella in the oral microbiome are associated with reduced HNSC
risk (19). Recently, emerging studies have identified characteristic tumor microbiota in
HNSC patients associated with poor prognosis (20, 21). Our analysis revealed that enrich-
ment of Fusobacterium within tumors was collectively found in HNSC, ESCA, and READ,
and it has been reported to act as an oncomicrobe. However, the impact and potential
mechanism of Fusobacterium on tumor progression in HNSC remain unknown.

The opinion that chronic inflammation drives carcinogenesis has been widely dem-
onstrated in various types of cancer. For example, hepatocellular carcinoma usually
occurs in patients with chronic hepatitis (22), colorectal cancer may initiate with long-
term untreated inflammatory bowel disease (IBD) (23, 24), and Helicobacter pylori infec-
tion-induced chronic gastritis is a well-known motivator of gastric cancer (25, 26).
Microbes are closely related to host innate and adaptive immunity. However, the im-

FIG 4 Legend (Continued)
differentially abundant bacteria (circle nodes) and differentially abundant immune genes (square nodes) between clusters 2 and 3. The red and
blue edges connecting nodes represent significant positive or negative correlations. Only nodes with significant interactions (P , 0.01,
jrj . 0.3) were reported for this network. (C) The gene mutation and expression landscape of significantly downregulated immune-related
genes in cluster 3 was analyzed in cBioPortal.
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FIG 5 Microbiota-associated inflammatory TME attributes to the ceRNA network and chromatin accessibility. (A) Volcano plot showing the differentially
expressed lncRNAs between clusters 2 and 3 analyzed with the R package GDCRNATools. Calculations based on the R starBase database identified the
lncRNA-mediated ceRNA pathway (LINC00707, hsa-miR-539-5P, EREG). (B) Spearman correlations between the LINC00707 expression and Fusobacterium
counts or EREG expression. (C) The bar plot shows the LINC00707 expression profile across the tumor and normal tissues in the TCGA pan-cancer data set.
(D) s The ceRNA-related cancer hallmarks were identified with the LnCeCell database. (E and F) Cox regression analysis and survival curves for the ceRNA
were performed with LnCeCell. (G and H) The multi-omics landscape for the EREG gene was completed at UCSC Xena, and survival analysis was performed
with the median as the cutoff point.
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portant role of the microbiota in tumorigenesis through immune regulation has just
been recognized in recent years (27). We performed unsupervised clustering of
immune cells in HNSC and identified three clusters with different prognoses. Cluster 3,
characterized by a high level of inflammation such as granulocytes, had the worst
prognosis, and the tumor tissues were enriched with Fusobacterium. This is consistent
with a previous finding conducted in colorectal cancer, in which high Fusobacterium
nucleatum abundance in the tumors correlates with M1 macrophage infiltration and
inflammatory signals (28). Moreover, the study by Dou et al. also found that the abun-
dance and composition of tumor microbiota in HNSC correlate with the inflammatory
infiltration (20). Chronic inflammation has been linked to the reduced antitumor
immune effect by enhancing the inhibitory activity of myeloid-derived suppressor cells
(29), which may be the reason for the worst prognosis observed in cluster 3.

At present, studies regarding the microbiota on tumor progression have gradually
stepped in the stage of causal evidence from brief associations. Strong experimental evi-
dence suggests that human microbes initiate cancer through genotoxin-mediated muta-
genesis, such as colibactin, cytolethal distending toxin, or Bacteroides fragilis toxin. In our
present study, we found significant B-lymphocyte enrichment in cluster 2 and a decrease
in relevant genes in clusters 3 and 1. However, we did not observe sufficient evidence that
the bacterial community in HNSC downregulated these genes through mutagenesis. In
colorectal cancer studies, Fusobacterium nucleatum is reported to promote metastasis by
the miR-1322/CCL20 axis and M2 polarization (30) or chemoresistance by modulating
autophagy through miR-18a* and miR-4802 (7). Multi-omics analysis in our study sug-
gested that LINC00707/miR-539-5p may play an important role in regulating EREG, a target
gene related to inflammation induced by Fusobacterium. In addition, we observed that the
intensity of ATAT-Seq signals in EREG was correlated with poor prognosis of HNSC, sug-
gesting that this may be another important regulatory mechanism in HNSC.

In conclusion, our study comprehensively characterized the composition of tumor-
resident microbiome in HNSC and further uncovered its potential contribution to the
immunosuppressive microenvironment and poor prognosis. Our findings will provide
a new perspective for tumor microbiome research and yield valuable insights into the
clinical management of HNSC.

MATERIALS ANDMETHODS
Data collection. The decontaminated microbial composition data of HNSC, ESCA, STAD, READ, and

COAD were downloaded from the TCMA database (https://doi.org/10.7924/r4rn36833) (14). The TMB
index, IPS score, and TCR and BCR repertoire profiles of the five tumors were downloaded from MF
Portrait (https://science.bostongene.com/tumor-portrait/) (31). The multiple virus signatures of HNSC
were downloaded from the VirusScan pipeline, and the virus-positive or -negative criterion based on the
cutoff of 100 reads was defined according to a previous report (32). Gene expression, miRNAs, DNA CNV,
methylation, ATAC-seq peak-calling data, and clinical data of HNSC were downloaded from the UCSC
Xena database (https://xenabrowser.net/datapages/).

Microbiome data analysis. The microbial abundance was evaluated using the PathSeq pipeline (33).
The pipeline was based on prebuilt human and microbial reference genomes and the NCBI taxonomic data-
base from the PathSeq resource package. Aligned bacterial sequencing reads were summarized at each taxo-
nomic level for the available WGS data from the TCGA. Finally, the read counts for TCGA input bam files and
PathSeq output bam files were calculated using SAMtools for reads per million (RPM) normalization, and total
bacterial reads count values were normalized to total reads (per millions) for input bam files (14). Aggregated
PathSeq results and associated metadata from all sequencing rums were deposited as phyloseq (v1.38.0)
objects in R for downstream analysis (34). Next, the phyloseq file (named “physeq.WGS.solid.file.reads.rds”)
based on the reads count was loaded, and the data set of HNSC (n = 196), ESCA (n = 94), STAD (n = 205),
READ (n = 69), and COAD (n = 183) cohorts was used to calculate the Shannon-index (as alpha diversity) (35).
The R “vegan” (v2.5.7) (36) package was used to calculate the Bray-Curtis distances (as beta diversity) (37)
between samples based on centered log ratio (clt) transformed data, and the principal coordinates analysis
(PCoA) (38) was also performed. PERMANOVA (39) or Mantel test (40) was used to evaluate the variation in mi-
crobial community related to discrete or continuous variables, respectively. The limma was also used to evalu-
ate the differential species, with an adjusted P value of,0.05.

TME signature and NMF-based clustering analysis. The TME signature of the HNSC cohort
(n = 510) was calculated by ssGSEA (31, 41). Then, the intensities were median-scaled for samples in the
HNSC cohort. The scaled TME signatures of HNSC samples were used for NMF (v0.23.0) clustering, and
the “lee” algorithm with iterations of 50 and ranks from 2 to 10 was performed. According to the indica-
tors of cophenetic, dispersion, and silhouette indicators, three TME clusters were obtained. Next, the
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survival analyses among the three TME clusters in HNSC were performed using a log-rank test in the R
“survival” (v3.2.13) package.

DEG analysis. To identify differentially expressed genes (DEGs) of the three TME clusters, we per-
formed the differential analysis using the R package limma (v3.50.1) (42), which employs an empirical
Bayesian approach to estimate gene expression changes using a moderated t test. The DEGs enriched in
TME cluster 3 were determined by adjusted P value of,0.05, and the adjusted P values for multiple test-
ing were calculated using the Benjamini-Hochberg correction.

Network analysis. The interaction network across TME features, checkpoints, virus abundance, and
differential species was computed by Spearman rank correlation analysis. Potential interactions between
DEGs enriched in TME cluster 3 were explored through the STRING database (https://string-db.org/) (43),
and protein interaction networks were constructed to describe the regulatory relationships among these
DEGs. The MCODE (44) algorithm was used to calculate the closely connected regions in the network. All
of the copresence and mutually exclusive networks were analyzed using the Network analyzer tool of
Cytoscape (v3.8.0) (45).

ceRNA network analysis. The standard R package GDCRNATools (v3.0) pipeline was used to analyze
the lncRNA-mRNA-related ceRNA regulatory network between TME clusters 2 and 3 in the HNSC cohort.
The differentially expressed lncRNA (n = 34) and DEGs (n = 23), together with the miRNA (n = 2,242) and
mRNA (n = 56,602) databases, were used to calculate the ceRNA network.

Web resource integration archives. The DEGs enriched in TME cluster 3 were loaded into Metascape
for functional enrichment analysis (http://metascape.org/gp/index.html) (46). The gene mutation and expres-
sion landscape of immune-related genes in HNSC atlas of TCGA was analyzed in cBioPortal (https://www
.cbioportal.org/) (47). GEPIA2 was used to analyze the expression of LINC00707 in tumor and normal samples
from TCGA data (http://gepia2.cancer-pku.cn/) (48). The survival analysis of LINC00707 and EREG in HNSC
was performed in LnCeCell (http://bio-bigdata.hrbmu.edu.cn/LnCeCell/) (49), and the hallmarks of LINC00707
were also analyzed in LnCeCell. The multi-omics landscape for the RERG gene was completed at UCSC Xena
with the GDC Pan-Cancer (PANCAN) database (n = 321), and survival analysis was performed with the me-
dian as the cutoff point.

Statistical analysis. All statistical tests between two groups were performed using the Wilcoxon rank
sum test unless otherwise specified. Spearman analysis was performed to calculate linear associations between
variables. Statistical tests of variance for microbial compositions were performed using PERMANOVA or the
Mantel test. Statistical tests for survival analyses were performed using the log-rank test, and multivariate Cox
regression analysis was used to test independent factors. For multiple tests, the false-discovery rate was calcu-
lated using the Benjamini-Hochberg method. All local analyses were performed in R, and the R scripts are avail-
able in the Git repositor (http://github.com/LIHUI92/TME_Microbiota).
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