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Abstract

Background: The regression discontinuity design (RDD) is a quasi-experimental ap-

proach used to avoid confounding bias in the assessment of new policies and interven-

tions. It is applied specifically in situations where individuals are assigned to a policy/

intervention based on whether they are above or below a pre-specified cut-off on a con-

tinuously measured variable, such as birth date, income or weight. The strength of the

design is that, provided individuals do not manipulate the value of this variable, assign-

ment to the policy/intervention is considered as good as random for individuals close to

the cut-off. Despite its popularity in fields like economics, the RDD remains relatively un-

known in epidemiology where its application could be tremendously useful.

Methods: In this paper, we provide a practical introduction to the RDD for health re-

searchers, describe four empirically testable assumptions of the design and offer strat-

egies that can be used to assess whether these assumptions are met in a given study.

For illustrative purposes, we implement these strategies to assess whether the RDD is

appropriate for a study of the impact of human papillomavirus vaccination on cervical

dysplasia.

Results: We found that, whereas the assumptions of the RDD were generally satisfied in

our study context, birth timing had the potential to confound our effect estimate in an un-

expected way and therefore needed to be taken into account in the analysis.

Conclusions: Our findings underscore the importance of assessing the validity of the as-

sumptions of this design, testing them when possible and making adjustments as neces-

sary to support valid causal inference.
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Introduction

Health researchers often seek to evaluate the effects of a

health programme or medical intervention that has been

implemented as a result of a change in public policy or

practice guidelines. Since these changes occur outside the

strictly controlled settings of randomized controlled trials,

a major challenge in their evaluation is confounding bias.

A recent example of such a policy change was the imple-

mentation of population-based human papillomavirus

(HPV) vaccination programmes, which are primarily

aimed at reducing the burden of cervical cancer in the

population.1 Previously, researchers assessed the effective-

ness of HPV vaccination by comparing vaccinated and un-

vaccinated females.2–5 Unfortunately, studies comparing

vaccinated and unvaccinated groups are notoriously vul-

nerable to confounding bias since health beliefs and behav-

iours, which are associated with both the decision to

receive a vaccine and the risk of many health outcomes,

are difficult to identify and quantify.6–9 In such cases, alter-

native strategies are needed.

The regression discontinuity design (RDD) is a quasi-

experimental approach that was developed specifically to

minimize confounding bias in the assessment of policies,

treatments and interventions that are based on a cut-off

rule or threshold.10 This design first appeared in the psych-

ology and education literature and has been used exten-

sively in the field of economics,11 but has only recently

been introduced to epidemiology,12,13 where it may be

similarly useful. Given the parallels between the random-

ized control trial (RCT) and the RDD, the latter is used as

a powerful alternative in situations where RCTs are uneth-

ical or otherwise unfeasible.14 For example, it has been

used to assess the impact of new age guidelines for breast

and colorectal cancer screening,15 as well as to evaluate the

effects of expanded Medicaid coverage on mortality for

children born after a certain date.16 The RDD is an

important tool that epidemiologists can use to evaluate the

causal effects of health policies and interventions. As with

any methodology, however, a thorough investigation of

the data and an assessment of whether the design is appro-

priate for the study question at hand is a critical first step.

In this paper, we provide a practical introduction to the

regression discontinuity design, describe the assumptions

of the design and offer strategies to assess whether these as-

sumptions are met in a given study. For illustrative pur-

poses, we apply these strategies to our study of the impact

of HPV vaccination on cervical dysplasia, the results of

which are published elsewhere.17

Overview of the RDD

The defining feature of the RDD is the method by which

exposure is assigned. Specifically, the RDD is used in situ-

ations where individuals are assigned to an exposure based

on whether they are above or below a pre-specified cut-off

on a continuously measured scale. As a result, the prob-

ability of being exposed changes discontinuously at the

cut-off as a function of the underlying continuous variable.

In the RDD literature, this underlying continuous variable

is often referred to as the ‘forcing’ or ‘running’ variable.

The RDD analysis then measures any corresponding dis-

continuous change in the probability of the outcome at

that same cut-off. The magnitude of this discontinuity is

used to estimate the causal effect of the policy change or

intervention on those near the cut-off.

Imagine e.g. a prescription drug programme offered free

to those with an annual income of less than $20 000

(Figure 1): the forcing variable would be income, the prob-

ability of being insured would be significantly higher

among those who make less than $20 000 and the RDD

could be used to assess whether there was an improvement
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in perceived health status 1 year later, as indicated by a dis-

continuous jump at the cut-off.

The RDD is valid when exposure is either completely or

partially determined by the assignment rule; the design

simply requires that the probability of exposure changes

discontinuously between groups at the assignment cut-off.

To accommodate both deterministic and probabilistic as-

signment rules, there are two types of the RDD—the sharp

RDD and the fuzzy RDD. The sharp RDD is used when

the assignment rule perfectly determines exposure, mean-

ing all individuals on one side of the cut-off are exposed to

the policy/intervention/treatment and all individuals on the

other side are not, and the proportion exposed changes

from 1 to 0 at the cut-off (Figure 1a). Conceptually, this

situation may arise in the presence of a population-based

policy, such as mandatory vaccination or an environmental

exposure, such as fluoridation of the drinking water. In

contrast, the fuzzy RDD is applied when the assignment

rule affects the probability of exposure, leading to a dis-

continuous change in the probability of exposure at the

cut-off, but by less than 1 (Figure 1b). This scenario may

arise when participation in a programme is optional, as is

the case with HPV vaccination, or when incentives for par-

ticipation change at the cut-off, but are not powerful

enough to shift everyone from unexposed to exposed. This

situation is analogous to non-compliance in an RCT. In the

presence of such non-compliance, the RDD estimates the

intention-to-treat (ITT) impact of the intervention. As in

RCTs, the ITT analysis of the RDD offers a pragmatic as-

sessment of the intervention’s impact.

The strength of the RDD comes from the idea that the

exact location of the assignment cut-off is unpredictable

because the cut-off is determined by an administrative deci-

sion, creating a quasi-experiment in which the precise cut-

off value is unrelated to the baseline characteristics of the

individuals close to the cut-off. This is analogous to when

randomization arbitrarily assigns individuals in an RCT to

exposed or control groups. When exposure is uncondition-

ally and randomly assigned, as in RDDs and RCTs,

exposed and unexposed individuals are expected to be ex-

changeable: they are balanced with respect to independent

outcome predictors, so their outcome probability would be

the same whenever they were subjected to the same expos-

ure history.18 As a result, the additional assumption of ‘no

unobserved confounding’, which is considered the Achilles’

heel of non-experimental observational studies,19 is not

required. Indeed, studies show that randomized experi-

ments and the RDD produce similar estimates in regions

near the cut-off.20 The RDD has the added advantage over

RCTs of being able to estimate local causal effects in a

small range near the cut-off, whereas RCTs estimate aver-

age causal effects, meaning the RDD can be used to esti-

mate the effect of raising or lowering a cut-off.12

In public health as well as medicine, cut-off rules are

often used to guide decisions. As a result, the RDD has a

broad range of potential applications. As previously men-

tioned, it has been used to assess the impact of a clinical

guideline recommending mammography for all women

starting at age 40, where age was the continuous variable

and 40 years was the cut-off,15 as well as Medicaid eligibil-

ity, where birth date was the continuous variable and 30

September 1983 was the cut-off.16 Researchers have also

used the RDD to study health outcomes by exploiting dis-

continuities that arose because of a geographic boundary,

a legal age limit, the timing of HIV treatment, insurance

eligibility and others.13
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Figure 1. Hypothetical RDD setting. (a) Sharp exposure discontinuity;

(b) fuzzy exposure discontinuity; (c) outcome discontinuity.
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The RDD is a powerful design, but its ability to estimate

causal effects rests on several important assumptions.

Some of these are empirically testable and others are not,

but all must hold in order to interpret the effect estimates

as causal. In this paper, we assess whether the RDD as-

sumptions hold in the context of a study on the effects of a

population-based HPV vaccination programme.

Case study

In 2006, Canada was one of several developed countries to

approve GardasilV
R

, a quadrivalent human papillomavirus

(HPV) vaccine designed to protect against four types of

HPV that cause 70% of cervical cancers and more than

90% of anogenital warts. Randomized controlled trials of

the vaccine showed it to be highly efficacious in preventing

pre-cancerous cervical lesions and anogenital warts.1,21

The following year, Canada’s largest province, Ontario,

implemented a publicly funded, school-based HPV vaccin-

ation programme that offers optional HPV vaccination to

all grade 8 girls.22 Girls who were not eligible for the pro-

gramme (i.e. those in grade 8 before 2007) were able to ob-

tain the vaccine through a physician or public health unit

at a cost of approximately CA$450 for the three-dose im-

munization series. Similar programmes have been imple-

mented across Canada and around the world, but there is

limited real-world information on how effective these pro-

grammes have been at reducing HPV-related disease.

To assess whether the RDD was appropriate for evalu-

ating the causal impact of Ontario’s HPV vaccination pro-

gramme on the risk of cervical dysplasia, an early

precursor to cervical cancer, we used data from the

Ontario Grade 8 HPV Vaccine Cohort Study. In brief, we

used Ontario’s population-based administrative health and

immunization databases to identify a cohort of all girls in

grade 8 in Ontario in the two years before (2005/06–2006/

07) and after (2007/08–2008/09) the programme’s

September 2007 implementation date (n¼260 493). Since

we did not have information on school grade, we used

birth date to determine grade 8 year because more than

95% of Ontario students are 13 years old by 31 December

of their grade 8 school year.23 Additional details on the

data and cohort are available in other publications.17,24

RDD assumptions and variables

There are four assumptions specific to the RDD that are at

least partially empirically verifiable and must be assessed

prior to analysis. They are as follows:

1. There is a discontinuity in the probability of exposure

at the cut-off.

2. Individuals’ value of the forcing variable was not

manipulated.

3. Exposure groups are exchangeable around the cut-off.

4. The outcome probability is continuous at the cut-off in

the absence of the intervention.

Prior to discussing each of these assumptions, we define

the variables needed to test them.

Forcing variable and cut-off

A fundamental component of the RDD is the forcing vari-

able, which is the observed continuous variable that as-

signs exposure based on whether its value is above or

below a fixed cut-off. Assignment to Ontario’s Grade 8

HPV vaccination programme was based on whether a girl

was in grade 8 before or after the September 2007 pro-

gramme implementation date. Since we used birth date to

define grade 8 year, it follows that girls born on 31

December 1993 and earlier were ineligible for the pro-

gramme and girls born on 1 January 1994 and later were

eligible for the programme. Accordingly, the forcing vari-

able in this study was based on birth date and the cut-off

was 1 January 1994 (Table 1). In operationalizing the forc-

ing variable, it was important to ensure there were suffi-

cient observations for each value of the forcing variable to

obtain stable estimates of the mean, as well as enough val-

ues of the forcing variable on either side of the cut-off to

estimate stable regression lines and predicted values. Given

the infrequency of cervical dysplasia in the young age

group of our study population, we collapsed birth date

into 3-month intervals, henceforth referred to as birth year

quarters. For analytic purposes, the data were centred such

that ‘0’ represented birthdates at the cut-off (1 January

1994 to 31 March 1994) and the forcing variable ranged

from –8 to 7.

Exposure

In this study, estimates from both the sharp RDD and the

fuzzy RDD were of interest, as each enabled us to answer a

different public health question. First, because girls had no

control over whether they were eligible for Ontario’s HPV

vaccination programme, exposure was defined based on

programme eligibility: whether a girl was in grade 8 before

or after the September 2007 programme implementation

date. Our mapping of birth date to grade created a ‘sharp’

definition of exposure where 100% of girls born on or

after 1 January 1994 were eligible and 0% of girls born be-

fore that date were eligible. This enabled us to estimate the

ITT impact of vaccination for the first time outside of clin-

ical trials and to estimate the impact of the programme on

942 International Journal of Epidemiology, 2017, Vol. 46, No. 3



the risk of cervical dysplasia. Second, to determine the ef-

fect of vaccination on cervical dysplasia, exposure was

defined based on actual HPV vaccination status. We

defined HPV vaccine exposure as receipt of all three doses

of the vaccine between 1 September of grade 8 and 31

August of grade 9, as these dates corresponded with the

programme eligibility period. This second question

matches a fuzzy RDD because both eligible and ineligible

girls had the option of the receiving the vaccine, but the in-

centives to do so were very different between groups.

Specifically, the vaccination series was free and school-

based for eligible girls, whereas it was expensive and

required three visits to a physician office or public health

unit for ineligible girls.

Outcome

The original RDD was conceived with a continuous forc-

ing variable and a continuous dependent variable.

However, recent work in the RDD literature has expanded

the design to also include dichotomous outcomes.12,25–27

This development is particularly important for researchers

wishing to apply the design to epidemiologic questions, as

outcomes of interest in this field are often dichotomous dis-

ease diagnoses. Indeed, the outcome of interest in our study

was the detected presence of cervical dysplasia, a precursor

to cervical cancer. To ensure temporality between the ex-

posure and outcome, cases of cervical dysplasia were iden-

tified in the period immediately following the exposure

ascertainment window—i.e. between 1 September of grade

10 and 31 March of grade 12.

Baseline characteristics

To assess the exchangeability/comparability of the groups,

we considered a number of potential confounders: baseline

characteristics related to socio-demographics, frequency of

healthcare use and medical and vaccination histories.

Socio-demographics factors considered included age, birth

quarter, neighbourhood income quintile and urban/rural

residency. Healthcare use was defined in terms of the fre-

quency of emergency department visits, hospitalizations,

same-day surgeries and outpatient physician visits in the

two years before grade 8, each categorized based on the

frequency distribution of the data. Among girls with at

least one hospitalization, the mean inpatient length of stay

was also determined. We also identified whether a cohort

member had been previously diagnosed with cancer, a

mental illness, an intellectual disability, a congenital anom-

aly or Down syndrome, as well as whether she had any

diagnosis or procedure related to sexual behaviour in the 2

years before grade 8 (e.g. diagnosis of a sexually transmit-

ted infection, pregnancy, cervical cancer screening).

Finally, we created indicators for prior receipt of the mea-

sles, mumps and rubella (MMR); diptheria, tetanus and

pertussis (DTP); and hepatitis B vaccines.

Assessment of the RDD assumptions

Assumption 1: there is a discontinuity in the

probability of exposure at the cut-off

A fundamental assumption of the RDD is that there is a

discontinuous change in the probability of exposure at the

assignment cut-off. Therefore, we first assessed whether

discontinuity of exposure was present in our study. It was

also important to assess whether there were discontinuities

in exposure at locations other than the cut-off, as these

could be indicative of temporal trends, such as other inter-

ventions or policy changes that might confound the results.

Accordingly, continuity in the probability of exposure

across values of the forcing variable with the exception of

a single notable discontinuity at the cut-off provides evi-

dence that this first assumption is satisfied.

To evaluate this assumption for each of our exposure

definitions, we generated line graphs of the probability of

programme eligibility and HPV vaccination according to

the forcing variable. Not surprisingly, Figure 2a shows that

programme eligibility was a deterministic function of the

forcing variable, providing evidence that, conditional on

our mapping of birth date to grade, this assumption was

satisfied for the sharp RDD. Figure 2b shows that the pro-

gramme eligibility had an important impact on HPV vac-

cine exposure, as evidenced by the jump from 0.03 to 0.46

in the proportion of vaccinated girls on either side of the

Table 1. Operationalization of forcing variable

Grade 8

school

year

Birth

year

Birth year quarter Value of

forcing

variable

Ineligible Mar 1992–Jan 1992 –8

2005/06 1992 Jun 1992–Apr 1992 –7

Sept 1992–Jul 1992 –6

Dec 1992–Oct 1992 –5

Mar 1993–Jan 1993 –4

2006/07 1993 Jun 1993–Apr 1993 –3

Sept 1993–Jul 1993 –2

Dec 1993–Oct 1993 –1

Eligible Jan 1994–Mar 1994 0

2007/08 1994 Apr 1994–Jun 1994 1

Jul 1994–Sept 1994 2

Oct 1994–Dec 1994 3

Jan 1995–Mar 1995 4

2008/09 1995 Apr 1995–Jun 1995 5

Jul 1995–Sept 1995 6

Oct 1995–Dec 1995 7
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eligibility cut-off. This figure also demonstrates that there

was continuity across values of the forcing variable on each

side of the cut-off, with the exception of a slight jump be-

tween the 1994 and 1995 birth year cohorts (corresponding

with the 2007/08 and 2008/09 vaccination programme

years). Although the RDD generally requires continuity on

either side of the cut-off, this jump is likely attributable to

the increase in HPV vaccine acceptance between the first

and second years of the programme, rather than to factors

external to the programme that increased HPV vaccine ac-

ceptance in the 1995 birth cohort and also differentially af-

fected their probability of dysplasia. After further

verification of this hypothesis,28 we judged the first assump-

tion to be satisfied for the fuzzy RDD as well. Of note, there

is no definition of what is ‘enough’ discontinuity at the cut-

off, but smaller discontinuities in exposure at the cut-off re-

duce the power to detect a difference in the outcome.

Assumption 2: individuals’ value of the forcing

variable was not manipulated

Another important requirement for a causal interpretation

of the RDD estimates is that individuals did not exert

control over their value of the forcing variable, as this

would violate the assumption that groups are assigned to

the intervention in a way that is analogous to randomiza-

tion. Consider e.g. if gastric bypass surgery was offered

free to all individuals with a body mass index (BMI) over

40. It is plausible that individuals with BMIs just below 40

might chose to gain the few additional pounds required for

them to become eligible. As a result, we would observe a

deficit of individuals with BMIs just below the cut-off and

an excess with BMIs at or just above, creating a discon-

tinuity in the frequency of observations at the eligibility

cut-off. In contrast, if this assumption were satisfied, we

would expect continuity in the density of observations

across all values of the forcing variable. In principle, con-

tinuity of the density is not necessary for valid inference,

but discontinuity is suggestive of violations of the non-

manipulability assumption. Non-manipulability is advan-

tageous because it supports the exchangeability

assumption.

In our study, the forcing variable was based on birth

date. Although birth date can theoretically be manipulated

to a certain extent through planned date of conception or re-

quest for delivery by caesarean section, it is highly unlikely

that the reasons for manipulation would be related to the

risk of cervical dysplasia or eligibility for an HPV vaccin-

ation programme 12 years later. Therefore, manipulation of

a girl’s date of birth is unlikely to have introduced con-

founding in our study. Nevertheless, we tested the continu-

ity of density of observations by determining the percent of

cohort members per value of the forcing variable (Table 2)

and creating a histogram of the density of the forcing vari-

able (Figure 3). The percentages of cohort members per

value of the forcing variable ranged only by 0.7 percentage

points, from 5.8% to 6.5%. Moreover, Figure 3 is relatively

flat, indicating continuity in the density of the forcing vari-

able. Together, the lack of a plausible manipulation mech-

anism and the clear continuity observed from our evidence-

based assessment provided strong evidence that the forcing

variable had not been manipulated and no additional form

of testing was needed. However, McCrary’s density test can

be applied in more tenuous cases, as it offers a more rigor-

ous assessment of this assumption.29

Assumption 3: exposure groups are

exchangeable around the cut-off

The quasi-experimental nature of the RDD implies that

groups are similar with respect to all measured and un-

measured factors, with the exception of the exposure and

outcome. In classic epidemiological designs, the potential

for confounding is assessed by directly comparing exposed

and unexposed groups, or cases and controls. In the RDD,
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Figure 2. Probability of exposure, by the forcing variable*. (a) Probability

of qHPV vaccine programme eligibility; (b) probability of qHPV vaccin-

ation.

*See Table 1 for how values of the forcing variable were operationalized.
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the assumption of exchangeability applies to those closest

to the cut-off as these are the observations for which the

causal effect applies. Therefore, we assume that individuals

closest to the cut-off are the most exchangeable with re-

spect to measured and unmeasured confounders, and it is

generally accepted that the extent of this exchangeability

may decrease with increasing distance from the cut-off.

This notion is also incorporated into the RDD analysis,

which is often restricted to observations closest to the cut-

off (e.g. using local linear regression methods) and/or pla-

ces the greatest weight on these observations in the ana-

lysis, e.g. by triangular kernel weighting.

To assess exchangeability around the cut-off, we plotted

the distribution of baseline characteristics as a function of

the forcing variable. For variables with more than two

categories, each category was assessed separately. Figure 4

depicts the distribution of selected baseline characteristics

(see Appendix 1, available as Supplementary data at IJE

online, for the complete set of graphs). Socio-

demographics, vaccination history and frequency of

healthcare use were generally balanced across the forcing

variable. Not surprisingly, there was greater variability in

the distribution of characteristics with low baseline inci-

dence rates, such as cancer. However, there were no dis-

cernible patterns in these data and differences at the cut-off

were not of greater magnitude than those at locations other

than the cut-off, suggesting this variability was attributable

to random variation rather than to meaningful differences

between exposure groups. In contrast, both hepatitis B vac-

cination (Figure 4c) and a history of sexual activity (Figure

4f) revealed an important pattern that, independently of

birth year, individuals born earlier in the calendar year

(January–March) were more likely to have the characteris-

tic than those born later in the year (October–December).

These findings suggested that the timing of a girl’s birth

relative to that of her grade-matched peers was associated

with receipt of optional vaccines and with sexual activity.

The relative effect of age has been observed in other areas

as well, including sports performance and academic

achievement.30,31

Taken together, this assessment provided evidence that

cohort members were generally similar with respect to

measured potential confounders across levels of the forcing

variable, with the exception of birth quarter, which had

the potential to confound our association of interest and

therefore had to be taken into account in the analysis. Of

course, it is not possible to assess exchangeability with re-

spect to unobserved factors. However, the reassuring re-

sults with respect to Assumption 2 and the balance

demonstrated for observed factors both provided good evi-

dence that the groups being compared were exchangeable.

Assumption 4: the outcome probability is

continuous at the cut-off in the absence of the

intervention

A fourth fundamental assumption is that the risk of the

outcome would have been continuous at the cut-off in the

absence of the intervention. This is a logical extension of

the exchangeability principle, meaning that any discon-

tinuity in the outcome probability can be attributed to ex-

posure alone. To quantitatively assess this assumption, we

would need to observe the counterfactual outcome: rates

of cervical dysplasia in the same population over the same

time period in the absence of the HPV vaccine programme.

Since this is not possible, researchers may assess the out-

come in plausibly exchangeable alternative populations or

Table 2. Distribution of cohort members across birth year

quarters (forcing variable)

Forcing variable Frequency Percentage

(n¼260 493)

–8 16 309 6.26

–7 17 415 6.69

–6 17 126 6.57

–5 15 803 6.07

–4 15 766 6.05

–3 17 035 6.54

–2 16 697 6.41

–1 15 630 6.00

0 15 741 6.04

1 16 860 6.47

2 16 695 6.41

3 15 522 5.96

4 15 419 5.92

5 16 743 6.43

6 16 561 6.36

7 15 171 5.82

Forcing Variable 

Eligibility cut-off

Figure 3. Density of the forcing variable.

*See Table 1 for how values of the forcing variable were

operationalized.
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time periods. We took the approach of graphing the risk of

the outcome for each value of the forcing variable, where

continuity in the risk on either side of the cut-off provided

some evidence that this assumption was satisfied; this con-

tinuity is especially important near the cut-off. An add-

itional benefit of this assessment is that it allows

examination of whether there is a discontinuity in the

outcome probability at the cut-off, thereby providing pre-

liminary insight into the results of the causal analysis—a

discontinuity would suggest the intervention had a causal

effect on the outcome, whereas continuity would suggest

little to no causal effect. This graphical analysis also en-

ables the researcher to examine whether there is any dis-

continuity at locations other than the cut-off, which could
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Figure 4. Distribution of selected baseline characteristics, by forcing variable. (a) Rural residency; (b) Previous MMR vaccination; (c) Previous hepa-

titis B vaccination; (d) 0–1 outpatient physician visits; (e) Cancer; (f) Sexual history.
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suggest the presence of temporal trends, such as other poli-

cies/interventions that may have affected the outcome.

Since randomized controlled trials of the HPV vaccine

have shown it to be highly efficacious in preventing cer-

vical dysplasia in older girls,32,33 we expected a drop in the

risk of this outcome probability at the programme eligibil-

ity cut-off and continuity in the outcome probability on ei-

ther side of the cut-off. We graphed the risk of cervical

dysplasia for each value of the forcing variable (Figure 5a),

and our results suggested a pattern similar to what we had

observed with hepatitis B vaccination and sexual history:

girls born earlier in the calendar year were at higher risk of

this outcome than girls born later in the year. To further

investigate the potential confounding effect of birth timing,

we collapsed the risk of the outcome across birth quarter

into birth year. The risk of dysplasia by birth year is dis-

played in Figure 5b, which suggests rates between ineligible

birth years (1992 and 1993) were similar (i.e. continuous),

as were rates between eligible birth years (1994 and 1995).

These findings confirmed that birth quarter was associated

with cervical dysplasia and needed to be conditioned on in

the RDD analyses. To control for the effect of birth quar-

ter, we included it as a covariate in the regression models,

included all observations in the analysis rather than re-

stricting to observations closest to the cut-off and weighted

birth years closest to the cut-off (1993 and 1994) twice as

heavily as those further away (1992 and 1995). Additional

details on these strategies are described elsewhere.28 Figure

5 also demonstrates that, conditional on birth quarter,

there is a discontinuous drop in the risk dysplasia between

ineligible and eligible girls at the cut-off, thus providing

preliminary evidence that the HPV vaccination programme

had a significant impact on reducing the risk of cervical

dysplasia.

Discussion

This tutorial provides one of the first practical introduc-

tions to the RDD for epidemiologists. Moreover, it de-

scribes four easy strategies researchers can use to assess the

assumptions of the RDD and determine whether the design

is appropriate for their study question and data. By apply-

ing these strategies to our question on the impact of HPV

vaccination on cervical dysplasia, we concluded that the

four major assumptions of the RDD were sufficiently satis-

fied, but that we needed to account for birth timing to

avoid confounding of our effect estimates.

Conceptually, our research question was well suited to

the RDD—there was an observable continuous assignment

variable, a clear assignment cut-off and strong incentives

to accept the treatment at the cut-off. However, careful

checking of the RDD assumptions revealed an important

and unexpected effect of birth timing that implied a stand-

ard RDD analysis focused only on the observations

closest to the cut-off would not have been appropriate.

Consequently, we made adjustments to the RDD analysis

to account for the confounding effect of birth timing

within the school grade.17,28 This adjustment was critical

to circumventing confounding bias in our study, as evi-

denced by the difference between the adjusted relative risk

[0.56; 95% confidence interval (CI) 0.36, 0.87] and un-

adjusted relative risk (0.84; 95% CI 0.58, 1.23). The ad-

justed estimate provided clear evidence of a strong

protective effect of HPV vaccination on cervical dysplasia,

whereas the unadjusted estimate was biased toward the

null. As the birth timing effect was not anticipated a priori,

our experience highlights the importance of explicitly stat-

ing and assessing the RDD assumptions, even when the

study question is conceptually well suited to this design. In

our case, the results of this assessment led us to revisit and

redefine our original statistical approach and instead

consider the validity of the assumptions conditional on

this covariate. Although it has long been known that
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Figure 5. Risk of outcome (cervical dysplasia). (a) Probability of out-

come, by forcing variable*; (b) Probability of outcome, by birth year.

*See Table 1 for how values of the forcing variable were

operationalized.
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conditional RDD analyses are conceptually feasible, prior

to our study, there were few published examples.

Until recently, published papers describing the RDD

have been largely limited to the economics literature34,35;

it was not until 2014 that this design started to appear in

epidemiology journals.12,13,36 Our paper adds to this new

body of literature by providing a practical introduction to

the RDD and demonstrating how to assess the RDD as-

sumptions in the context of an applied example. Our case

study was not a classic application of the RDD for several

reasons. First, it was based on a dichotomous outcome.

Given the prominence of categorical outcomes in health re-

search, this paper helps to illustrate that the RDD can be

suitable for such study outcomes. Second, we observed a

confounding effect of birth timing that meant girls closest

to the cut-off were not the most exchangeable, as is gener-

ally assumed for the RDD; instead, the exchangeability

was present for girls in the same birth quarter. This finding

highlights the fact that, in practice, data do not always

conform perfectly to the assumptions of the RDD analysis.

Understanding and accommodating unique situations is

often an important part of the analytic process and careful

attention must be given to preserve the conditions neces-

sary for causal inference.

This paper focuses on four important assumptions of

the RDD and is intended as an introduction only.

Depending on the study question and initial findings, add-

itional strategies may be desired or required. For example,

we generally used bar and line graphs to assess the prob-

ability of each variable of interest (exposure, outcome,

covariate) by the forcing variable since these graphs pro-

vided a transparent representation of data patterns.

However, scatterplots are another popular tool used to as-

sess these assumptions, especially because adding

smoothed regression lines to these plots on each side of the

cut-off can improve visual presentation.34 Additional stat-

istical tests may also be applied, such as the previously

mentioned McCrary’s density test for determining whether

the forcing variable has been manipulated. This manu-

script addresses verifications that should be performed

prior to undertaking the RDD analysis; however, add-

itional verifications may be required for the analysis.12,16

Further details on the analytic approach used for our study

of the effects of HPV vaccination on cervical dysplasia,

including explanation of bandwidth selection and model-

ling, as well as the substantive results are available

elsewhere.17,28

It has been demonstrated that RDD papers published in

the medical, epidemiology and public health literature

often do not adequately report these validity checks.13 To

promote transparency and increase confidence in study val-

idity, Moscoe et al. provide a complete description of the

five key elements of the RDD analysis that should be re-

ported when publishing an RDD study. We believe that

graphical depictions of the exposure and outcome, in par-

ticular, are central to the manuscript and should therefore

be contained within the main body, whereas checks on the

density of the forcing variable and the distribution of base-

line covariates can be referenced in text and included as

appendices. We hope this study encourages researchers not

only to test the RDD assumptions, but also to share these

results in their published work.

Conclusion

The assessment of assumptions is an integral component of

any study and our paper demonstrates some of the specific

checks necessary in the setting of an RDD while providing

an example of the impact this inquiry can have on the val-

idity of findings. Our findings underscore the importance

of assessing the validity of the assumptions of this design,

testing those that are empirically testable and making ad-

justments as necessary to support valid causal inference.

We hope this paper promotes greater reliance on valid

quasi-experimental designs within epidemiology, as well as

careful reporting of the assumptions so that readers can

critically evaluate the strength of the inference.
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Services sociaux du Québec, JSK by the Canada Research Chairs

programme and LEL by the Canadian Foundation for Innovation—

Leaders Opportunity Fund.

Conflict of interest: The authors have no conflicts of interest to

declare.

References

1. Markowitz LE, Tsu V, Deeks SL et al. Human papillomavirus

vaccine introduction—the first five years. Vaccine 2012;30(Suppl

5):F139–48.

948 International Journal of Epidemiology, 2017, Vol. 46, No. 3



2. Crowe E, Pandeya N, Brotherton JM et al. Effectiveness of quadri-

valent human papillomavirus vaccine for the prevention of cer-

vical abnormalities: case–control study nested within a population

based screening programme in Australia. BMJ 2014;348:g1458.

3. Baldur-Felskov B, Dehlendorff C, Munk C, Kjaer SK. Early im-

pact of human papillomavirus vaccination on cervical neoplasia:

nationwide follow-up of young Danish women. J Natl Cancer I

2014;106(3):djt460.

4. Gertig DM, Brotherton JM, Budd AC, Drennan K, Chappell G,

Saville AM. Impact of a population-based HPV vaccination pro-

gram on cervical abnormalities: a data linkage study. BMC Med

2013;11:227.

5. Mahmud SM, Kliewer EV, Lambert P, Bozat-Emre S, Demers

AA. Effectiveness of the quadrivalent human papillomavirus vac-

cine against cervical dysplasia in manitoba, Canada. J Clin

Oncol 2014;32:438–43.

6. Fine PE, Chen RT. Confounding in studies of adverse reactions

to vaccines. Am J Epidemiol 1992;136:121–35.

7. Chen RT, Davis RL, RHodes PH. Special methodological issues

in pharmacoepidemiology studies of vaccine safety. In: Strom BL

(ed). Pharmacoepidemiology, 4th edn. John Wiley & Sons, Ltd,

2005, pp. 455–85.

8. Jackson LA, Jackson ML, Nelson JC, Neuzil KM, Weiss NS.

Evidence of bias in estimates of influenza vaccine effectiveness in

seniors. Int J Epidemiol 2006;35:337–44.

9. Nelson JC, Jackson ML, Weiss NS, Jackson LA. New strategies

are needed to improve the accuracy of influenza vaccine effective-

ness estimates among seniors. J Clin Epidemiol 2009;62:687–94.

10. Lee H, Munk, T. Using regression discontinuity design for pro-

gram evaluation. Joint Statistical Meeting; 2008. Denver,

Colorado, 2008; 1675–82.

11. Cook TD. ‘Waiting for life to arrive’: a history of the regression-

discontinuity design in psychology, statistics and economics.

Journal of Econometrics 2007;142:636–54.

12. Bor J, Moscoe E, Mutevedzi P, Newell ML, Barnighausen T.

Regression discontinuity designs in epidemiology: causal infer-

ence without randomized trials. Epidemiology 2014;25:729–37.

13. Moscoe E, Bor J, Barnighausen T. Regression discontinuity de-

signs are underutilized in medicine, epidemiology, and public

health: a review of current and best practice. J Clin Epidemiol

2015;68:122–33.

14. Duflo E, Glennerster R, Kremer M. Using Randomization in

Developmental Economics Research: A Toolkit. Massachusetts

Institute of Technology, 2006.

15. Kadiyala S, Strumpf EC. How effective is population-based can-

cer screening? Regression discontinuity estimates from the U.S.

guideline screening initiation ages. Forum for Health Economics

& Policy 2016, epub ahead of print 28 January.

16. Meyer BD, Wherry LR. Saving Teens: Using a

Policy Discontinuity to Estimat the Effects of Medicaid Eligibility.

National Bureau of Economic Research, 2012, pp. 1–74.

17. Smith LM, Strumpf EC, Kaufman JS, Lofters A, Schwandt M,
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