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Background: Allergic rhinitis (AR) is an inflammatory disorder of the nose caused
by immunoglobulin E (IgE)-mediated immune response to allergens. Apart from the
typical symptoms of sneezing, itching, rhinorrhea, and nasal congestion, behavioral
complications were also reported to be associated with the progression of AR,
such as cognitive deficits, mood changes, memory decline, attention deficiency,
poor school performance, anxiety, and depression. Recent human studies have
suggested that alterations in brain function caused by allergen exposure may
precipitate high levels of anxiety and emotional reactivity in asthma patients. But
until now, there is no direct evidence of the relationship between brain activity and
allergic rhinitis.

Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was used to
excavate whether there remain functional changes of brain activity in AR patients. We
measured the amplitude of low-frequency fluctuation (ALFF) and the z conversion of
ALFF (zALFF) in 20 patients with AR and 20 age- and sex-matched healthy controls
(HCs) using the rs-fMRI data.

Results: Compared with healthy controls, AR patients exhibited lower ALFF values in
the precuneus (PCUN) and higher ALFF values in the anterior cingulate cortex (ACC).
The ALFF values of these features were significantly correlated with the visual analog
scale (VAS) scores, the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) scores,
the subscales of RQLQ, and specific IgE, partly.

Conclusion: We found changes in resting-state spontaneous brain activity in AR
patients with hypoactivity in the PCUN and hyperactivity of the ACC. The brain-related
symptoms of AR might be another potential clinical intervention target for improving the
life quality of AR patients. Further attention to brain activity is essential for a deeper
understanding of AR.

Keywords: neuroimaging, allergic rhinitis, resting-state fMRI, precuneus, anterior cingulate cortex, cognition,
memory
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INTRODUCTION

Allergic rhinitis (AR) is an inflammatory disorder of the nasal
mucosa induced by immunoglobulin E (IgE)-mediated immune
response to allergens (Cheng L. et al., 2018; Meng et al., 2019).
In the past decades, AR has become a worldwide public health
problem and affected up to 40% of the population. Although not
life-threatening, the symptoms of AR as well as the comorbid
diseases are frequently bothersome, adversely affecting work,
psychological health, and quality of life, imposing a significant
socioeconomic burden on both the individual and society.

The characteristic symptoms of AR are sneezing, itching,
rhinorrhea, and nasal congestion (Brożek et al., 2017; Cheng
L. et al., 2018; Meng et al., 2019). Apart from these typical
symptoms, behavioral problems were also reported in AR
patients, such as impaired quality of life (QOL), disturbed
sleep, and unsatisfactory performance in school and at work
(Bousquet et al., 2012; Brożek et al., 2017; Cheng L. et al., 2018;
Meng et al., 2019), as well as brain-related symptoms including
psychological problems, memory problems, cognition problems,
concentration deficits, and mood changes (Ozdoganoglu et al.,
2012; Trikojat et al., 2017). How these brain-related symptoms
occur is unclear. Recent human studies have suggested that
alterations in brain function could be caused by allergen exposure
and might precipitate high levels of anxiety and emotional
reactivity in asthma patients (Damoiseaux et al., 2012; Cui et al.,
2020). Callebaut et al. (2020) found the activation of different
brain regions upon nasal histamine provocation in AR patients.
With an AR rat model, Yang et al. (2018) found inflammatory
responses in the hippocampus region. In our previous study,
neuroinflammation was also observed in the olfactory bulb in
an allergic rhinitis mouse model (Lv et al., 2021). These studies
suggested that there might be aberrant brain activity in the brain
regions of AR patients that is responsible for the brain-related
symptoms. But until now, there is no direct evidence of the
relationship between brain activity and allergic rhinitis.

Neuroimaging techniques could help detect structural and
functional brain abnormalities at an early stage. Studies
incorporating structural and functional magnetic resonance
imaging (MRI) can provide more comprehensive information
on the underlying mechanisms of the various pathways in
the pathogenesis of diseases (Dodd et al., 2012). Resting-state
functional MRI (rs-fMRI) is an excellent tool for probing neural
networks and has been widely used to investigate changes in the
global functional network connectivity and local spontaneous
neuronal activity in the brain at rest. Contrastingly, in the
subjective cognitive decline (SCD) disease model, some studies
have failed to find structural changes, but have reported
differences in brain function, as measured by blood oxygen
level-dependent functional MRI (BOLD fMRI) (Scarapicchia
et al., 2019). Notably, some neuroimaging findings in Alzheimer’s
disease (AD) suggest that changes in brain function may actually
precede changes in brain structure (Damoiseaux et al., 2012).
The amplitude of low-frequency fluctuation (ALFF) is an rs-
fMRI method that may serve as a surrogate for neural activity
at a single-voxel level (Dodd et al., 2012; Cui et al., 2014, 2020;
Yang et al., 2018; Scarapicchia et al., 2019; Callebaut et al., 2020;

Lv et al., 2021). Given that, an ALFF analysis may provide
important information on the spontaneous brain activity pattern
specific to AR and on the difference between AR patients and
healthy controls (HCs).

In this study, our primary goal was to observe the changes in
resting-state spontaneous brain activity in ALFF in AR patients,
aiming to make an initial study of the mechanisms of the brain-
related symptoms in AR. Taking into account that few studies
to date have examined the relationship between AR and brain-
related disorders in individuals with AR, and that none of the
fMRI measures of BOLD variability in this group was reported,
we also investigated the relationship between alterations in ALFF
and clinical indexes, as well as allergy indicators, using correlation
analysis for our pilot neuroimaging study.

MATERIALS AND METHODS

Participants
A total of 20 AR patients were recruited from the
Otorhinolaryngology Department of Renmin Hospital of
Wuhan University. The inclusion criteria were as follows:
18–50 years old and moderate to severe AR for more than 1 year.
The diagnostic criteria for AR are according to the Allergic
Rhinitis and its Impact on Asthma Guidelines (ARIA) (Brożek
et al., 2017): (1) positive skin prick tests or circulating levels
of allergen-specific IgE antibody ≥ 0.7 kU/L and (2) clinical
history or identified allergen. The exclusion criteria were allergic
asthma; moderate to severe atopic dermatitis; any autoimmune
disorder; specific immunotherapy during the past 3 years; any
severe chronic inflammatory disease; any neuropsychiatric
disease; any history of brain surgery, alcohol, or drug abuse;
contraindications to MR examinations; and pregnancy or
breastfeeding. Demographic and clinical data such as age, gender,
year of education, disease duration, visual analog scale (VAS)
score, and the Rhinoconjunctivitis Quality of Life Questionnaire
(RQLQ) score of each patient were collected.

Twenty age-, sex-, and education level-matched HCs were
also enrolled as a control group in the present study. All of
the subjects were right-handed according to the Edinburgh
Handedness Inventory.

This study was approved by the Human Research Ethics
Committee of Renmin Hospital of Wuhan University (Wuhan,
China). Written informed consent was given to all the
participants (approval WDRY2020-K233).

MRI Acquisition Data Preprocessing
Scanning of this study was performed at the Radiology
Department of Renmin Hospital of Wuhan University (Wuhan,
China) using a 3-T MR scanner (Discovery MR 750 W System;
GE Healthcare, Milwaukee, WI, United States) with an eight-
channel head coil. Structural T1-weighted images were acquired
with the following parameters: 192 slices, repetition time/echo
time = 8.5/3.3, thickness = 1.00 mm, no intersection gap,
acquisition matrix = 256 × 256, field of view = 240 × 240 mm2,
and flip angle = 12◦. Echo planar images (EPIs) were
acquired with the following parameters: 40 slices, repetition
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time = 2,000 ms, echo time = 25 ms, thickness = 3.0 mm,
gap = 1.2 mm, acquisition matrix = 64 × 64, flip angle = 90◦, field
of view = 240 × 240 mm2, and voxel size = 3.6 × 3.6 × 3.6 mm3

during an 8-min scanning time. Three EPI series were collected
from all participants, and they underwent MRI scans with their
eyes closed, but not sleeping.

Functional MRI Data Acquisition and
Preprocessing
Resting-state functional images were preprocessed through
Statistical Parametric Mapping SPM121 and the toolbox for Data
Processing Assistant and Analysis for Brain Imaging2 software.

Steps could be briefly generalized as follows: (a) Remove the
first 10 time point functional images to achieve equilibrium
because of lack of adaptation to the scanning environment
and unstable initial MRI signal. (b) The intra-volume
temporal mismatch and intervolume spatial displacement
were subsequently corrected. EPIs were normalized to the
Montreal Neurological Institute (MNI) standard space and
resampled to a resolution of 3 × 3 × 3 mm3. Normalized images
were smoothed spatially with a 6 × 6 × 6-mm3 full width at
a half maximum Gaussian kernel. Denoising methods were
applied, including bandpass filtering and nuisance covariate
regression (linear trend, Friston 24-parameter head motion
parameters, white matter signal, cerebrospinal fluid, and global
signal). Subjects with head motion that exceeded the maximum
displacement of 2 mm at each axis and an angular motion of 2◦

for each axis (x, y, z, pitch, roll, and yaw) were excluded from
further analysis. Using this criterion, seven AR subjects and three
control subjects were excluded, which resulted in 20 AR and 20
control subjects.

Amplitude of Low-Frequency Fluctuation
The BOLD time series for each voxel was first converted to the
frequency domain using fast Fourier transform. The square root
of the power spectrum was subsequently computed and averaged
across the specified frequency range (0.01–0.08 Hz) at each voxel.
The averaged square root was considered the ALFF. Finally, this
value was transformed using Fisher’s z transformation amplitude
of low-frequency fluctuations (zALFF) and used for subsequent
group-level analysis. Calculations were performed using REST
software version 1.83. Then, the mean ALFF value was extracted
by averaging the ALFF values over all voxels for each individual.

Statistical Analysis
Demographic and clinical data such as age, gender, year of
education, disease duration, VAS score, and RQLQ score were
analyzed using the Statistical Package for the Social Sciences
version 26.0 (IBM Corporation, Armonk, NY, United States)
between the two groups. The two-tailed t-test was performed for
variables and the statistical threshold set at p < 0.05.

The two-sample t-test was used to compare the zALFF
values in each voxel of the two groups (two-tailed, voxel-level:

1http://www.fil.ion.ucl.ac.uk/spm/
2http://rfmri.org/dpabi
3www.restfmri.net

p < 0.01; Gaussian random field theory correction, cluster-
level: p < 0.05). Pearson’s correlation analysis was used to
investigate the relationship between the mean ALFF values in
different brain regions and clinical performance for AR patients.
Spearman’s correlation analysis was employed to investigate the

TABLE 1 | Demographic and clinical characteristics between allergic rhinitis (AR)
patients and the healthy control (HC) group.

Characteristics HC (n = 20) AR (n = 20) p-value

Age (years) 32.3 ± 9.1 37.1 ± 8.3 0.104

Male/female (n) 9/11 9/11 –

Education (years) 15.2 ± 1.6 14.2 ± 3.7 0.291

VAS scores – 46.6 ± 12.5 –

Overall – 7.9 ± 2.2 –

Sneezing – 7.3 ± 2.3 –

Rhinorrhea – 7.2 ± 2.9 –

Itching – 6.1 ± 2.9 –

Congestion – 7.7 ± 2.7 –

Eye itching – 6.0 ± 1.6 –

Lacrimation – 4.8 ± 2.3 –

Impact on life – 7.6 ± 2.3 –

RQLQ scores – 95.5 ± 28.9 –

Activity limitation – 10.3 ± 3.9 –

Reading – 3.2 ± 1.8 –

Practice – 2.9 ± 1.7 –

Social activities – 4.2 ± 1.7 –

Sleep disturbance – 9.9 ± 5.8 –

Difficulty getting to sleep – 3.4 ± 2.1 –

Wake up during the night – 2.9 ± 2.2 –

Restless – 3.7 ± 2.2 –

Non-nasal/eye symptoms – 22.6 ± 10.0 –

Fatigue – 3.7 ± 2.0 –

Thirsty – 3.0 ± 2.2 –

Productivity degradation – 2.9 ± 1.9 –

Tired – 3.4 ± 2.0 –

Attention deficit – 3.5 ± 1.4 –

Headache – 2.9 ± 1.8 –

Exhausted – 3.4 ± 2.0 –

Practical problems – 13.4 ± 5.4 –

Have to carry tissues – 4.4 ± 1.9 –

Need to rub nose/eyes – 4.5 ± 1.9 –

Need to blow nose – 4.5 ± 1.8 –

Nasal symptoms – 16.4 ± 5.1 –

Congestion – 4.7 ± 1.7 –

Rhinorrhea – 4.5 ± 1.7 –

Sneezing – 4.6 ± 1.5 –

Postnasal drip – 2.7 ± 2.1 –

Eye symptoms – 10.3 ± 5.3 –

Eye hyperemia – 2.2 ± 2.0 –

Lacrimation – 2.9 ± 1.8 –

Eye ache – 1.7 ± 1.4 –

Eye itching – 3.6 ± 1.5 –

Emotional function – 11.2 ± 4.8 –

Depression – 1.5 ± 1.5 –

Impatient or restless – 3.2 ± 1.7 –

Irritable – 2.7 ± 2.2 –

Embarrassed – 3.9 ± 1.8 –

VAS, visual analog scale; RQLQ, Rhinoconjunctivitis Quality of Life Questionnaire.
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TABLE 2 | Two-sample t-test differences between AR patients and HCs using
the ALFF method.

Brain region R/L No. of voxels MNI (x, y, z) Peak

AR < HC

PCUN L 105 0 –66 36 –5.1729

AR > HC

ACC L 61 –6 39 –6 4.7576

AR, allergic rhinitis; HCs, healthy controls; ALFF, amplitude of low-frequency
fluctuation; FWE, family-wise error; R/L, right/left hemi-cerebrum; MNI, Montreal
Neurological Institute; PCUN, precuneus; ACC, anterior cingulate cortex.
p < 0.01, cluster level; p < 0.05, FWE correction.

correlation between the ALFF z-values in the precuneus (PCUN)
and specific IgE. Partial correlation analyses were performed in
the comparisons above, excluding the effects of gender, age, and
years of education. A p-value < 0.05 was considered to represent
a significant difference.

RESULTS

Demographic and Clinical Data
There were no significant differences in age or sex between the
HC and AR groups (p > 0.05; see Table 1). Table 1 provides the
demographics of the samples and the VAS and RQLQ scores.

ALFF Alterations Between AR Patients
and HCs
Relevant information of the mean ALFF values is shown in
Table 2 and the visual images shown in Figure 1. Our findings
revealed that AR patients showed significantly lower ALFF values
in the PCUN and significantly higher ALFF values in the anterior
cingulate cortex (ACC) compared to the HCs. The average ALFF
z-values of the altered brain regions are shown in Figure 2, and
the difference was statistically significant.

Correlation Results
Correlation analysis revealed that the mean ALFF values in
the PCUN displayed significant positive correlations with the
VAS (r = 0.562, p = 0.019) and RQLQ (r = 0.623, p = 0.008)
scores. Moreover, the ALFF values in the PCUN also had
significant positive correlations with the RQLQ subscale of non-
nasal/eye symptoms (r = 0.683, p = 0.003) and emotional function
(r = 0.647, p = 0.005), as shown in Figure 3. There was no
significant correlation between the ALFF values in the PCUN and
other subscales (p > 0.05).

The mean ALFF values in the ACC displayed significant
positive correlations with the VAS score (r = 0.572, p = 0.016) and
the RQLQ subscale of practical problems (r = 0.571, p = 0.017),
as shown in Figure 4. However, no significant correlation was
observed between the mean ALFF values in the ACC and other
subscales of the RQLQ score (p > 0.05).

FIGURE 1 | Differences in the amplitude of low-frequency fluctuation (ALFF) between allergic rhinitis (AR) patients and the healthy control (HC) group. (A) The AR
group showed significant lower ALFF values in the left precuneus (PCUN, in blue) compared with the HC group. Clusters in blue also included part of the right PCUN
(16 voxels) and bilateral cuneus (25 voxels). (B) The AR group showed significant higher ALFF values in the left anterior cingulate cortex (ACC, in red) compared with
the HC group. Clusters in red also included part of the bilateral medial orbital superior frontal gyrus (16 voxels), bilateral rectus (16 voxels), and bilateral olfactory (8
voxels). p < 0.01, cluster level; p < 0.05, family-wise error (FWE) correction.
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FIGURE 2 | Mean ALFF signal values for the altered regional brain areas
between AR patients and HCs. ALFF, amplitude of low-frequency fluctuation;
AR, allergic rhinitis; HCs, healthy controls; PCUN, precuneus; ACC, anterior
cingulate cortex.

We also analyzed the fMRI results and the indexes of allergy.
We found significant positive correlations between AR patients’
ALFF in the PCUN and the specific IgE results (r = 0.743,
p < 0.001), as shown in Figure 5. However, the correlation
analysis between disease duration and the ALFF values in the
PCUN and ACC showed insignificant results (PCUN: r = 0.254,
p > 0.05; ACC: r = 0.022, p > 0.05), as shown in Figure 6.
Additionally, we also performed a multivariate linear regression

analysis on ALFF z-values in the PCUN (F = 41.150, R2 = 0.864)
and ACC (F = 24.383, R2 = 0.787), as shown in Table 3.

DISCUSSION

Brain-related symptoms are an important part of AR. By
the statistics of the keyword search results in PubMed and
Google Scholar databases, we found that several brain-related
symptoms in AR have been mentioned frequently, especially
in recent years, as shown in Figure 7. Epidemiologic studies
showed that a diagnosis of major depressive disorder is 1.7
times higher in AR patients compared to that in non-allergic
subjects (Cuffel et al., 1999; Hurwitz and Morgenstern, 1999).
Despite anxiety and depression, disorders relating to cognition,
attention, and memory in AR are also common clinically.
A cross-sectional study found that allergic rhinitis was associated
with loss of energy and concentration difficulty (Robles-Figueroa
et al., 2020). Kremer et al. illustrated that AR was related to
a significantly impaired psychological wellbeing and perceived
impaired cognitive functioning (Kremer et al., 2002). Pollen-
allergic AR patients delivered an increased amount of total
errors in specific measurements of spatial working memory
during the pollen season compared to those in the control group
(Papapostolou et al., 2020). It has been shown that untreated
allergic patients experience a subtle slowed speed of cognitive

FIGURE 3 | Significant correlation analyses between AR patients’ ALFF values in the PCUN and clinical indexes. (A) PCUN and VAS scores: n = 20, r = 0.564,
p = 0.018. (B) PCUN and RQLQ scores: n = 20, r = 0.609, p = 0.009. (C) PCUN and subscale of non-nasal/eye symptoms of RQLQ scores: n = 20, r = 0.683,
p = 0.003. (D) PCUN and subscale of emotion symptoms of RQLQ scores: n = 20, r = 0.647, p = 0.005. ALFF, amplitude of low-frequency fluctuation; AR, allergic
rhinitis; PCUN, precuneus; VAS, visual analog scale; RQLQ, Rhinoconjunctivitis Quality of Life Questionnaire.
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FIGURE 4 | Significant correlation analyses between AR patients’ ALFF values in the ACC and clinical indexes. (A) ACC and VAS scores: n = 20, r = 0.572,
p = 0.016. (B) ACC and subscale of practical problems of RQLQ scores: n = 20, r = 0.571, p = 0.017. ALFF, amplitude of low-frequency fluctuation; AR, allergic
rhinitis; ACC, anterior cingulate cortex; VAS, visual analog scale; RQLQ, Rhinoconjunctivitis Quality of Life Questionnaire.

processing (Marshall et al., 2000). Moreover, recent studies have
proposed that pediatric allergic airway disease was associated
with declines in cognitive function and school attendance
(Yamasaki et al., 2020). As for attention deficits, AR is also
reported to be closely related to attention-deficit hyperactivity
disorder (ADHD) in previous studies (Brawley et al., 2004;
Melamed and Heffron, 2016; Yang et al., 2016; Feng et al., 2017;
Miyazaki et al., 2017; Wang et al., 2018; Chen et al., 2019; Guo
et al., 2020). Children with ADHD were found to be more likely
to have AR than are their counterparts (Miyazaki et al., 2017).
Brain-related symptoms like cognitive impairment (CI), mood
changes, and attention deficits also exist in other allergic diseases
such as asthma and atopic dermatitis. It is worth mentioning that
CI was largely observed in adults with asthma (Rhyou and Nam,
2020). Additionally, patients with vasomotor rhinitis also suffer
from psychological damage (Zhang et al., 2020).

However, most of these studies are based on one-item self-
reports regarding the absence or presence of brain-related
symptoms and, therefore, lack a subjective and visualized
assessment of psychological impairments in AR patients. The

FIGURE 5 | Significant correlation analysis between AR patients’ ALFF values
in the PCUN and specific IgE results. Spearman’s correlation analysis between
the ALFF z-values in the PCUN and specific IgE: n = 20, r = 0.743, p < 0.001.
ALFF, amplitude of low-frequency fluctuation; AR, allergic rhinitis; PCUN,
precuneus.

underlying pathophysiological mechanisms of clinically relevant
psychological disorders in AR patients remain elusive as well.
rs-fMRI might provide a tool for visualizing the changes of the
different brain regions in AR.

In this study, we report on the changes in resting-state
spontaneous brain activity in AR patients. ALFF analysis was
used to investigate alterations of the BOLD signal and the
correlation between brain areas and clinical data. We found that
AR patients mainly exhibited a significant lower ALFF in the
PCUN and a significant higher ALFF in the ACC. Moreover, the
ALFF values showed significant correlations with clinical indexes,
and the ALFF in the PCUN reflected positive correlations with
the specific IgE results of AR patients. Patients with AR may
experience changes in brain function, and these changes may
result in CI, memory degradation, anxiety–mood disorder, and
attention deficits. The connections between the brain-related
symptoms and brain function regions are shown abstractly in
Figure 8 in the form of a Sankey diagram and related to
our results in the brain map. To our knowledge, this is the
first report on the resting-state spontaneous brain activity in
AR patients showing the activation of different brain regions
and providing important information about the brain circuitry
changes of AR patients.

The PCUN stands out for its distinctive role in fundamental
cognitive functioning (Cavanna and Trimble, 2006). Studies
have revealed that PCUN activation increased during
memory retrieval (Fletcher et al., 1995; Maddock et al.,
2001; Lundstrom et al., 2005; Hebscher et al., 2020), emotion
processing (Fletcher et al., 1995; Maddock et al., 2001, 2003;
Lundstrom et al., 2005; Cavanna and Trimble, 2006; Hebscher
et al., 2020), and reward monitoring (Hayden et al., 2008). It was
demonstrated that the PCUN plays an important role in memory
and novelty detection (Lundstrom et al., 2003; Gur et al., 2007;
Kafkas and Montaldi, 2014; Gilmore et al., 2015), especially
during episodic (Fletcher et al., 1995; Maddock et al., 2001;
Lundstrom et al., 2005) and autobiographical (Addis et al.,
2004; Eustache et al., 2004) memory tasks within the regions of
the default mode network (DMN) (Li et al., 2019). The DMN
appears to play a commanding role in the large-scale functional
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FIGURE 6 | Correlation analysis between disease duration (years) and the ALFF values in the PCUN and ACC. (A) Correlation analysis between disease duration and
the ALFF values in the PCUN: n = 20, r = 0.254, p > 0.05. (B) Correlation analysis between disease duration and the ALFF values in the ACC: n = 20, r = 0.022,
p > 0.05. ALFF, amplitude of low-frequency fluctuation; PCUN, precuneus; ACC, anterior cingulate cortex.

TABLE 3 | Estimation results of the multivariate linear regression coefficients on the ALFF z-values in the PCUN and ACC.

Factor B Standard error t p VIF

Constant −0.418 0.172 −2.424 0.028 –

VAS score 0.011 0.005 2.148 0.047 2.287

RQLQ score 0.006 0.002 2.526 0.022 3.149

Specific IgE 0.118 0.037 3.231 0.005 2.134

*The dependent variable for the above data is the ALFF z-value in the PCUN (F = 41.150, R2 = 0.864)

Constant −0.855 0.167 −5.123 0.000 –

VAS score 0.018 0.005 3.880 0.001 1.903

RQLQ score 0.004 0.002 2.123 0.050 2.045

Specific IgE 0.039 0.029 1.321 >0.05 1.304

*The dependent variable for the above data is the ALFF z-value in the ACC (F = 24.383, R2 = 0.787).

VIF, variance inflation factor; VAS, visual analog scale; RQLQ, Rhinoconjunctivitis Quality of Life Questionnaire; IgE, immunoglobulin E.

organization in the resting state without tasks (Raichle, 2015),
which is closely related to brain functions such as monitoring the
internal and external environments, maintaining consciousness
awakening, emotional processing, self-introspection, and
extraction of episodic memory (Andrews-Hanna, 2012). The
PCUN is also one of the brain areas associated with anxiety
(Lai, 2018), sleep, and depressive problems, together with the
orbitofrontal cortex (OFC) (Cheng W. et al., 2018). Consistently,
the OFC is related to the olfactory system and has increased
functional connectivity with the PCUN, as shown in an fMRI
study (Cheng et al., 2016). Olfactory function was correlated with
OFC in Alzheimer’s dementia and Parkinson’s disease dementia
(Lee et al., 2020), which indicates that the PCUN closely relates
to the olfactory system and neurodegeneration-related functions.

The ACC has a near-ubiquitous presence in the neuroscience
of cognition within the region of the limbic system (Shenhav
et al., 2013; Rolls, 2019). It has been implicated in a diversity of
functions, from reward processing and performance monitoring
to the execution of control and action selection (Shenhav et al.,
2013). The ACC also receives information from the OFC about
reward and non-reward outcomes. It is involved in emotion for it
connects rewards to actions (Rolls, 2019). The ACC is a critical
hub for mood disorders (Barthas et al., 2015) and is involved

in the appraisal and expression of negative emotion, especially
depression, anxiety, and fear (Etkin et al., 2011; Godlewska et al.,
2018; Rolls et al., 2019). Irritability is a common clinical problem
in AR patients. The ACC was found to present hyperactivity
in irritable youth (Leibenluft, 2017). Attention deficit was also
found to have a relationship with ACC, as mentioned above in
ADHD (Bauer et al., 2018; Naaijen et al., 2018; Vogt, 2019),
which was consistent with our clinical findings of concentration
disorders in AR patients. Fatigue (Capuron et al., 2005) and
embarrassment (Sturm et al., 2013; Morita et al., 2014) were
reported to have a connection with ACC as well. Besides, a
pharmacological MRI design was undertaken in AR patients
allergic to house dust mite, and the results showed that several
brain regions, including the ACC, were activated after nasal
histamine provocation (Callebaut et al., 2020). However, rs-fMRI
is more reflective of a patient’s usual functional brain activity than
is task-state functional MRI.

Our neuroimaging results also corresponded with our
clinical findings. In this study, we showed significant
correlations between the ALFF values of AR patients and
clinical indexes. We found that the VAS scores, RQLQ scores,
and the RQLQ subscales of “non-nasal/eye symptoms and
emotional function” had positive correlations with the
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FIGURE 7 | Keyword search results in PubMed and Google Scholar. (A,B) Number of results from PubMed and Google Scholar (by February 2021) shown
separately for the following keywords: “(allergic rhinitis) AND (depression),” “(allergic rhinitis) AND (anxiety),” “(allergic rhinitis) AND (memory degradation),” “(allergic
rhinitis) AND (attention deficit),” “(allergic rhinitis) AND (insomnia),” “(allergic rhinitis) AND (irritable),” “(allergic rhinitis) AND (cognitive impairment),” “(allergic rhinitis)
AND (dementia),” “(allergic rhinitis) AND (restless),” and “(allergic rhinitis) AND (embarrassed).”

FIGURE 8 | Associations among AR, brain-related symptoms, and brain regions. The Sankey diagram showed the associations among AR, brain-related symptoms
(including depression, anxiety, memory degradation, attention deficit, insomnia, irritability, cognitive impairment, dementia, restlessness, and embarrassment, which
were grouped into four categories for cognition problems, psychological problems, memory problems, and activity problems), and brain regions (PCUN, ACC, and
others) abstractly based on the relationship between them from knowledge of AR literatures. The brain map on the right was our result of the ALFF analysis
presented by the BrainNet toolbox in SPM. AR, allergic rhinitis; PCUN, precuneus; ACC, anterior cingulate cortex; ALFF, amplitude of low-frequency fluctuation.

ALFF in the PCUN. As shown in Table 2, non-nasal/eye
symptoms include indexes of “fatigue, thirsty, productivity
degradation, tired, attention deficit, headache, and exhausted”
and emotional function includes indexes of “depression,
impatient or restless, irritable, and embarrassed.” In the ACC,
we found that the VAS scores and the RQLQ subscale of

practical problems including indexes of “have to carry tissues,
need to rub nose/eyes, and need to blow nose” had positive
correlations. Moreover, we found that the specific IgE index
had positive correlations with the ALFF values, which indicated
the potential relationship between allergic immunological
abnormalities and the brain-related symptoms of AR patients.

Frontiers in Neuroscience | www.frontiersin.org 8 July 2021 | Volume 15 | Article 697299

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-697299 July 8, 2021 Time: 20:1 # 9

Gao et al. AR Patients’ Brain Activity Changes

In addition, we also found statistically significant effects of
the VAS scores, RQLQ scores, and specific IgE on the ALFF
values in the PCUN and ACC through multivariate linear
regression analysis, as shown in Table 3. These associations
suggest that more severe clinical symptoms would indicate
stronger functional brain activity.

Given the evidence for the relationship between allergic
rhinitis and brain-related symptoms, the possible pathogenesis
might include, but is not limited to, the following perspectives:
(1) physiological effects—the physiological role of nasal
obstruction and its impairing impact on sleep may, together,
subsequently affect psychiatric symptoms negatively (Léger
et al., 2006; Fang et al., 2010); (2) cytokines—pro-inflammatory
cytokines could access the central nervous system and
interact with a cytokine network in the brain, which may
virtually influence every aspect of brain-related behavior
through different pathways (Capuron and Miller, 2011);
(3) neuroinflammation—the involvement of the microglia
and astrocytes in the initiation of both pro- and anti-
inflammatory events indirectly points toward the degeneration
of neurons (De Virgilio et al., 2016; Gelders et al., 2018;
Passamonti et al., 2019); and (4) genetics—there exists a possible
shared genetic risk between allergic disorders and depression
(Wamboldt et al., 2000).

Our study also has limitations and caveats. The number of
our case samples was small, which limited our comprehensive
understanding of the relationship between the activated brain
regions and the severity of AR. Moreover, we did not conduct
a cognitive or psychological analysis using professional scales
or a questionnaire for each patient. We will continue to
collect clinical samples for further research. To the best of our
knowledge, our current study is one of the first resting-state
functional neuroimaging studies in the field of allergic rhinitis
and is one of the first studies to connect clinical indexes with
fMRI values. According to our results, early intervention and
therapy for brain-related symptoms in AR will be recommended.
AR patients, otherwise, may have a risk of AD or other
neurodegeneration diseases.
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