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Abstract

A neuron embedded in an intact brain, unlike an isolated neuron, participates in network activity at various spatial
resolutions. Such multiple scale spatial dynamics is potentially reflected in multiple time scales of temporal dynamics. We
identify such multiple dynamical time scales of the inter-spike interval (ISI) fluctuations of neurons of waking/sleeping rats
by means of multiscale analysis. The time scale of large non-Gaussianity in the ISI fluctuations, measured with the Castaing
method, ranges up to several minutes, markedly escaping the low-pass filtering characteristics of neurons. A comparison
between neural activity during waking and sleeping reveals that non-Gaussianity is stronger during waking than sleeping
throughout the entire range of scales observed. We find a remarkable property of near scale independence of the
magnitude correlations as the primary cause of persistent non-Gaussianity. Such scale-invariance of correlations is
characteristic of multiplicative cascade processes and raises the possibility of the existence of a scale independent memory
preserving mechanism.
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Introduction

An isolated neuron has a volatile memory. Its membrane

potential returns to the resting value once synaptic inputs stop

activating/deactivating it. A neuron in a prepared in vitro brain

slice, unlike a neuron in the living brain, is virtually isolated due to

lack of synaptic input. After artificial activation of such a neuron,

its dynamics recovers to the original state within tens of

milliseconds [1]. Although an isolated neuron can summate the

history of synaptic inputs, their total history is lost immediately

after a spike is fired. Once neurons form a network, however, they

exhibit an amazing ability to preserve activity at different time

scales. Here we reveal this phenomenon with multiscale analysis of

the activity of a neuron embedded in an intact brain (in vivo). Such

an ability of neuronal networks, but not of isolated neurons, to

retain information at different time scales, greatly enriches their

computational ability. This is because now they can make use of

the information across the full space-time domain, rather than

spatially but at a single temporal scale.

Close investigation of the long time scales in the neural activity

was pioneered in experimental studies on neuronal assemblies

cultured on a multi-electrode array (MEA) [2–4]. There, a

conventional analysis method was used to reveal power-law scaling

behavior in the histograms of the sizes of the event and inter-event

intervals. Observing power-law behavior, such as 1=t3=2, rather

than an exponential decay exp ({t=T), implies a lack of

characteristic time scale (T ) and scale-invariant behavior.

Typically, scale-free characteristics are of functional significance

[2–4]. Further studies have generalized the findings from culture

preparation to slice preparation, and even to the intact brain (in

vivo) of an anesthetized animal [5].

Here, we take a step further, and analyze the intact brain

without anesthesia, that is the neural activity of the normally

working brain. Our methodology is armed with an advanced tool

to detect the presence of multiple scales in time series dynamics,

such as that resulting from brain activity. In order to record the

brain activity of unanesthetized animals, we developed a special

chamber [6] in which rats stayed calm due to their inborn nature

to favor narrow and protected places. This chamber enabled us to

record neuronal activity for up to eight hours in a row. Thus,

recorded data permit examination for the presence of memory in

neuronal activity at time scales ranging from tens of milliseconds to

at least several minutes.

We apply multiscale analysis, as it has previously been proven to be

a powerful tool in unraveling the presence of multiple time scales in

such diverse areas as hydrodynamic turbulence [7–9], human

heartbeat interval fluctuations [10,11], and stock price fluctuations

[12]. By applying the method to the fluctuations of the interspike

interval (ISI) of spike trains recorded from neurons in the rats’ brains,

we find evidence for the multiple time scales in the neural activity.

PLoS ONE | www.plosone.org 1 September 2010 | Volume 5 | Issue 9 | e12869



Typically for wild rats, our rats in the chamber spontaneously

alternate between waking and sleeping. The observed ISI

fluctuations exhibit strong non-Gaussianity, which chiefly results

from the shape of the ISI distribution and its substantial

autocorrelation. A close analysis reveals the following. (1) The

non-Gaussianity is significantly larger during waking than

sleeping. (2) The non-Gaussianity characteristics are found not

only in a single neuron but also in a population of neighboring

neurons, suggesting that the long time scales reside in the

network. (3) Scale invariant, multiplicative cascade-like properties

are observed in an average sense, accompanied by scale-

invariant two-point correlations and suggesting preservation of a

memory-preserving mechanism across a large range of temporal

resolutions.

Results

Multiscale fluctuation analysis
The method employed has previously been used and described

in Refs [10–13]. However, we outline the method here to make

the present paper self-contained. We consider a series of ISI’s

denoted by b(1), b(2), � � � , b(N) in a given period of observa-

tion time (Fig. 1(A)), which we cumulate as B(n)~b(1)z
b(2)z � � �zb(n), 1ƒnƒN, (Fig. 1(B)). For neural firing at a

constant rate, B(n) grows linearly, while for firing with some

degree of adaptation, B(n) curves up-/downward. Our immediate

goal is to determine, at each scale s, stochastic fluctuations of B(n)
from its smoothly changing tendency, or ‘‘trend’’. To do this, we

first divide the whole observation time into half-overlapping 2s-

sized segments: ½1, 2s�, ½sz1, 3s�, ½2sz1, 4s�, � � �, and then deter-

mine a polynomial fit to data points within each segment. The

fitting error or residual, B�s (n), represents the stochastic fluctuation

at scale s that we sought. This procedure is often referred to as

detrending [14]. The stochastic fluctuations cumulated over a time

scale of s are calculated as DBs(n)~B�s (nzs){B�s (n). A

measuring device which fails to follow too rapid fluctuations

might intuitively be thought to display values of DBs(n) at every s
events. A larger time scale corresponds to a lower temporal

resolution. Sufficient detrending erases biases in fluctuations,

DBs(n), so that it is symmetrically distributed around zero

(Fig. 1(C)(D)). In the present study, we used a cubic-polynomial

fitting because a higher order detrending did not significantly

change the results. Figs. 1(C)(D) display the normalized stochastic

variable, x~DBs(n)=s, where s denotes a standard deviation

DBs(n). The normalized variables are displayed at two different

coarse graining scales, s~4 and s~32. The probability distribu-

tion functions (PDF) of the normalized quantity at eight different

coarse graining scales, are shown in Fig. 2(A). A sharp peak and a

heavy tail of the PDF which represent the non-Gaussianity, are

preserved up to the largest scale for this particular neural spike

train. The non-Gaussianity surviving at large scales, signals the

breakdown of the Central Limit Theorem (CLT). The larger the

scale is, the more consecutive ISI’s we concatenate to measure the

fluctuation sum, DBs(n). Concatenating statistically independent

ISI’s, results in DBs(n)=s approaching a Gaussian distribution for

increasing s. The failure to converge to the Gaussian distribution,

as e.g. illustrated in Fig. 2(A), evidences the presence of statistical

correlations between different ISI’s. Some spike trains showed

non-Gaussianity more rapidly diminishing with scale (Fig. 2(B)).

However, the majority of spike trains we analyzed showed a very

slow convergence to Gaussianity. A complete analysis is provided

in the following sections.

The degree of non-Gaussianity can be quantified based on what

is known as Castaing’s equation, originally developed to

characterize the multiscale nature of hydrodynamic turbulence

[8]. In this method, the non-Gaussian PDF is represented as a log-

normally weighted superposition of Gaussian distributions with

different widths, parameterized by non-Gaussianity parameter l:

f (x)~

ð?
0

1ffiffiffiffiffiffiffiffiffiffi
2pl2

p exp {
( ln szl2)2

2l2

 !
G(x, s2)d( ln s), ð1Þ

where G(x, s2)~ 1ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp {

x2

2s2

� �
. Given that the fitting

parameter, l2, vanishes when the PDF approaches the Gaussian,

we confirm that l2 serves as a measure of non-Gaussianity.

Interestingly, the multiscale analysis of non-Gaussianity has been

shown to work well in characterizing not only turbulence, but also

fluctuations in foreign exchange rates [15], stock indexes [12], and

human heartbeat intervals [10,11]. We used the moment based

estimator of l2 developed in [13], bracketing the moment

parameter with q~1:6 and q~0:1.

Figure 1. Illustration of the method to extract the non-
Gaussianity in the ISI fluctuations. (A) ISI’s of a spike train of a
neuron are displayed chronologically. (B) Cumulated ISI’s. (C)(D) ISI
fluctuations were calculated by detrending (defined in the text) at s~4
(C) and s~32 (D). The spike train was taken from a cortical neuron #12
when the animal was awake.
doi:10.1371/journal.pone.0012869.g001

Near Scale-Free Dynamics
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Presence of multiple scales in neuronal firing
In the present study, we apply multiscale analysis to ISI’s

recorded with five multiunit electrodes (tetrodes), each of which

has four channels. Five rats that were free from anesthesia were

used for our recording. Among five tetrodes, four were inserted

into the motor/sensory cortex and one was inserted into the

hippocampus, and the spontaneous neural activity was recorded.

Using a spike-sorting technique [16–18], we separated signals from

each of the tetrodes into spike trains of individual neurons. The

resultant spike trains were divided into segments ‘‘asleep’’ and

‘‘awake’’, in accordance with videotaped images of the rats [6].

Multiscale analysis generally requires long series of data. Among

neurons of which the spike trains were identified by the procedure,

there were 266 neurons which provided over a thousand firing

events both in sleeping and waking periods separately.

As illustrated in Fig. 2(A), ISI fluctuations of a number of

neurons for the waking animal display strong non-Gaussianity

persisting well up to 500 ISI0s. This corresponds to about four

minutes for the neuron (#12) whose average firing rate is 2.3Hz.

The non-Gaussianity of some other neurons, such as the one

shown in Fig. 2(B) (#17), decays more rapidly with a scale. In

order to characterize the variety of the size and scale-dependence

of the non-Gaussianity, we quantified l2 versus s for all the

neurons.

The panels in Fig. 3 show l2 plots of five different neurons

indexed as #17, #3, #16, #11, and #4. One of them (#11) is a

hippocampal neuron and the others are cortical neurons. The

values of l2 during sleeping and waking are drawn with solid and

dashed black lines. In all cases, the l2 values calculated from the

original spike train (black) are higher than those calculated from

the randomly shuffled spike train (blue). Also, we note that the l2

values calculated from the Poissonian spike train (overlaid on the

first panel of Fig. 3 in purple) are very small, as expected. The l2

values for the Poissonian spike train serve as a reference ‘‘baseline’’

l2 of a memoryless Poisson process. The non-Gaussianity

observed, persists for scales over s~500, corresponding to several

minutes, which is much longer than a typical time scale of the

single-neuron dynamics. Interestingly, in the vast majority of cases

the non-Gaussianity is consistently stronger during waking than

sleeping.

Non-Gaussianity comes from two sources
Let us now consider the possible sources of the non-Gaussianity

observed. The largely reduced l2 values in the shuffled ISI’s

suggest the contribution of autocorrelation of the ISI fluctuations

to the non-Gaussianity observed. The non-zero autocorrelation

implies that each neuron’s state eludes the total reset at each spike.

The upcoming spike times thus depend on the spiking history. In

mathematical terminology, such spike trains are said not to be a

renewal process. The autocorrelation of a spike train is, however,

not the sole source of the non-Gaussianity. The inherent dynamics

of the ISI’s is another source of the distribution shape. In fact, even

a Poisson spike train of which the autocorrelation is zero has

marginal non-Gaussianity, as can be seen in Fig. 3(A) (purple

curve). If the ISI distribution of a spike train has a power-law tail,

larger non-Gaussianity is expected even without the autocorrela-

tion. This is in stark contrast to the exponential tail of the

Poissonian spike train as reported for certain types of neurons

[19,20]. Consistent with the above observation, the l2 values are

large (see Fig. 3(A)) for neuron #17 (waking), of which the ISI

distribution has a power-law tail ranging over nearly two decades

(Fig. 4(B)). On the other hand, the tail of the ISI distribution of the

same neuron during sleep appears exponential (Fig. 4(A)). The

exponential decay, as in the Poissonian spike train, is consistent

with the observed small l2 values, see Fig. 3(A). When the ISI

histograms during waking, Fig. 4(C), (sleeping, Fig. 4(D)) for all the

neurons are averaged, the curve in the log-log coordinate looks

linear over an interval that is a little longer than a decade. In

summary, the slow decay of the l2 versus s plot is mainly due to

the autocorrelation of a spike train, while the large l2 values

Figure 2. The probability distribution function (PDF) of the normalized ISI fluctuations. PDFs calculated at eight different coarse graining
scales are displayed for neurons indexed as #12 (A) and #17 (B). Both spike trains were taken from waking periods. The parabola representing the
perfect Gaussian distribution is placed at the bottom of each panel to help readers see the degree of non-Gaussianity. The spike train from #12 is
highly non-Gaussian, while that from #17 is weakly non-Gaussian.
doi:10.1371/journal.pone.0012869.g002
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themselves are also due to the intrinsic distribution shape of the ISI

process.

Autocorrelation of local energy
In order to investigate the direct link between autocorrelation

and the decay rate of l, we quantify the autocorrelation of the ISI

fluctuation. In our multiscale analysis, we segmented the entire

observation time according to scale. For a given scale, we define

the local energy of ISI fluctuations [21] as

s2
s (i)~SDsB(:)2T within i-th segment~

1

s

Xsi

j~1zs(i{1)

DsB(j)2, ð2Þ

and consider the correlation of the logarithm of this quantity

between different segments:

C(t; s1, s2)~S(vs1
(i){Svs1

T)(vs2
(izt){Svs2

T)T

where vs(i)~1=2 log s2
s (i), which we refer to as the magnitude

correlation [21]. The magnitude correlation is zero if the spike

train modulus amplitude (and energy) is not autocorrelated.

The magnitude correlation for spike trains, #17(asleep), #17

(awake) and #11 (asleep) are plotted against t in Fig. 5, whereas l2

plots for these spike trains are shown in Fig. 3(A),(D). Fig. 5(A)

shows that the spike train #17 (asleep) has almost no

autocorrelation, which is consistent with the exceptionally small

Figure 3. Scale dependence of the non-Gaussianity evaluated. The l2 values that quantify the non-Gaussianity are plotted against a non-
dimensional scale (number of ISI’s) ranging from s = 4 to s = 582. The solid and dashed black lines represent l2 values calculated from spike trains
during sleeping and waking, respectively. The blue lines represent l2 values calculated from spike trains of which the ISI’s have been randomly
shuffled. Five neurons, #17 (A), #3 (B), #16 (C), #11 (D) and #44 (E), were taken as examples. The non-Gaussianity calculated from a Poissonian
spike train is shown as a reference in purple in (A). The non-dimensional maximum scale s = 1000 corresponds with the time scale through individual
mean firing rates of neurons. The corresponding time scales are 120s (sleeping) and 130s (waking) for #17, 420s (sleeping) and 630s (waking) for #3,
450s (sleeping) and 590s (waking) for #16, 630s (sleeping) and 430s (waking) for #11, 500s (sleeping) and 590s (waking) for #44.
doi:10.1371/journal.pone.0012869.g003

Near Scale-Free Dynamics
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difference of the l2 values between the original and shuffled cases

in Fig. 3(A)(solid line). The magnitude correlation in a waking state

of neuron #17 and a sleeping state of neuron #11 is large, in

accordance with the large l2 values observed as the dashed line in

Fig. 3(A) and the solid line in Fig. 3(D). A remarkable property of

near independence of scale of the magnitude correlation is evident

in these plots. Such scale-invariance of correlations is characteristic

of multiplicative cascade processes and suggests the existence of a

scale independent mechanism which is a generating feature for

multiplicative cascades [21], examples of which include hydrody-

namic turbulence [7] or the financial stock market [12].

Non-Gaussianity in a population of neurons
Although we performed simultaneous recording of activity from

many neurons using a multiunit electrode, our analysis has so far

dealt with spike trains from different neurons separately. Here we

analyze the entire ensemble of simultaneously recorded multiple

spike trains. Neurons detected by one tetrode are up to a hundred

micrometers apart [22]. The spiking neurons which we are

analyzing are therefore expected to be synaptically connected

within such a distance [23].

Let us consider a ‘‘single-tetrode spike train’’ containing

superposed spikes from all the neurons detected by a given

tetrode. ISI’s for such a single-tetrode spike train can be either

inter-spike intervals of successive spikes of the same neuron or the

inter-spike intervals between successive spikes of different neurons

detected by the same tetrode. We calculate the l2 value for each

tetrode and average this for all the tetrodes. The results of this

procedure are shown in Fig. 6(A).

If the neurons detected by a tetrode fire independently, we

expect that the single-tetrode spike train has very low non-

Gaussianity (as in the solid line in Fig. 3(A)) because the

autocorrelation contained in each single-neuron spike train should

be destroyed by the mixing. However, we find in Fig. 6(A) that the

l2 value is comparable to that for the single-neuron spike train,

shown for reference in Fig. 6(B), suggesting the presence of the

coordinated activity within the population. The l2 values for this

reference Fig. 6(B) are calculated from all the single-neuron spike

trains, and they are subsequently averaged over all neurons. The

idea of coordinated population activity is further supported by the

observation that l2 for the single-tetrode spike train becomes

largely reduced, if we randomly shuffle the tetrode ISIs (the blue

curves in Fig. 6(A)).

We also tested whether our claim of l2 values larger in waking

than in sleeping is valid irrespective of the technical detail of l2

estimation. We repeated the calculations to obtain l2 with

different values of the moment of the estimator, bracketing the

useable interval of q values with q~1:6 in Fig. 3 and Fig. 6(A)(B)

and q~0:1 in Fig. 6(C)(D).

Figure 4. Tails of the ISI distributions. Tails of the ISI distribution of neuron #17 during sleep (A) and waking (B) are plotted either in log-linear or
log-log coordinates. The insets illustrate that the alternative plots (log-log in sleeping, log-linear in waking) result in a poorer linear fit in the range
where the original plots exhibited a linear tendency. (C)(D) The histograms of ISI’s taken during the sleeping (waking) period of all the analyzable
spike trains are averaged and plotted in log-log coordinates.
doi:10.1371/journal.pone.0012869.g004
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Throughout this work we argue that the l2 dependence on scale

is nearly logarithmic, resulting in a near-linear functional

dependence in log-linear coordinates. Such a logarithmic depen-

dence corresponds with classical multiplicative cascades. Yet, in a

number of cases the dependence observed could be regarded as a

power function of the scale instead of the logarithmic dependence.

Indeed, the possibility of the so-called modified multiplicative

cascades has been considered both in the fields of fully developed

turbulence and in financial analysis [24]. Experimental observations

in both these classic examples of cascade phenomena show a

departure of l2 from an ideal logarithmic decay (e.g. Fig. 3a in Ref.

[9] and Fig 2b in Ref. [12]). In order visually to verify this in our

case, and to permit the possibility of a modified cascade in the spirit

of the above phenomena, we also provide plots of the l2 values in

the log-log coordinates in Fig. 7. Some of the plots appear better to

be described as the power law for more than two decades. This

suggests that neural dynamics may require a more complex

description, such as in terms of modified hierarchical structures,

similar to that found in the turbulence in a jet [9].

Discussion

In the present study, we have applied multiscale analysis to the

ISI fluctuations of spike trains of the cortical and hippocampal

neurons of rats in the alternating states of waking and sleeping. As

a result, we have found evidence for persistent non-Gaussianity up

to a time scale of several minutes.

Different types of multiscale analysis were previously applied to

spike trains recorded from the subcortical areas (hippocampal-

amygdala complex) of human epileptic patients [25]. Temporal as

well as spatial power-law correlations were observed and their

significance was discussed. Our experimental set-up with the

special chamber enabled us to record cortical activity from healthy

subjects for up to eight hours in a row. Such long-term stable

recordings provided us with a large enough number of spike events

in the cortex, where a generally low firing rate disables the

acquisition of sufficiently numerous spikes. Long intervals of high-

quality data are essential for multiscale analysis, because it relies

on coarse graining to extract statistical properties across a range of

time scales. The use of animals, which enables long-term stable

recordings of spikes, is therefore a good starting point to open up

our understanding of the universal information processing

principles in the brain. In waking rats, the degree of non-

Gaussianity of spike trains from a single-neuron or a population of

adjacent neurons, is well described with the log-linear function of a

scale. Interestingly, such a logarithmic decay is a well-known

characteristic of fully developed hydrodynamical turbulence or

more generally a mathematically defined multiplicative cascade

process.

The strength of the non-Gaussianity found in the present study

is larger than that observed in any other phenomena previously

analyzed using an analogical methodology [10–12]. The strong

non-Gaussianity may reflect a unique feature of information

transmission across the brain, resilient to filtering out despite the

filtering characteristics of each neuron.

Single-neuron mechanism versus network mechanism
As to the possible origin of the multiscale nature of the

phenomena observed, we know of several single-cell factors such as

intracellular Ca2z concentration, which may be able to escape

resetting after neural firing and hold memory for a longer time

scale than the membrane time constant (*10ms). However, the

time scale for the Ca2z oscillation, reaches only up to tens of

seconds [26–28], which is not long enough to explain the time

scale of several minutes observed here. There still is a possibility of

a yet unidentified single-cell factor holding memory for a longer

time. However, our analysis of the ISI’s of a group of neurons

instead of those of a single neuron suggests that the multiple time

scales reside not only in a single neuron but also in the network. In

fact, the non-Gaussianity level of ISI’s of a group of neurons was

almost identical to that calculated from the ISI of a single neuron.

If the neurons in a group fired independently, implying no

network effects being present, non-Gaussianity should become

substantially diminished due to mixing. Our observation of the

non-Gaussian effects in a population of neurons implies non-trivial

network effects that hold at multiple time scales. The lack of good

evidence for a single-neuron mechanism, combined with the fact

that the non-Gaussianity remains after population mixing,

supports the hypothesis that the non-Gaussianity found here is a

reflection of spatial correlation or network effects.

Paired patch clamp recordings from the rat cortex have

indicated that the connection probability between neurons is high

within the distance of 100mm [23]. On the other hand, neurons

recorded with a single tetrode are within a hundred mm apart [22].

Figure 5. Magnitude correlation functions with s1~s2~s.
Normalized magnitude correlation, C(t; s, s)=C(0; s, s), calculated at
s~16 (black), s~32 (red) and s~64 (green) are plotted against non-
dimensional distance, t. The correlation was calculated for neuron #17
during sleep (A) and waking (B), and neuron #11 during sleeping (C).
doi:10.1371/journal.pone.0012869.g005

Near Scale-Free Dynamics
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These observations suggest that neurons detected by our single

tetrode should be tightly coupled, resulting in both spatial and

temporal correlation of neural activity. This observation is

consistent with a previous study in the subcortical area [25],

which demonstrated an intimate link between temporal correla-

tion and spatial correlation.

Multiplicative cascade process
The original ancestor of the multiplicative cascade is the

binomial cascade introduced by Mandelbrot [19]. The process

iteratively redistributes unit mass in proportion (probability) p and

q~1{p over dyadically, hierarchically subdivided intervals. This

procedure produces a multiplicative binomial measure where each

sub-interval in the construction has a mass density equal to the

product of a sequence of p’s and q’s. Several recent generalizations

of the multiplicative cascading process do not require discrete

generation steps and have been introduced by a number of

researchers [29], also in the context of so-called multifractal

random walks [30]. The unifying characteristics of multiplicative

cascades are scale invariance of statistical moments, multifractal

spectrum of singularities and, of importance to this work, non-

Gaussian tails which converge to Gaussianity at a logarithmic rate.

A further important characteristic of cascades is that the two-point

correlation function is scale-invariant, reflecting the preserved

‘‘construction rule’’ of the cascading process.

History dependent multiple time scale dynamics appear

repeatedly in experimental systems at several levels of organiza-

tion. It is, however, not clear how the multiple time scale dynamics

at one level gives rise to multiple scale dynamics at another level.

Reference to the multiplicative cascade paradigm may be helpful

in elucidating this. Our finding that a neural spike train from the

unanesthetized brain is well described by the multiplicative

Figure 6. The l2 values for a single tetrode and a single neuron are comparable. (A) The l2 value of a single-tetrode spike train (defined
precisely in the text) is calculated for each tetrode. The mean of l2 values of 23 tetrodes is plotted in black with error bars indicating the standard
errors. The dashed (solid) lines indicate the l2 values during waking (sleeping) periods, while the blue lines indicate the l2 values calculated from
randomly shuffled ISIs, in all the panels. (B) The l2 values of a single-neuron spike train are calculated for each neuron and the mean of the l2 values
of 266 neurons is plotted. Panels (C) and (D) are the same as (A) and (B), respectively, except that the moment value, q, of the l2 estimator was set to
1:6 in (A)(B) and to 0:1 in (C)(D). p value calculated by a paired t-test (awake vs asleep) for each case and scale is very small, showing the highly
significant wake/sleep difference: (A) 9.9e-05, 5.7e-05, 1.9e-04, 1.0e-03, 4.0e-03, 1.7e-02, 9.8e-03, 1.9e-02, 4.4e-02, 7.2e-02, (B)3.2e-07, 6.4e-08, 8.2e-10,
1.1e-09, 1.6e-13, 8.2e-13, 2.3e-13, 1.4e-14, 3.9e-13, 3.0e-10, (C)2.4e-08, 8.1e-09, 7.0e-09, 4.5e-08, 2.0e-07, 8.3e-06, 3.7e-05, 4.5e-04, 8.5e-03, 3.1e-02,
(D)1.4e-25, 4.6e-22, 5.5e-25, 7.1e-21, 8.6e-22, 3.7e-20, 6.8e-19, 1.6e-18, 2.4e-16, 9.9e-11.
doi:10.1371/journal.pone.0012869.g006
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cascade process may suggest that there is a mechanism in the

network of neurons in which an observed neuron is embedded,

and the spike times of each neuron are determined as a result of

hierarchical signal transmission from the largest network structure

down to the network elements. In this interpretation, the

hierarchical structure is the source of autocorrelation or cross-

correlation of spike trains, which we observe directly (Fig. 5) or

indirectly (Fig. 3, Fig. 6). Furthermore, a remarkable property of

near independence of the magnitude correlation of scale has been

established in an average sense. Such scale-invariance of

correlations is characteristic of multiplicative cascade processes.

It suggests the existence of a scale independent mechanism of

correlations, thus a scale independent formation of network

memory processes.

Scale-free activity in neural culture
Segev et al. [2] studied the activity of neurons cultured on MEA

and analyzed the positive half of the ISI increment distribution,

which was very close, but not identical to the top curves of

Fig. 2(B). In fact, DBs~1(n) represented the difference between the

(nz1) th ISI and the local mean of the ISI, while the ISI

increment was the difference between (nz1) th and n th ISI’s.

They argued that the tail of the PDF could be fitted with the so-

called stable distribution. Our study generalizes and supersedes [2]

both in methodology: we considered all the available scales,

instead of only s~1, and in neural preparation: we considered the

intact brain of an unanesthetized animal instead of culture

neurons.

In Ref. [2], the neurons fired in high synchrony across most of

the neurons on the preparation, and many of them fired in bursts.

For this reason, their firing pattern looked very different from that

observed in our in vivo recordings. The histogram of the ISI

increment reported in [2] displayed tails extending to long time

scales and being cut off at around 100 sec. The cut-off was

considerably larger than the neurons’ membrane constant.

Segev et al. [2] argued that dynamical synapses, dynamical

thresholds of neural firing and inhomogeneous neural resistance were

the sources of the long time scales observed. This they supported by

reproducing an ISI increment distribution similar to that observed

with a network model [31]. It would be fruitful to apply our

multiscale method to such neural data from the culture preparation

for a closer comparison between their study and ours. It may also be

insightful to attempt to construct network models capable of

reproducing the type of multiple time scale behavior we observe.

Figure 7. l2 versus s in log-log coordinates. The scale dependence of l2 shown in Fig. 6 is replotted in the log-log coordinates.
doi:10.1371/journal.pone.0012869.g007
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The so-called neural avalanche [3,32] has recently become one

of the most thoroughly studied phenomena involving the scale-free

nature of neural activity. Originally, it was found in neurons

cultured on MEA [3–4], and recently it has also been observed in

the superficial layer of the brain of anesthetized rats [5]. The scale-

free nature in the spatial dimension is particularly clear-cut,

although it is also reported in the temporal dimension. In our case,

the direct evidence of the multiscale nature is found in the

temporal dimension. However, as we have discussed above,

circumstantial evidence supports the multiscale nature even in the

spatial dimension. Indeed, both phenomena, that of avalanche

processes and cascading processes, unfold in the space-time

domain.

Neural hierarchy
The brain is essentially a multiscale system. The biochemical

reactions within the neurons in the brain, on which the entire

activity of the brain is based, take place within an order of

microseconds to seconds. Most cellular activity takes place at an

order of milliseconds, and most cognitive tasks take place within

an order of seconds. For instance, phosphorylation of a

particular protein is considered to be the most elementary step

in forming memory in the brain and it takes place in less than a

second of biochemical reactions. The phosphorylated state of the

protein lasts for tens of minutes. Our short-term working

memory lasts for a similar range of time. However, important

memories can be held much more stably. Some memories last a

lifetime, and here new transcriptions of certain genes are

considered relevant. Such a multiscale nature of brain activity

appears to be essential in understanding the brain information

processing [33]. The presence of multiple time scales was

previously proposed to develop at a more microscopic level as a

result of interactions between ion channels and a single neuron

[34]. There the hierarchical structure is again considered

important.

The present study has found that the non-Gaussianity observed

in the living brain matches well to the non-Gaussianity of the

multiplicative cascade process. It is therefore tempting to consider

further that the hierarchical structure in the brain information

processing is also described well by the hierarchical structure that

defines the multiplicative cascade process. Such a hypothesis may

sound too radical. However, it may provide us with a novel and

useful way of looking at the brain, which is too complex to

understand from a conventional point of view. Elucidating such a

new framework to understand the brain is an important future

goal for us. There are studies using a network model simulating the

cortex of the brain [35,36]. Applying the analysis method used

here to the activity data from such model networks would be an

interesting future direction.

While it is a general result that stochastic multiplicative

processes are expected to lead to non-Gaussian behavior, such a

multiplicative hierarchy as modeled by cascade processes does

not permit the formation of hierarchy loops. Hierarchy is

usually imagined as the units organized into a tree-like structure

either in space or simply as a connected set of directed links

between eventually interacting units. This picture usually

involves well defined levels in the hierarchy and no loops within

and among the units at the various levels. It would be useful to

see to what degree the results support this picture and where a

departure from this simplified hierarchical structure seems to be

necessary.

A multiscale, hierarchical description, as formalized by the

multiplicative cascade paradigm, is of the tree type. This implies

correlations and information or causality flow only across the

branches of the tree. The dynamical organization of multiscale

processes, in particular memory processes in the neural brain

networks possibly, or perhaps even likely involves feedback

mechanisms across various temporal scales. Such considerations

are, however, outside the scope of the current manuscript.

Strictly speaking, we believe that such considerations are at

present outside the scope of the currently available analysis

methodologies. A promising direction may exist in generaliza-

tions to the multiscale transfer entropy formulation [37]. Both

multivariate and univariate/cross-scale extensions of this for-

malism would definitely be worth applying to the problem we

address.

Possible influence of spike-sorting errors
Although the spike-sorting algorithm employed here is consid-

ered to be of a high quality [18], no spike-sorting algorithm is

perfect. Here we discuss the possible influence of spike-sorting

errors.

Representative spike-sorting errors are over-division and under-

division. Over-division occurs when a single-neuron spike train is

mistakenly divided into two or more different spike trains. In the case of

under-division, spike trains from different neurons are mistakenly

combined into a single-neuron spike train. The spike train of the whole

tetrode that we analyzed to obtain Fig. 6(A)(C) represents the

maximally under-divided spike train. The similarity between

Fig. 6(A)(C) and (B)(D) demonstrates that even the maximal under-

division has little influence on our argument in the present study. We

next consider a possible influence of over-division. For this purpose, we

artificially divide a spike train into two child spike trains in different

ways and study how the l2 values are changed by the over-division.

After calculating l2 values before and after the artificial over-division,

we find that changes in l2 values due to over-division are generally

small (supporting figure, Fig. S1). Even when a change in l2 values is

significant, we see the general tendency that when the l2 value of one

child spike train is larger than that of the original spike train, the value

of the other child spike train becomes smaller. Because of this general

tendency, which we explain mathematically below, the over-division of

a spike train does not create a systematic shift in the l2 values of the

population. Whenever l2 of one component increases, that of the other

always decreases. Mathematical proof of this is obtained if we notice

that the probability distribution of the ISI fluctuations of the original

spike train, P(x), is approximately written as the mean of the

corresponding probability distributions for the two child spike trains as

P(x)~(P1(x)zP2(x))=2. This results in the following relation of the

mean values of DxDq: SDxDqT~(SDxDqTchild1zSDxDqTchild1)=2. With the

l2 estimator [13], l2~
2

q(q{2)
ln

ffiffiffi
p
p

SDxDqT
2q=2

� �
{ lnC

qz1

2

� �� �
,

we can conclude that the l2 values of the original spike train come in

between those of the two child spike trains: l2
child1vl2

originalvl2
child2.

Conclusion
Various successful analysis methods developed in physics and

applied to biological systems are still mostly single-scale methods.

Traditionally, when two or more different time scales exist in a

system, the usual practice is to find the separation of time scale and

understand the system’s behavior at one time scale at a time. This

approach works when one time scale is much larger than the

other. However, when there is continuum of different time scales,

multiscale analysis proves its worth. The present study employs

multiscale analysis to study brain activity and reveals the

multiscale nature of the spike activity. Our methodology may

prove to be a promising new route to understanding the nature of

brain information processing.
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Materials and Methods

Electrophysiological recordings
Ethics Statement. All experiments were carried out in

accordance with the Animal Experiment Plan approved by the

Animal Experiment Committee of RIKEN.

Multiunit recordings were obtained from the somatosensory,

motor cortex and hippocampus of adult Long-Evans rats (N = 5;

150–250g, male; Japan SLC, Inc., Hamamatsu, Japan), which

were waking and sleeping well in a head-restraint condition for an

average period of 7h 40min. A tetrode was inserted into the left

somatosensory and motor cortices, and hippocampus up to

1.25 mm in depth. The signals of all the channels were amplified

at a 2,000-fold gain, filtered between 0.5 Hz and 10 kHz with a

multichannel amplifier (MEG-6116; Nihon Kohden, Tokyo,

Japan), and sampled at 20 kHz with a hard-disc recorder

(DataMax II; R.C. Electronics Inc., Santa Barbara, CA, USA).

Spike-sorting
Multiunit recording data were processed to isolate spike events

by the semi-automatic spike-sorting method [16–18], which is

based on the wavelet transform and robust variational Bayesian

(RVB) clustering [18,38,39]. First, a Mexican-hat type wavelet

band-pass filter around 2kHz was applied to raw recording data

and spikes were detected by thresholding of filtered data (the

threshold set as -6 SD; spike-detection interval w0:5msec). After

that, the 18 bimodal wavelet coefficients of the spike waveforms

were selected and the coefficients were furthermore reduced to 12

dimensional features using principal component analysis. The

extracted features were classified by RVB, and then the classified

clusters were combined/discarded manually using Klusters [40].

Supporting Information

Figure S1 Comparison of the l2 values before and after the

artificial over-division. To examine the influence of over-division

of a spike train, we artificially divided a spike train the size of

which is greater than 4000sec into two ‘‘child’’ spike trains in

different ways and studied how the l2 values before (the dashed

lines) and after (the pair of solid lines with markers) were different.

The three colors correspond to three different neurons. (A)(B) We

first determined where to cut the original spike train by drawing

uniform random numbers less than d = 500sec, and then divided

the original spike train into two child spike trains. The pair of the

solid lines represent l2 values of the two child spike trains, while

the dashed lines represent the l2 values of the original spike train.

Two different random numbers produced (A) and (B). (D)(D)

Similar plots for d = 1000sec. (E)(F) Similar plots for d = 2000sec.

One can notice that changes in the l2 values due to over-division

are in general small. Even when a change in the {lower case

lambda}2 values is significant, we see the general tendency that

when the l2 values of one child spike train are larger than those of

the original spike train, the values of the other child spike train are

smaller. Because of this general tendency, which is proved

mathematically in the text, the over-division of a spike train never

creates a systematic shift of the {lower case lambda}2 values as a

whole. Whenever one has an upward shift, the other always has a

downward shift.

Found at: doi:10.1371/journal.pone.0012869.s001 (1.01 MB EPS)
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