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Motivation: DNA N4-methylcytosine (4mC) and N6-methyladenine (6mA) are two
important DNA modifications and play crucial roles in a variety of biological processes.
Accurate identification of the modifications is essential to better understand their
biological functions and mechanisms. However, existing methods to identify 4mA or
6mC sites are all single tasks, which demonstrates that they can identify only a certain
modification in one species. Therefore, it is desirable to develop a novel computational
method to identify the modification sites in multiple species simultaneously.

Results: In this study, we proposed a computational method, called iDNA-MT, to
identify 4mC sites and 6mA sites in multiple species, respectively. The proposed iDNA-
MT mainly employed multi-task learning coupled with the bidirectional gated recurrent
units (BGRU) to capture the sharing information among different species directly from
DNA primary sequences. Experimental comparative results on two benchmark datasets,
containing different species respectively, show that either for identifying 4mA or for
6mC site in multiple species, the proposed iDNA-MT outperforms other state-of-
the-art single-task methods. The promising results have demonstrated that iDNA-MT
has great potential to be a powerful and practically useful tool to accurately identify
DNA modifications.

Keywords: multi-task learning, DNA modification, feature representation, deep learning, neural network

INTRODUCTION

DNA modifications have been identified in multiple species. DNA modification plays an
irreplaceable role in many basic biological functions (Fu and He, 2012; Shen and Zou, 2020). It
refers to add methyl or hydroxymethyl groups to the nucleotides of DNA molecules. In particular,
it is essential in the normal development of organisms such as aging, carcinogenesis, and X
chromosome inactivation. Due to its importance, DNA methylation is one of the most widely
studied epigenetic modifications (Bergman and Cedar, 2013; Smith and Meissner, 2013). Currently,
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four out of the DNA modifications, such as N4-methylcytosine
(4mC), N6-methyladenine (6mA), 5-methylcytosine (5mC), and
5-hydroxymethylcytosine (5hmC), have been extensively studied
(Cheng and Baldi, 2006; Guohua et al., 2017; He et al., 2019; Luo
et al., 2020; Zuo et al., 2020c).

Schweizer (2008) proposed that 4mC has the effect of
protecting the host DNA from degradation by restriction
enzymes and belongs to restriction-modification (RM) systems.
Timinskas et al. (1995) proposed 4mC can methylate the 4th
amino group of cytosine in DNA under the catalysis of N-
4 cytosine-specific DNA methyltransferase (DNMT). Iyer et al.
(2011) proposed 4mC can distinguish the self and foreign DNA
of prokaryotes and repair DNA replication errors. 5hmC arises
from the oxidation of 5-methylcytosine (5mC) by Fe2+ and
2-oxoglutarate-dependent 10–11 translocation (TET) family
proteins (Hu et al., 2019). Thomson and Meehan (2016) proposed
5hmC can be used as an identifier of cell type or disease
state. It is an intermediate product produced during the 5mC
demethylation process. Szulwach et al. (2011) proposed 5hmC
is critical in neurodevelopment and diseases (Tang et al., 2018;
Zhang Y. et al., 2019). 6mA is a non-canonical DNA base
modification present at low levels and maybe a carrier of heritable
epigenetic information in eukaryotes (Greer et al., 2015; Mondo
et al., 2017) and is found in the genomes of certain protists and
fungi and might exist in other eukaryotes (Wion and Casadesús,
2006). The role of 6mA is very extensive. For example, it protects
against restriction enzymes in bacteria (Heyn and Esteller, 2015)
and unravels the DNA double helix structure during the cell
cycle (Fang et al., 2012), which is catalyzed by two classes of
DNA adenine methyltransferases (Wion and Casadesús, 2006;
Zhang L. et al., 2019).

Numerous studies have shown that 5hmC, 6mA, and 4mC,
and others are widely present in the genome, and significant
progress has been made (Wu et al., 2016; Ao et al., 2019;
Hu et al., 2019; Zhu et al., 2019; Zou et al., 2019; Cai et al.,
2020; Fu et al., 2020; Hong et al., 2020). However, methylation-
related technologies-the short-read sequencing and long-read
have major disadvantages. For example, short-read technology
can convert unmethylated cytosine to uracil. However, it has
intrinsic disadvantages, such as low positioning efficiency and
low accuracy. Long-read sequencing can be used to identify
DNA modifications. There is a problem that it does not have
a high signal-to-noise ratio for DNA modification. In nature,
5hmC, 6mA, and 4mC content are low, and the requirements
for detection technology are relatively high. Therefore, we
perform predictive calculations in advance, which can improve
the efficiency of the experiment, to reduce the cost of the
experiment, and provide guidance information for subsequent
implementations.

Recently, there have been many machine learning methods
to predict DNA methylation sites (Basith et al., 2019; Chen and
Zou, 2019; Dou et al., 2020; Lv et al., 2020b). For instance, Ni
et al. (2019) proposed DeepSignal, a deep learning approach to
detect DNA methylation states from Nanopore sequencing reads.
Besides, Liu et al. (2016) designed a two-way neural network
with long short-term memory, called DeepMod. It can also
identify DNA methylation sites in E. coli and Homo sapiens.

Chen et al. (2019) developed a computational method called
i6mA-Pred, to identify 6mA sites targeted to the rice genome, in
which the optimal nucleotide chemical properties obtained by the
using feature selection technique were used to encode the DNA
sequences. Similarly, Yu and Dai (2019) created SNNRice6mA
based on deep learning to identify 6mA in rice.

Kong and Zhang (2019) proposed a new machine learning-
based method, namely i6mA-DNCP, which proved that there
is also 6mA sites also in the rice genome. In i6mA-
DNCP, dinucleotide composition and dinucleotide-based DNA
properties were first employed to represent DNA sequences.
Chen et al. (2017) developed iDNA4mC, the first webserver to
identify 4mC sites, in which DNA sequences are encoded with
both nucleotide chemical properties and nucleotide frequency.
Later on, Wei et al. (2019b) developed a new predictor
named 4mcPred-IFL to identify 4mC sites, in which they
proposed an iterative feature representation algorithm that
enables learning informative features from several sequential
models in a supervised iterative mode. Basith et al. (2019)
developed a novel computational predictor, called the Sequence-
based DNA N6-methyladenine predictor (SDM6A), which is a
two-layer ensemble approach for identifying 6mA sites in the
rice genome. Manavalan et al. (2019a) designed the first method
for identifying 4mC sites in the mouse genome, called 4mCpred-
EL. Similarly, Hasan et al. (2020) invented a method to identify
the 4mC sites, called i4mC-ROSE in the Fragaria vesca and Rosa
genome. However, the training data of the above methods are
all derived from specific species. And when extended to other
species, it may produce a low true-positive rate with a high false-
positive rate. Therefore, there is urgent to develop a generic
DNA modification site predictor that can be used in different
species. In other biological and medical fields, machine learning-
based computational methods have been widely used, including
microRNAs and cancer association prediction (Yuming et al.,
2015; Jiang et al., 2018; Ding et al., 2020a; Wang et al., 2021),
function prediction of proteins (Ding et al., 2019d, 2020b;
Wang Y. et al., 2019; Wang H. et al., 2019; Tao et al., 2020; Zou
et al., 2020b; Yang et al., 2021), drugs complex network analysis
(Ding et al., 2017, 2019a,b,c, 2020c; Guo et al., 2020b) and dry
weight assessment of hemodialysis patients (Guo et al., 2020a).

In this study, we developed a new deep learning-based
multi-task method, called iDNA-MT, for identifying 4mC site
and 6mA site in multiple species, respectively. This method
combines both the bidirectional gated recurrent units (BGRU)
and multi-task learning to learn sharing information hiding
in different species for better characterizing a DNA sequence.
Afterward, the sharing features are fed into the corresponding
fully connected layers, specifically designed for a certain task, to
identify the modification site. Several experiments were carried
out to investigate the performance of the proposed iDNA-
MT. Experimental results on two benchmark datasets showed
that iDNA-MT achieved significantly better performance than
state-of-the-art single-task methods for identifying 4mC site
and 6mA site, respectively. In addition, our model can provide
a powerful tool for identifying 4mC sites and 6mA sites in
multiple species, respectively, and facilitate our knowledge of
their biological functions.
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MATERIALS AND METHODS

Dataset
For a fair comparison, we employed the same benchmark datasets
derived from Lv et al. (2020a). Four species of 4mC site data
and four species of 6mA site data were selected. The 4mC
site data contains four species (C. equisetifolia, F. vesca, S.
cerevisiae, and Tolypocladium) that were collected from the MDR
database (Liu et al., 2016) and MethSMRT database (Pohao et al.,
2017). The 6mA site data for four species (Tolypocladium, C.
elegans, C. equisetifolia, and R. chinensis) were extracted from the
MethSMRT database (Pohao et al., 2017), MethSMRT database
(Pohao et al., 2017), and MDR database (Liu et al., 2016). The
benchmark data is divided into two parts. One part is used as
a training dataset, and the other one is a testing dataset. The
function of the training dataset is to train and evaluate the
predictive model, while the purpose of the testing dataset is to
test the performance of the model. The number of positive and
negative samples is the same in the training dataset and testing
dataset. A summary of the different species datasets used for
benchmarking is displayed in Table 1.

Neural Network Architecture of the
Proposed iDNA-MT
In this section, we introduce the network architecture of our
model iDNA-MT, as illustrated in Figure 1. This network
architecture consists of three main components: (i) sequence
processing module, (ii) sharing module, and (iii) task-specific
output module. To make DNA sequences recognized easily by
the neural network, the sequence processing module is designed
to encode the original DNA sequences into matrices by one-hot
encoding (Quang and Xie, 2016). Next, the encoded matrix is
passed through a bidirectional GRU to extract different levels
of dependency relationships between subsequences, and then a
max-pooling layer is employed to automatically measure which
feature plays a key role in NDA methylation site identification
in each unit of the GRU. Finally, the features learned from the
max-pooling layer are sent to the task-specific output module to
identify 6mA sites in four species, respectively. The task-specific
output module contains four parts and each part consists of fully
connected layers that are designed in terms of the size of the
training set of each species. The model is implemented using
Pytorch. Below each module of our model is described in detail.

TABLE 1 | Summary of benchmark datasets used in this study.

Modifications Species Testing dataset Training dataset

4mC C. equisetifolia 365 365

F. vesca 15,795 15,797

S. cerevisiae 1,977 1,979

Tolypocladium 15,325 15,327

6mA Tolypocladium 3,377 3,379

C. elegans 7,959 7,961

C. equisetifolia 6,065 6,065

R. chinensis 597 599

Sequence Processing Module
DNA modification identification is the task to separate the DNA
sequences into related classes of DNA modifications, while text
categorization is the problem of assigning text documents to
predefined categories. To apply text categorization techniques to
DNA sequences, we first employed n-gram nucleobases to define
“words” in DNA sequences (Dong et al., 2006; Dao et al., 2020;
Wang et al., 2020; Zhang et al., 2020). The n-grams are the set of
all possible subsequences of nucleobases. Then, we split the DNA
sequences into overlapping n-gram nucleobases. The number of
possible it is 4n, since there are four types of nucleobases (Yang
et al., 2020). In this study, to avoid low-frequency words in the
encoding, the n-gram number n is set to 2. For example, we split a
DNA sequence into overlapping 2-gram nucleobase sequences as
follows: GTTGT. . .CTT→ “GT,” “TT,” “TG,” “GT,”. . ., “CT,” “TT.”

For a given DNA sequence P of length L, it can be expressed as
follows:

P = R1 , R2, . . . , RL (1)

where Ri is the i -th word. These words are first randomly
initialized embedded by one-hot embedding, which is referred to
as “word embeddings.” Here, we defined the sequence of word
embeddings as:

x1, x2, . . . , xL (2)

where xi ∈ Rd is the d-dimensional embedding of the i -th
word. In the proposed method, such a sequence is fed into the
bidirectional GRU to extract dependency information.

Sharing Module
Bidirectional Gated Recurrent Units
GRU is one of the widely used deep learning techniques, which
is designed to specifically address the problems of learning
long-distance correlations in a sequence (Cho et al., 2014).
Bidirectional GRU is the most important part of the sharing
module, which is employed to automatically extract long-terms
and short-term dependency relationships in DNA sequences. The
structure of the basic unit of GRU is shown in Figure 2. The
unit receives two input vectors: the embedding vector of the
subsequence and the hidden state of the previous time step. The
special thing about them is that they can be trained to keep
information from long ago. Based on the two inputs, two gates,
namely, reset gate and update gate, coordinate with each other
to capture short-term and long-term dependencies in sequences.
The reset gate is used to control how much of the previous
information to forget. Likewise, the update gate helps the model
to determine how much of the past information, from previous
time steps, needs to be passed along to the future.

For a given time step t, there are four components composite
the GRU-based recurrent neural network: a reset gate rt with
corresponding weight matrices Wr , Ur ; an update gate zt with
corresponding weight matrices Wz , Uz ; a candidate hidden state
h
′

t with corresponding weight matrices W,U ; and a new hidden
state ht . The equations of GRU are the following:

rt = σ(Wrxt + Urht−1) (3)

zt = σ(Wzxt + Uzht−1) (4)
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FIGURE 1 | The structure of iDNA-MT. The sequence processing module uses 2-gram to split an original DNA sequence into overlapping subsequences and
converts them into feature vectors by one-hot encoding. Next, the feature vectors of subsequences are sent into sharing module, containing a BGRU and a
max-pooling layer, to capture the sharing information among different species. Finally, the output of sharing module is fed into the task-specific output module to
predict the modification site (i.e., 4mA or 6mC) of a certain species.

h
′

t = tanh(Wxt + rt � Uht−1) (5)

ht = zt � ht−1 + (1− zt)� h
′

t (6)

where xt denotes the input of the current time step, σ denotes
the logistic sigmoid function to transform input values to the
interval (0, 1), ht−1 denotes the output of the last time step, �
denotes element-wise multiplication, and tanh is a non-linear
activation function to ensure the values in the candidate hidden
state remain in the interval (−1,1). Hence, the new hidden state
ht holds information for the current step and previous steps and
passes it down to the network.

However, a standard GRU network process a sequence in
temporal order, resulting in that the outputs only contain the
forward sequence information. To fully extract the information

of a sequence, it is significant to capture not only the
forward information but also the backward information at
each time step. Therefore, we attempt to add another GRU
network that captures the backward sequence information by
processing a DNA sequence in the opposite temporal order.
Combine it with the standard GRU network to form a
bidirectional GRU, which can exploit information both from the
past and the future.

To better capture the dependency information of
subsequences with large time step distances, in this study,
we combined the forward and backward hidden vectors
generated by bidirectional GRU in each step. Therefore, the i -th
subsequence can be expressed as the following vector:

hi = (hf
i , h

b
i ) (7)
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FIGURE 2 | The structure of GRU cell. There are two gates, including a reset
gate (denoted as rt ) and an update gate (denoted as zt ), to control the
information flowing in and out of the cell. The reset gate control how much of
the previous information to store. The update gate control how much of the
past information needs to be passed along to the next time step. x is the
embedding matrix of the input subsequence, h is the output of the GRU cell,
and t denotes the t -th time step.

where his the hidden vector, hf
i and hb

i denote the hidden
vectors generated by the forward GRU and the backward
GRU, respectively.

Max-pooling Layer
The feature vector h of each subsequence, generated by

bidirectional GRU, is fed into a max-pooling layer to capture the
most significant feature in identifying the DNA modification to
represent this subsequence. Then, all the most significant features
of subsequences are concatenated into a vector to represent a
DNA sequence, which is shown in the following equation:

y = maxn
i=1 hi (8)

where i is the i -th subsequence, n is the number of subsequences
in a DNA sequence, and the y is regarded as the feature vector of a
target sequence. The max-pooling layer attempts to find the most
important dependencies in subsequences.
Task-Specific Output Module
This module consists of four sets of fully connected layers
corresponding to each task, respectively. In each fully connected
layer with a relu activation function, its output is calculated by the
following equation:

f j
i = relu(W j

if
j
i−1 + bj

i) (9)

where f j
i−1 is the output of the previous layer of j -th task,

f j
i is the current layer output of j -th task, W j

i is the weight
matrix, and bj

i is the bias vector. In each layer, the “Batch
Normalization” technique was used to improve generalization
performance (Cheng and Baldi, 2006). Finally, a softmax layer is
added on the top of final output f j to perform the final prediction.

Note that the parameters of different set of the fully connected
layer are designed differently in terms of the amount of data of
the corresponding task.

Training
The task-specific features y, generated by the sharing module, are
ultimately sent into one set of fully connected layers in terms of it
belonging to which task. For classification tasks, we used binary
cross-entropy loss function as the objective:

l =
1
N

∑
i

−[yilog(pi)+ (1− yi)log(1− pi)] (10)

where N denotes the number of training samples, yi denotes the
label (i.e., 1 or 0) of sample i, pi denotes the probability that
sample i is predicted to be positive. Our global loss function is
the linear combination of loss function for all tasks:

lall =

k∑
k=1

αklk (11)

where αk is the weight for task k.
It is worth noting that the samples for training each task can

come from completely different datasets. Following the study (Liu
et al., 2016), the training is carried out in a stochastic manner by
looping over the tasks:

1. Select a task randomly.
2. Select a training sample from this task randomly.
3. Update the parameters for this task by taking a gradient

step in terms of this sample.
4. Go to 1.

Evaluation Metrics
To evaluate the performance of our model, four commonly used
metrics are employed to evaluate the performance of the model
(Zou et al., 2016; Jin et al., 2019, 2020; Manayalan et al., 2019;
Manavalan et al., 2019b; Hong et al., 2020; Lv et al., 2020b; Qiang
et al., 2020; Su et al., 2020a,b,c, 2019a,b; Wei et al., 2020, 2014,
2019a, 2018a,b; Zhao et al., 2020; Zou et al., 2020a), including
sensitivity (SN), specificity (SP), overall accuracy (ACC), and
Matthew’s correlation coefficient (MCC), respectively. They are
formulated as:

SN =
TP

TP + FN
(12)

SP =
TN

TN + FP
(13)

ACC =
TP + TN

TP + FN + TN + FP
(14)

MCC =
(TP × TN)− (FP × FN)

√
(TP + FN)× (TP + FP)× (TN + FN)× (TN + FP)

(15)
where TP, TN, FP, and FN represent the numbers of true
positives, true negatives, false positives, and false negatives,
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FIGURE 3 | Performance evaluation of iDNA-MT and seven state-of-the-art methods for identifying 4mC site and 6mA site. (A–D) represents the performance of
identifying 4mC site. (E,F) represents the performance of identifying 6mA site. (A–D) represent the performance of different methods for identifying 4mC site. (E–H)
represent the performance of different methods for identifying 6mA site.

respectively. SN and SP are used to evaluate positive
and negative predictive ability. MCC and ACC were
used to evaluate the overall prediction performance.
Besides, the ROC curve (receiver operating characteristic
curve) can be used to visualize the performance of
the classifier. In addition, we calculate the area under
the ROC curve (AUC) to evaluate the prediction
performance of the model. The range of AUC is 0.5–
1. The higher the AUC score, the better the prediction
performance of the model.

RESULTS AND DISCUSSION

Performance Comparison With the
State-of-the-Art Methods
To evaluate the performance of our model iDNA-MT for
identifying 4mC and 6mA site in multiple species, we compared it
with seven state-of-the-art models based on random forest (RF),
which were all single-task learning methods and used different
feature descriptors to identify 4mC and 6mA site in each species,
respectively, including K-tuple nucleotide frequency component
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(KNFC), nucleotide chemical property and nucleotide frequency
(NCPNF), and mono-nucleotide binary encoding (MNBE), and
their four combinations (Lv et al., 2020a).

The experimental results of different methods are listed in
Figure 3. From Figure 3, we can observe that for 4mC site
identification, our proposed iDNA-MT significantly outperforms
all the other competing methods in three species (C. equisetifolia,
Tolypocladium, and S. cerevisiae) in terms of five metrics (SN,
SP, ACC, MCC, and AUC), while the model using MNBE
achieves the best performance amongst all methods. For 6mA
site identification, iDNA-MT exhibits better performance than
any other RF-based models in each species. These results indicate
that using both BGRU and multi-task learning can extract more
effective and discriminative features to represent DNA sequences
for identifying 4mA site and 6mC site and be generalized well on
different species. There are two main reasons for the outstanding
performance of our model. First, compared with the RF-based
methods that use handcrafted features to train models, which
need prior knowledge, iDNA-MT can automatically capture
effective features by data driving. Second, the proposed iDNA-
MT employs the BGRU to learn long-distance dependency
information of DNA subsequences, and then introduce the multi-
task learning technique to capture the shared information hidden
in data from different species to improve the performance of
each task, to improve the accuracy for identifying 4mC and 6mA
site in multiply species, respectively. Therefore, iDNA-MT can
achieve better performance than other state-of-the-art single-task
learning methods. Note that the detailed comparison results of
iDNA-MT and seven state-of-the-art methods can be found in
Supplementary Table S1.

Effectiveness of Multi-Task Learning
To evaluate whether or not introducing the multi-task learning
technique can capture more discriminative features to improve
the performance of DNA modification site prediction in multiple
species, we compared the model considering the multi-task
learning, namely iDNA-MT, with the model not considering the
multi-task learning for prediction. The comparative results for
4mC site and 6mA site are illustrated in Tables 2, 3, respectively.
In Tables 2, 3, we show better results in bold.

As shown in Table 2 for 4mC site prediction, we can see
that training with the multi-task learning, the model achieves
higher performance in three species, including C. equisetifolia,
Tolypocladium, and S. cerevisiae, with only one exception in
F. vesca. Specifically, the model using the multi-task learning
achieves an ACC of 83.33%, an MCC of 0.6667, and an AUC of
0.9049 for species C. equisetifolia, yielding a relative improvement
of 2.3%, 5.7%, and 5.8%, respectively, achieves an ACC of
72.09%, an MCC of 0.4489 and an AUC of 0.7989 for species
Tolypocladium, yielding a relative improvement of 1.1%, 3.0%,
and 1.9%, respectively, and achieves an ACC of 71.09%, an MCC
of 0.4139 and an AUC of 0.7765 for species S. cerevisiae, yielding
a relative improvement of 2.2%, 5.5%, and 3.3%, respectively.
For species F. vesca, the model using multi-task learning is
slightly worse than the model not using multi-task learning,
which achieves 82.67%, 79.86%, 81.79%, 0.6354, and 0.8966 in
terms of SN, SP, ACC, MCC, and AUC. From Table 3, we

can see that for all four species (Tolypocladium, C. elegans,
C. equisetifolia, and R. chinensis), the model using multi-task
learning all significantly outperforms the model not using multi-
task learning for identification 6mA site in terms of SN, SP, ACC,
MCC, and AUC. The most significant improvement is observed
in species R. chinensis, in which the model using multi-task
learning improves the SN from 78.93% to 85.62%, the SP from
72.24% to 79.62%, the ACC from 75.85% to 82.61%, the MCC
from 0.5129 to 0.6534 and the AUC from 0.8334 to 0.9134.

These results discussed above demonstrate that by introducing
the multi-task learning, the model can achieve outstanding
performance for 4mC site and 6mA site prediction in multiply
species, respectively. The reason may be that multi-task learning
aims to learn shared representations from multiple related tasks,
which are used to share and supplement the information learned
from different tasks to improve the performance of multiple
related learning tasks. Therefore, there is not surprising that the
model using multi-task learning significantly outperforms the
model not using multi-task learning.

Performance of the Neural Network
Architecture in Sharing Module
The sharing module of iDNA-MT mainly employed BGRU
to exploit the potential information both from forward and
backward and then used the max-pooling layer to extract the
most significant features in subsequences, which play key roles in
DNA modification identification. To evaluate the efficiency and
superiority of the neural network architecture in sharing module,

TABLE 2 | Comparison results of the model using the multi-task learning and the
model not using the multi-task learning for identifying 4mC site.

Modification
type

Genome SN
(%)

SP
(%)

ACC
(%)

MCC AUC

4mC C. equisetifolia Single 77.05 85.79 81.42 0.6308 0.8551

Multi 83.61 83.06 83.33 0.6667 0.9049

Tolypocladium Single 69.94 72.61 71.28 0.4357 0.7837

Multi 72.72 73.12 72.09 0.4489 0.7989

S. cerevisiae Single 66.23 72.91 69.57 0.3922 0.7520

Multi 69.32 72.88 71.09 0.4139 0.7765

F. vesca Single 83.48 82.06 82.77 0.6544 0.9047

Multi 82.67 79.86 81.79 0.6354 0.8966

TABLE 3 | Comparison results of the model using the multi-task learning and the
model not using the multi-task learning for identifying 6mA site.

Modification
type

Genome SN
(%)

SP
(%)

ACC
(%)

MC C AUC

6mA Tolypocladium Single 73.96 74.25 74.91 0.5001 0.8170

Multi 74.25 76.73 75.49 0.5110 0.8222

C. elegans Single 87.51 85.55 86.53 0.7308 0.9334

Multi 87.39 85.73 86.56 0.7313 0.9374

C. equisetifolia Single 69.47 71.12 70.29 0.4059 0.7696

Multi 71.45 74.55 72.01 0.4385 0.7923

R. chinensis Single 78.93 72.24 75.85 0.5129 0.8334

Multi 85.62 79.62 82.61 0.6534 0.9134
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FIGURE 4 | Performance evaluation of iDNA-MT and other methods using different typical text classification methods in sharing module (A–D) represent the
performance of iDNA-MT and other methods for identifying 4mC site. (E–H) represent the performance of iDNA-MT and other methods for identifying 6mA site.

we replaced it with other three typical text classification methods,
respectively, including:

1. TextRNN (Liu et al., 2016): It uses the long short-term
memory network (LSTM) to capture long-term semantic
dependencies in a sentence.

2. Att-BLSTM (Zhou et al., 2016): It utilizes both neural
attention mechanism and bidirectional long short-term
memory networks (BLSTM) to capture the most important
semantic information in a sentence.

3. Transformer (Vaswani et al., 2017): It is a novel neural
network architecture based on a self-attention mechanism.

Figure 4 shows the comparison results of the proposed
iDNA-MT and the other methods using different typical text
classification methods in sharing modules on two different
modification sites in terms of five metrics (SN, SP, ACC, MCC,
and AUC). As shown in Figure 4, we can see that for 4mC site,
the performance of iDNA-MT is significantly better than the
other methods using different typical text classification methods
in sharing module in every species. For 6mA site, although the
performance of iDNA-MT is lower than other methods in species

C. equisetifolia, the performance of iDNA-MT significantly
outperforms other methods in the rest species. Therefore, iDNA-
MT is superior to other methods in identifying 4mC sites and
6mA sites in multiple species, respectively. The proposed iDNA-
MT used BGRU to capture the dependency information of
subsequences from the past and the future and added a max-
pooling layer to extract the most important information hiding
in every subsequence, which avoids irrelevant information from
interfering with identifying results. Therefore, there is no surprise
that iDNA-MT achieves the best performance when combing
BGRU and a max-pooling layer.

CONCLUSION

Although 4mA and 6mC are two important genetic modifications
and play crucial roles in regulating a series of biological processes,
their biological functions are still unclear. Therefore, the accurate
identification of them is pivotal to understand specific biological
functions. In this study, we proposed a multi-task learning
predictor namely iDNA-MT for identifying 4mA site and 6mC
site in multiple species, respectively, which can automatically
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extract the discriminative features for different tasks. To better
represent the DNA sequences of different species, we constructed
a sharing module, containing a BGRU and a max-pooling layer,
to capture sharing information among different species. To
evaluate the efficiency of our multi-task model, we compared
it with the state-of-the-art single-task models on benchmark
datasets of two different DNA modifications. Experimental
results have shown that the proposed iDNA-MT achieved the
top performance comparing with existing single-task models on
two benchmark datasets, indicating that multi-task learning can
improve the performance of multiple related tasks by leveraging
useful information among them. In future work, we would like
to investigate other sharing mechanisms to further improve the
prediction of different DNA modifications in multiple species and
apply it to other fields (Wei et al., 2017a,b,c, 2018c, 2019c,d; Zou
et al., 2019).
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