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Abstract
Subtropical forest is recognized as an important global vegetation type with high 
levels of plant species richness. However, the mechanisms underlying its diversity 
remain poorly understood. Here, we assessed the roles of environmental drivers and 
evolutionary dynamics (time‐for‐speciation and diversification rate) in shaping spe-
cies richness patterns across China for a major subtropical plant group, the tea family 
(Theaceae s.s.) (145 species), at several taxonomic scales. To this end, we assessed 
the relationships between species richness, key environmental variables (minimum 
temperature of the coldest month, mean annual precipitation, soil pH), and phyloge-
netic assemblage structure (net related index) by using non‐spatial and spatial linear 
models. We found that species richness is significantly related to environmental vari-
ables, especially soil pH, which is negatively related to species richness both across 
the whole family and within the major tribe Theeae (116 species). Family‐level spe-
cies richness is unrelated to phylogenetic structure, whereas species richness in tribe 
Theeae was related to phylogenetic structure with U‐shaped relationship, a more 
complex relation than predicted by the time‐for‐speciation or diversification rate hy-
potheses. Overall, these results suggest that both environmental and evolutionary 
factors play important roles in shaping species richness patterns within this subtropi-
cal plant family across China, with the latter mainly important at fine taxonomic 
scales. Most surprisingly, our findings show that soils can play a key role in shaping 
macro‐scale diversity patterns, contrary to often‐stated assumptions.
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1  | INTRODUC TION

Subtropical forests are important terrestrial ecosystems that con-
tribute importantly to both biodiversity and ecosystem function-
ing (Fang & Yoda, 1991; Wu & Wu, 1998). This is especially true in 
China, which contains the largest subtropical forest area in the world 
(Song, Chen, & Wang, 2005; Zhu, 2013; Zhu et al., 2008). Although 
many studies have explored drivers of high diversity in the tropics 
(Mittelbach et al., 2007; Wiens & Donoghue, 2004), what drives di-
versity patterns within the large subtropical region in China remains 
poorly understood.

Climate is typically expected to be the primary driver of spe-
cies diversity patterns at large geographic scales (Field et al., 2009; 
Hawkins et al., 2003). Increasing intensity of frost has been found 
to determine the decline in woody species richness with latitude in 
China, with annual precipitation also explaining much of the vari-
ation in woody species richness (Wang, Fang, Tang, & Lin, 2011). 
Subtropical China is characterized by the monsoon climate with 
mean annual temperature ranging from 15 to 20°C, mean annual pre-
cipitation (MAP) ranging from 900 to 2,000 mm, and a frost period 
ranging from 64 to 100 days (Wang, Kent, & Fang, 2007). We thus 
expect that species diversity patterns within this region are shaped 
by both rainfall and temperature. However, environmental variables 
related to edaphic properties, such as soil pH, are suggested as im-
portant predictors for species richness at local scales (Palpurina et 
al., 2017; Pausas & Austin, 2001; Zellweger et al., 2016). Subtropical 
China is mainly covered with red soils, which are highly weathered, 
nutrient‐deficient, and acidic with high accumulation of aluminum 
(Al) and iron (Fe) (Wilson, He, & Yang, 2004). Soil pH strongly affects 
the exchangeable base cations (calcium [Ca], magnesium [Mg], po-
tassium [K], sodium [Na]), mobilizing exchangeable Al and affecting 
the availability of nutrients such as K and phosphorus (P), which are 
crucial for tree growth (Lieb, Darrouzet‐Nardi, & Bowman, 2011). 
Soil pH displays a strong trend, increasing from the southeast to the 
northwest across China (Xiong & Li, 1987), which suggests that it 
could play a role in large‐scale diversity patterns. However, the role 
of soil pH in shaping species richness at large spatial scales has rarely 
been studied neither generally nor for China specifically (but see 
Azevedo, Zelm, Hendriks, Bobbink, & Huijbregts, 2013).

Patterns of species richness at large spatial scales should ul-
timately be associated with evolutionary and biogeographic pro-
cesses that directly influence the number of species, namely, 
speciation, extinction, and dispersal (Ricklefs, 2004; Wiens, Parra‐
Olea, Garcia‐Paris, & Wake, 2007). Two general explanations have 
been proposed to explain geographical patterns in species richness 

(Wiens, 2011). First, species‐rich areas may have had more time 
for speciation to accumulate species due to longer occupancy in 
certain environmental conditions (Qian, Wiens, Zhang, & Zhang, 
2015; Stephens & Wiens, 2003). Second, more species‐rich areas 
may have experienced higher diversification (i.e., speciation 
minus extinction) rates in certain environmental conditions (Qian 
et al., 2015; Svenning, Borchsenius, Bjorholm, & Balslev, 2008). 
Environmental factors could play different roles underlying these 
two explanations: Under the first hypothesis, known as time‐for‐
speciation, environmental factors are associated with limitations 
to the colonization of new habitats due to niche conservatism 
(Qian, Zhang, Zhang, & Wang, 2013; Wiens & Donoghue, 2004; 
Wiens et al., 2010). Under the second hypothesis, called diversifi-
cation rate, environmental factors are responsible for species rich-
ness patterns through their influence on the diversification rate 
(Qian et al., 2015; Wiens, 2011). Evidence for time‐for‐speciation 
has been found for various taxonomic groups (Kerkhoff, Moriarty, 
& Weiser, 2014; Li et al., 2009; Wiens, Graham, Moen, Smith, & 
Reeder, 2006). The diversification rate hypothesis also has been 
supported by several studies (Cardillo, Orme, & Owens, 2005; 
Pyron & Wiens, 2013; Svenning et al., 2008). Consequently, these 
mechanisms are not mutually exclusive and their relative impor-
tance may vary by clade and region. Relatively few studies have 
tested these two hypotheses simultaneously (Marin & Hedges, 
2016; Qian et al., 2015; Svenning et al., 2008), particularly in sub-
tropical regions.

The tea family (Theaceae s.s.) is a dominant woody constituent of 
subtropical forests in eastern Asia (Wu, 1995). Theaceae s.s. includes 
three major lineages: tribes Theeae, Gordonieae, and Stewartieae, 
with Theeae being the most species‐rich. Theaceae species are con-
centrated in subtropical forests and tropical mountain areas, with 
most genera being evergreen broad‐leaved shrubs and trees (Luna & 
Ochoterena, 2004). Their geographic distribution and characteristic 
traits reflect their limited tolerance of frost (Sakai & Weiser, 1973). 
Furthermore, Theaceae species usually require ample amounts of 
water and prefer acidic soils (Ming, 2000). There is a rich fossil re-
cord for Theaceae, beginning from the late Cretaceous through the 
Paleo‐ and the Neogene (Prince, 2009), which shows that Theaceae 
was a conspicuous component of the vegetation across North 
America, Europe, and Asia prior to the late Neogene cooling and the 
Quaternary glaciations (Grote & Dilcher, 1989). Today, Theaceae s.s. 
diversity is concentrated in southeast Asia and in southern China 
and is absent from Europe (Grote & Dilcher, 1989).

In this study, we combine species richness, environmental 
and phylogenetic data for Theaceae s.s. to address the following 

F I G U R E  1  Timing of the diversification of Theaceae (133 species). Chronogram is derived from the maximum clade credibility tree by 
BEAST analyses. Gray bars indicate 95% highest posterior density (HPD) intervals of the age estimates. The red and orange stars represent 
the root and fossil calibration nodes separately (see Section 2). The blue circles with numbers indicate the nodes of interest (see Section 6). 
Numbers above the branch indicate Bayesian inference (BI) posterior probability (PP) values. Only nodes with PP support >0.5 are shown. 
Numbers below the branch indicate the estimated divergent median ages for the nodes, where values in parentheses represent 95% HPD. 
The ages of stratigraphic boundaries were obtained from the International Chronostratigraphic Chart (Cohen, Finney, Gibbard, & Fan, 2013) 
(Pl, Pliocene; Qu, Quaternary)
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questions: (a) How are the patterns of species richness in Theaceae 
s.s. distributed along environmental gradients across China? (b) 
What causes these patterns? Is the higher species richness in some 
environments caused by greater time for building up species or/and 
faster net rates of diversification in certain environments? (c) Do the 
causes of the species richness patterns differ at the family and tribe 
levels?

2  | MATERIAL S AND METHODS

2.1 | Species distribution and environmental data

We compiled presence/absence data for Theaceae s.s. (here-
after Theaceae for simplicity) (following Flora of China, Ming & 
Bartholomew, 2007) in 100 km × 100 km cells across China using 
the Chinese Vascular Plant Database, in which plant occurrence lo-
cations were recorded at the county level. This database is based 
on: (a) a specimen’s locality from the National Specimen Information 
Infrastructure (www.nsii.org.cn); (b) published and provincial floras, 
including Flora Republicae Popularis Sinicae (FRPS: Flora of China, 
Chinese version); as well as (c) public checklists, and species survey-
ing reports for all 145 Chinese tea family species (117 in Theeae, 
13 in Gordonieae, 15 in Stewartieae). We removed border cells with 
an area <5,000 km2. Because the sample sizes for Gordonieae and 
Stewartieae were too small, analyses were only run on for the full 
dataset, comprising the whole family (Theaceae), and for the biggest 
tribe (Theeae). To compute the phylogenetic assemblage structure 
(see below), cells with fewer than three Theaceae or Theeae species 
were excluded, yielding a final subset of 233 cells and 145 species 
for the family‐wide dataset and of 230 cells and 116 species for the 
tribe‐level dataset.

Environmental data were sampled for all grid cells in each sub-
set. Nineteen bioclimatic variables were obtained from WorldClim 
(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), but we mainly 
used minimum temperature of the coldest month (MINT) and MAP. 
We excluded other variables due to their weak predictive abilities 
or because they were highly correlated with MINT/MAP in our pre-
liminary analysis. Soil pH was obtained from SoilGrids (Hengl et al., 
2014). All data were obtained at a resolution of 30 arc seconds.

2.2 | Phylogenetic analysis

We sampled a total of 133 species with relevant sequences from 
GenBank, including 123 ingroup and 10 outgroup species, which 
were selected from closely related families in Styracaceae and 
Symplocaceae (see Supporting Information Table S1). The taxonomy 
of species in China follows Ming and Bartholomew (2007), whereas 
the taxonomy of species outside of China was based on The Plant 
List (https://www.theplantlist.org). Ten chloroplast DNA sequences 
(atpB‐rbcL, atpI‐atpH, matK, matK‐trnK, psbA‐trnH, rbcL, rbcL‐accD, 
rpl16, rpl32‐trnL, and trnL‐trnF) and the nuclear internal transcribed 
spacer (ITS) region were used for analyses (GenBank accession num-
bers are given in Supporting Information Table S1).

Sequences alignment was performed in Clustal X (Thompson, 
Gibson, Plewniak, Jeanmougin, & Higgins, 1997) and then adjusted 
manually in BioEdit (Hall, 1999). The cpDNA and ITS regions were 
analyzed separately. The homogeneity between the cpDNA and ITS 
was tested using the incongruence length difference test (Farris, 
Källersjö, Kluge, & Bult, 1994), which was implemented in PAUP 
v4.0b10 (Swofford, 2003). The result (p = 0.01) suggested the incon-
gruence between ITS and cpDNA. According to Nishii et al. (2015), 
incongruences supported by bootstrap values higher than 75% and/
or 0.95 posterior probabilities would be regarded as significant. A 
comparison of the topologies of the ITS with the cpDNA trees for 
the analyses revealed no strong conflict in relationships between the 
main clades. Thus, the combined cpDNA and ITS matrix was used to 
estimate the divergence times.

Divergence times were estimated using a Bayesian uncorrelated 
relaxed‐clock model in BEAST 2.3.0 (Bouckaert et al., 2014). For 
BEAST analysis, cpDNA and ITS were assigned GTR+I+Γ, respec-
tively, as determined by the Akaike information criterion (AIC) in 
Modeltest 3.7 (Posada & Crandall, 1998). Three calibration points 
were used: the root was set to 96 million years ago (Ma) with a nor-
mal prior distribution for the whole tree (88–103 Ma) (Wikstrom, 
Kainulainen, Razafimandimbison, Smedmark, & Bremer, 2015) 
(Figure 1); the stem node and crown node of Theeae were con-
strained to a minimum age of 40 Ma (Figure 1) and 20 Ma (Figure 1), 
respectively, using a lognormal prior distribution with a standard 
deviation of 1.0, and following the example of Zhang, Kan, Zhao, 
Li, and Wang (2014). The Yule process was chosen as the specia-
tion process. Markov chain Monte Carlo searches were run for 
100,000,000 generations and sampled every 1,000 generations. 
Convergence and effective sample sizes of all parameters were as-
sessed in Tracer 1.6.0 (Rambaut, Suchard, Xie, & Drummond, 2014). 
The maximum clade credibility tree was computed using treeAn-
notator 2.3.0 (Bouckaert et al., 2014) and is shown in Figure 1 (133 
species). Thirty‐seven species in China that did not have molecular 
data were added manually to the tree as follows: (a) We randomly 
selected 1,000 trees from the BEAST tree set after the burn‐in; 
(b) based on known morphological classification information from 
the Flora of China (Ming & Bartholomew, 2007), we added the 
37 species to each tree in their corresponding sections with ran-
dom branch lengths using the R package “phytools” (Revell, 2012). 
Finally, we had compiled a set of 1,000 random‐addition trees with 
170 species (for example tree, see Figure 2).

We calculated the mean phylogenetic net relatedness index (NRI; 
Webb, 2000) based on the set of 1,000 random‐addition trees and 
quantified the degree of phylogenetic relatedness among species 
for each 100 km × 100 km cell. NRI was calculated using the mean 
pairwise distance (MPD), which measures the mean phylogenetic 
relatedness between all pairs of species occurring in an assemblage: 
NRI = −1 × (MPDobserved – MPDrandomized)/sd(MPDrandomized), where 
MPDobserved is calculated from species occurring in the given cell, and 
MPDrandomized is the expected MPD distribution from the 1,000 null 
models. Positive values of NRI indicate that the species present in 
an assemblage are more closely related to each other than expected 

www.nsii.org.cn
https://www.theplantlist.org
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by chance (phylogenetic clustering), while negative values of NRI in-
dicate that the species are less related to each other than expected 
by chance (phylogenetic overdispersion). Because the values are 
centered at zero and standardized by the standard deviation, values 
>1.96 indicate statistically significant phylogenetic clustering, while 
values <−1.96 indicate statistically significant phylogenetic overdis-
persion (Vamosi, Heard, Vamosi, & Webb, 2009). NRI was calculated 
in R 3.3.2 (R Core Team, 2016) with the “picante” package (Kembel 
et al., 2010).

2.3 | Statistical analyses

We first used Pearson correlations to assess pairwise relationships 
among the different variables. To account for spatial autocorrelation, 
Dutilleul’s (1993) modified t test was used to calculate statistical signif-
icance with package “SpatialPack 0.2‐3” (Osorio & Vallejos, 2014) in R.

Spatial linear models (SLM) were applied to estimate the richness 
patterns of tea family species along environmental gradients (MINT, 
MAP, pH) across China. To account for nonlinear relationships 

F I G U R E  2  Example of a dated tree of Theaceae (170 species) from the set of 1,000 trees where species without genetic information 
have been added with random branch lengths in their responding sections, respectively. Black tip labels indicate sequenced species. Green 
tip labels indicate non‐sequenced species. The ages of stratigraphic boundaries were obtained from the International Chronostratigraphic 
Chart (Cohen et al., 2013) (Pa, Paleocene; Ol, Oligocene; P, Pliocene; Qu, Quaternary)
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between the variables, the quadratic terms of the predictor vari-
ables were included in the regressions. To avoid multicollinearity 
problems, we divided environmental variables (i.e., MAP and soil pH, 
Tables 1 and 2) with high pairwise correlation (|r|>0.7) (Dormann et 
al., 2013) into different datasets for the modeling. Thus, we defined 
two groups of environmental variables that were only used sepa-
rately: MINT+MAP and MINT+pH.

We sought to identify the drivers of species richness along en-
vironmental gradients by comparing patterns of phylogenetic relat-
edness among species in different species assemblages and relating 
these patterns to environmental factors (Algar, Kerr, & Currie, 2009; 
Qian et al., 2015). For example, if time is important for patterns of 
species richness along environmental gradients, in species‐rich en-
vironments, species should be relatively distantly related to each 
other, indicating a long period of occupancy. Then for environments 
with rare and recent colonization, species should be relatively closely 
related (Qian et al., 2015, 2013 ). Therefore, a negative relationship 
between NRI and species richness, and a significant relationship be-
tween NRI and a certain environmental variable may support the 
time‐for‐speciation hypothesis. If higher richness in certain environ-
ments is much more likely caused by a higher rapid diversification 
rate, then species should be relatively more closely related to each 
other in high‐richness environments. Thus, a positive relationship 
between NRI and species richness, and a significant relationship 
between NRI and a certain environmental variable should be found 
(Qian et al., 2015). If both time and diversification rate are important 
in explaining species richness patterns, the different relationships 
between species richness and NRI may cancel each other out, re-
sulting in weak or absent species richness–NRI relationships. Here, 
we used SLM to analyze the relationship between richness and NRI, 
as well as the relationships between NRI and different groups of en-
vironmental variables.

We also fitted non‐spatial ordinary least squares (OLS) re-
gression models to complement the SLM results. Since significant 
spatial autocorrelation was found in the residuals of OLS models 

(Supporting Information Tables S2, S3, and S4), we here emphasize 
the SLM results. Still, we also report the OLS results, as spatial 
autocorrelation has been argued to not seriously affect OLS esti-
mation of regression coefficients (Hawkins, Diniz‐Filho, Mauricio 
Bini, Marco, & Blackburn, 2007), and that controlling for spatial 
autocorrelation may shift the spatial scale of the analyses (Diniz‐
Filho, Bini, & Hawkins, 2003). The OLS model residuals were found 
to approximate a normal distribution (Supporting Information 
Figure S1).

Both SLM and OLS models were run in R. For SLM, spatial si-
multaneous autoregressive error (SAR) models were built using the 
“spdep” package (Bivand et al., 2015). The Moran’s I values were 
used to quantify the presence of spatial autocorrelation in SAR or 
OLS models (Kissling & Carl, 2008). The best SAR or OLS models 
were identified based on the Akaike information criterion corrected 
for small sample size (AICc) (Burnham & Anderson, 2002). To eval-
uate the relative importance of variables in the SAR or OLS mod-
eling, the importance of each predictor was determined by Akaike 
weights, computed with the “MuMIn” package (Barton, 2015). 
Species richness and MAP were log‐transformed to improve normal-
ity in our models, and all predictor variables were standardized to a 
mean of zero and standard deviation of one to allow for the direct 
comparison of regression coefficients.

3  | RESULTS

Within Theaceae, all three tribes (Stewartieae, Gordonieae, and 
Theeae) were found to be monophyletic with strong support values 
(BI = 1.0; nodes 4, 5, and 6; Figure 1). Stewartieae was the first diver-
gent clade (BI = 1.0; node 2, Figure 1), while Gordonieae was sister 
to Theeae with strong support values (BI = 1.0; node 3, Figure 1). 
The stem age of Theaceae was estimated at 89.8 Ma (95% highest 
posterior density (HPD): 68.1–97.3; node 1; Figure 1), and the crown 
age of the family was estimated to be 59.6 Ma (95% HPD: 48.8–71.8; 

Variable MINT MAP pH NRI

MAP 0.617 (0.046)

pH −0.399 (0.141) −0.813 (0.035)

NRI 0.102 (0.263) −0.034 (0.664) 0.145 (0.071)

SR 0.427 (0.031) 0.424 (0.059) −0.512 (0.007) −0.067 (0.479)

Note. P values were calculated after accounting for spatial autocorrelation in parentheses. Significant 
values (p < 0.05) are marked in bold.

TA B L E  1  Pearson correlations among 
variables for Theaceae

Variable MINT MAP pH NRI

MAP 0.587 (0.021)

pH −0.364 (0.102) −0.804 (0.000)

NRI −0.145 (0.221) −0.119 (0.352) 0.199 (0.081)

SR 0.444 (0.019) 0.366 (0.106) −0.397 (0.038) 0.100 (0.316)

Note. P values were calculated after accounting for spatial autocorrelation in parentheses. Significant 
values (p < 0.05) are marked in bold.

TA B L E  2  Pearson correlations among 
variables for Theeae
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node 2; Figure 1). Gordonieae and Theeae were estimated to have 
diverged at 50.2 Ma (95% HPD: 43.4–58.3; node 3; Figure 1).

The number of Theaceae species in the sampled quadrats gen-
erally decreased with latitude (Figure 3a), but also displayed more 
complex geographic variation (Figure 3b). Neither Theaceae nor 
Theeae showed clear geographic gradients in phylogenetic structure 
(NRI) (Figure 3c,d).

At family level, species richness was significantly correlated 
with both MINT (r = 0.427) and soil pH (r = −0.512) after account-
ing for spatial autocorrelation (p < 0.05). Similarly, species richness 
in the Theeae tribe was positively correlated with MINT (r = 0.444, 
p < 0.05) and negatively correlated with soil pH (r = −0.397, 
p < 0.001). Precipitation (MAP) was not correlated with species rich-
ness at either taxonomic level (Tables 1 and 2). Species richness and 

F I G U R E  3  Geographical patterns of (a) species richness for Theaceae (SR_Family); (b) species richness for Theeae (SR_Tribe); (c) net 
relatedness index (NRI) for Theaceae (NRI_Family); (d) NRI for Theeae (NRI_Tribe)

(a) (b)

(c) (d)
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NRI were not related at either family level or tribe level (Tables 1 
and 2). NRI was also not correlated with environmental variables at 
either level (Tables 1 and 2).

Among the SAR models for species richness, models including 
soil pH were much stronger than models including precipitation. 
Soil pH and species richness consistently had a strong negative re-
lationship at both family level and tribe level (Table 3). MINT was 
negatively associated with species richness at family level, but the 
relationship was weak, and there was no effect of MINT on species 
richness at tribe level (Table 3).

According to the SAR models, species richness was indepen-
dent of NRI at family level, but showed a U‐shaped relationship at 
tribe level (Table 4), suggesting an evolutionary link at this lower 
scale.

Among the SAR models for NRI, the MINT+pH model was a bet-
ter fit than the MINT+MAP model at family level (Table 5). Soil pH 
was much more important than temperature for phylogenetic struc-
ture, as shown by the strong positive NRI‐pH relationship at fam-
ily level. However, only MINT affected NRI at tribe level (Table 5), 
where MINT was unimodally related to NRI.

The OLS models provided consistent results with the SAR analy-
ses for the relationships between species richness and soil pH (Tables 
3 and Supporting Information Table S2, Figure 4), as well as the rela-
tionships between species richness and phylogenetic structure (NRI) 
(Tables 4 and Supporting Information Table S3, Figure 5). The main 
differences identified was that the effect of pH on NRI at tribe level 
was significant in the OLS modeling, but not supported in the SAR 
analyses (Tables 5 and Supporting Information Table S4, Figure 6). 
However, some differences for less supported environmental fac-
tors were also found (Tables 3, and 5, Supporting Information Tables 
S2, and S4, Figures S2 and S3).

4  | DISCUSSION

We here compiled species distribution data, environmental data, and 
phylogeny to assess the drivers of species richness in a key subtropi-
cal woody plant family (Theaceae) across China. Both the phyloge-
netic relationship and the divergence times estimated in our results 
were consistent with Yu et al. (2017). Our results indicate that both 
environmental and evolutionary factors play important roles in 
shaping species richness patterns of tea family species across China. 
The strong relationship between soil pH and species richness was 
found consistently at both family level and tribe level, supporting 
the idea that environmental factors explain much of the variation in 
the species richness of Theaceae. Although the species richness pat-
terns along environmental gradients at family and tribe levels were 
similar, the processes for these patterns differed when considering 
evolutionary dynamics.

Species richness patterns for the whole tea family as well as 
the Theeae tribe in China exhibited significant relationships with 
environmental variables, of which soil pH was the strongest pre-
dictive variable, having a negative correlation with species richness 
in Theaceae and in Theeae (Table 3). Generally, climatic variables 
have been considered the main environmental factors that control 
large‐scale patterns of species richness (Francis & Currie, 2003; 
McGill, 2010). At small scales, edaphic properties, like soil pH, have 
been shown to be key environmental factors influencing plant spe-
cies richness patterns (Dubuis et al., 2013; Zellweger et al., 2016). 
However, our results indicate that soil is the most important en-
vironmental factor influencing the richness patterns of Theaceae, 
even on a biogeographic scale. The large areas of red soil in the 
subtropical region across south China used in our study, combined 
with the special adaptations of the tea family for low pH soils may 

TA B L E  3  Multimodel inference from spatial simultaneous autoregressive error (SAR) models of species richness against environmental 
predictors for Theaceae and Theeae

Model parameters

Theaceae Theeae

Coefficients Akaike weight Pseudo‐r2 Moran's I Coefficients Akaike weight Pseudo‐r2 Moran's I

Group 1

MINT −0.084* 0.680 0.515 −0.023 ns – 0.478 −0.024 ns

MINT2 – –

MAP 0.167*** 1.000 0.116*** 1.000

MAP2 −0.029* 0.770 –

Group 2

MINT – 0.558 −0.024 ns – 0.514 −0.026 ns

MINT2 – –

pH −0.169*** 1.000 −0.132*** 1.000

pH2 – –

Note. Model sets involved all possible combinations of explanatory variables, for two groups of variables: Group 1: minimum temperature of the coldest 
month (MINT), mean annual precipitation (MAP). Group 2: MINT, soil pH (pH). Coefficients for the model with the lowest AICc for a given variable 
group are shown. The Akaike weight for each variable is based on the full model set per group. The superscript 2 indicates the quadratic form of the 
variables. Pseudo‐r2, explained the variance of the SAR model. Moran’s I, measure of residual spatial autocorrelation.
aSignificance levels: ***p < 0.001; **p < 0.01; *p < 0.05. ns, not significant. 
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explain this pattern. Theaceae’s tolerance of low pH has been illus-
trated through cultivation studies of tea plants (Camellia sinensis), 
which have shown them to grow well in soils of low pH (appropri-
ate 4.0–5.5) and a high Al concentration (Fu, Wang, & Ding, 2013). 
Notably, a high Al concentration has been found to stimulate tea 
plant growth (Konishi, Miyamoto, & Taki, 1985), but the same treat-
ment would be toxic for most other plants (Fung & Wong, 2002).

The analysis of the whole family showed a strong positive rela-
tionship between NRI and pH (Table 5), which combined with the 
negative relationship between species richness and pH, provides 
support to the time and niche conservatism effect. However, no re-
lationship was found between NRI and species richness (Table 4). 
This lacking species richness–NRI relationship may have resulted 
from the canceling out of different underlying relationships, caused 
by the following different processes: The processes of the time‐for‐
speciation hypothesis may lead to an assemblage with many species 
and low NRI (Qian et al., 2015; Stephens & Wiens, 2003), whereas 
the processes of the diversification rates hypothesis could also lead 
to many species, but with high NRI (Qian et al., 2015).

Our results showed that there is a significant relationship be-
tween species richness and NRI for the Theeae tribe (Table 4), but 
the U‐shaped relationship is not consistent with either the pure 
time‐for‐speciation hypothesis or the diversification rate hypothe-
sis. Some species‐rich areas (species richness >= 25; Figure 3b) ex-
hibited phylogenetically clustered patterns, while others tended to 
be phylogenetically overdispersed (Figure 3d). The species compo-
sitions of these two types of species‐rich areas mainly included the 
Camellia, the Pyrenaria or the Polyspora. However, the proportions 
of Pyrenaria and/or Polyspora species (>19%) in areas with overdis-
persed phylogenetic structure were higher than in areas where 
phylogenetic structures were clustering (<17%). According to the 
locations of these species‐rich areas, most of them were situated in 
one of three areas: the southwestern region bordering Vietnam, the 
Nanling Mountains and surrounding land in southcentral China, and 
the northeastern edge of the Yungui Plateau. In previous studies 
of endemic Chinese plants, these areas have been hypothesized to 
be former glacial refuges (Huang et al., 2011, 2015 ; López‐Pujol, 
Zhang, Sun, Ying, & Ge, 2011). Hence, we suggest that the long‐term 

TA B L E  4  Multimodel inference from spatial simultaneous autoregressive error (SAR) models of species richness against phylogenetic 
predictors for Theaceae and Theeae

Model parameters

Theaceae Theeae

Coefficients Akaike weight Pseudo‐r2 Moran's I Coefficients Akaike weight Pseudo‐r2 Moran's I

NRI −0.017 ns 0.400 0.441 −0.020 ns – 0.491 −0.014 ns

NRI2 – 0.037*** 1.000

Note. Coefficients for the model with the lowest AICc are shown. The Akaike weight for each variable is based on the full model set. The superscript 2 
indicates the quadratic form of the variable. Pseudo‐r2, explained the variance of the SAR model. Moran’s I, measure of residual spatial 
autocorrelation.
aSignificance levels: ***p < 0.001; **p < 0.01; *p < 0.05. ns, not significant. 

TA B L E  5  Multimodel inference from spatial simultaneous autoregressive error (SAR) models of phylogenetic structure (NRI) against 
environmental predictors for Theaceae and Theeae

Model parameters

Theaceae Theeae

Coefficients Akaike weight Pseudo‐r2 Moran's I Coefficients Akaike weight Pseudo‐r2 Moran's I

Group 1

MINT 0.264* 0.550 0.210 0.003 ns −0.230* 0.630 0.216 −0.004 ns

MINT2 – −0.153** 0.900

MAP −0.186 ns 0.440 –

MAP2 – –

Group 2

MINT 0.212 ns 0.590 0.226 0.002 ns −0.230* 0.660 0.216 −0.004 ns

MINT2 – −0.153** 0.910

pH 0.242** 0.810 –

pH2 – –

Note. Model sets involved all possible combinations of explanatory variables, for two groups of variables: Group 1: minimum temperature of the coldest 
month (MINT), mean annual precipitation (MAP). Group 2: MINT, soil pH (pH). Coefficients for the model with the lowest AICc for a given variable group 
are shown. The Akaike weight for each variable is based on the full model set per group. The superscript 2 indicates the quadratic form of the variables. 
Pseudo‐r2, explained the variance of the SAR model. Moran’s I, measure of residual spatial autocorrelation.
aSignificance levels: ***p < 0.001; **p < 0.01; *p < 0.05. ns, not significant. 
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stable environmental conditions in these refuge areas may have en-
abled them to harbor more species from clades that are distantly 
related via relictual survival, while others may primarily have har-
bored one clade, due to in situ diversification within the area. The 
presence of the above processes in species‐rich areas should lead 
to U‐shaped relationship.

Our results show that processes underlying species richness pat-
terns for tea family species in China differ between taxonomic lev-
els. We suggest this might be because richness patterns at the family 
level are the sum of processes occurring within different clades. This 
would even out clade‐specific idiosyncratic evolutionary patterns, 
whereas tribe‐level patterns would reflect a tribe’s specific evolu-
tionary history and response to environmental factors (Bregovic 
& Zagmajster, 2016; Terribile, Olalla‐Tarraga, Diniz, & Rodriguez, 
2009). For example, Stewartia, which is the sole genus in Stewartieae, 
has both deciduous and evergreen species in China, whereas all 
species across China in Gordonieae and Theeae are evergreen (Li, 
2011; Li, Li, Tredici, Corajod, & Fu, 2013). Because Gordonieae and 
Stewartieae contributed considerably to the overall phylogenetic 
structure pattern found in our study, the phylogenetic structure’s re-
sponses to environmental factors changed after removing these two 

clades (Table 5). However, given their low richness, they contributed 
little to the overall pattern of tea family species richness. Therefore, 
the species richness–environmental relationships were similar at the 
family‐wide and the tribe level (Table 3).

In conclusion, soil pH provides the strongest explanatory pre-
dictor for the geographic variation in species richness of Theaceae 
across China. This is likely linked to the Theaceae family’s specific 
adaptations to acidic soil. This pattern contrasts the general as-
sumption that soil only influences ecological patterns at small scales 
(Palpurina et al., 2017; Pärtel, 2002). Furthermore, the relationships 
between species richness and phylogenetic structure caused by dif-
ferent processes (time‐for‐speciation vs. diversification rate) may be 
canceling each other out at the family level, leading to no species 
richness–NRI relation at this taxonomic level. At the tribe level, the 
relationship between species richness and phylogenetic structure 
was significant, but more complex than predicted by time‐for‐spe-
ciation and diversification rate hypotheses. Some species‐rich areas 
tended to host relatively distantly related species of Theeae, while 
others exhibited phylogenetically clustered patterns. This is likely 
due to different refuges in southern China (López‐Pujol et al., 2011) 
having played different roles in tea species’ diversity. Some likely 

F I G U R E  4  Relationship between species richness and minimum temperature of the coldest month (MINT) or soil pH (pH) in the ordinary 
least squares (OLS) regression models. SRF indicates species richness at family level (i.e., Theaceae), and SRT indicates species richness at 
tribe level (i.e., Theeae). Species richness responses to each predictor in multiple models are shown one at a time, holding all other predictors 
constant. The regression line is given in blue, and the 95% confidence interval is given in gray. Multimodel inference results are given in 
Supporting Information
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allowed several deep lineages to survive, while others promoted 
the diversification of a single lineage. In addition, our results imply 
that the forces shaping species richness patterns vary among differ-
ent groups and with taxonomic scale, even within the same family. 
Overall, our findings show that environmental and evolutionary pro-
cesses interact in complex ways to shape species richness patterns 
within the subtropical forest biome.
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