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Abstract g-Aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the human

brain and can be measured with magnetic resonance spectroscopy (MRS). Conflicting accounts

report decreases and increases in cortical GABA levels across the lifespan. This incompatibility may

be an artifact of the size and age range of the samples utilized in these studies. No single study to

date has included the entire lifespan. In this study, eight suitable datasets were integrated to

generate a model of the trajectory of frontal GABA estimates (as reported through edited MRS;

both expressed as ratios and in institutional units) across the lifespan. Data were fit using both a

log-normal curve and a nonparametric spline as regression models using a multi-level Bayesian

model utilizing the Stan language. Integrated data show that an asymmetric lifespan trajectory of

frontal GABA measures involves an early period of increase, followed by a period of stability during

early adulthood, with a gradual decrease during adulthood and aging that is described well by both

spline and log-normal models. The information gained will provide a general framework to inform

expectations of future studies based on the age of the population being studied.

Introduction
Magnetic resonance spectroscopy (MRS) is a non-invasive imaging technique that allows for the

measurement of levels of metabolites. Of particular interest to the neurosciences is the measure-

ment of specific neurotransmitters such g-aminobutyric acid (GABA) in vivo (Edden and Barker,

2007; Mescher et al., 1998; Mullins et al., 2014; Puts et al., 2011; Rothman et al., 1993). GABA

is the main inhibitory neurotransmitter in the human nervous system and plays a fundamental role in

central nervous system function (Buzsáki et al., 2007). A number of studies have explored the rela-

tionship between cortical GABA (as measured with MRS) and age in various contexts. These studies

have found that aging-related changes in GABA are consistently associated with cognitive and
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neurophysiological outcomes that change across the lifespan. These findings have important implica-

tions for both healthy and pathological development and aging.

Most prior studies of aging-related differences in GABA have utilized a restricted age range.

Some have reported increases in GABA as age increases in left frontal cortex between 13 and 53

years (Ghisleni et al., 2015). Others have reported decreases in medial frontal GABA

(Marenco et al., 2018, 18–55 years; Porges et al., 2017a, 43–92 years; Rowland et al., 2016, 16–

62 years) and GABA/creatine plus phosphocreatine (Cr+PCr) (Gao et al., 2013, 20–76 years). Gao

and Porges show the same aging-related decrease in midline parietal GABA/Cr+PCr and GABA,

respectively, as does (Simmonite et al., 2019) for GABA/Cr+PCr in occipital regions (18–87 years).

Still others reported no significant aging-related changes in GABA (Aufhaus et al., 2013, 21–53

years) or GABA/Cr+PCr (Mikkelsen et al., 2017, 18–48 years). This inconsistency makes the results

difficult to interpret, as partially overlapping age ranges produce conflicting trajectories. For exam-

ple, the age range of participants reported by Gao et al., 2013 has substantial overlap with those

reported by Ghisleni et al., 2015, yet has apparently conflicting trajectories. Of interest, all studies

were cross-sectional rather than looking at within-subject change in GABA with age.

However, conflicting results only exist when looking at different age ranges and consistent find-

ings have been shown in studies of similar age range. For example, both Porges et al., 2017a and

Gao et al., 2013 focus on adults through advanced age and both report aging-related decrease in

GABA. Here, we predict that this apparent conflict in the relationship between GABA and age in the

literature is the result of restricted age ranges within each study and that the various linear relation-

ships are part of larger, non-linear asymmetric lifespan trajectory of GABA with age. This would be

consistent with prior work showing non-linear relationships with age across the human lifespan

including inhibition-dependent behavior (Williams et al., 1999), GAD65 expression (Pinto et al.,

2010), cortical thinning (Fjell et al., 2019; Walhovd et al., 2016; Raznahan et al., 2011), and white

matter development (Lebel et al., 2012). With respect to MRS, this prediction of a non-linear

asymmetric lifespan trajectory, with an increase during childhood and aging-associated gradual

decrease, is further suggested by an exploratory LOESS (locally estimated scatterplot smoothing)

regression for macromolecule-suppressed medial-frontal GABA � age in healthy controls reported

by Rowland et al., 2016. Based on this prior work, and that of individual study of the relationship

between GABA and age, when collating data across studies, we predict to find a non-linear aging-

related trajectory involving an increase of GABA in childhood, relative stability in adolescence, fol-

lowed by a gradual decrease during adulthood. To date, no single study has explored the lifespan

trajectory of cortical GABA spanning development, adulthood, and aging. In the absence of a life-

span study, we implemented an individual participant data meta-analytic (IPD-MA) approach follow-

ing Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines

(Moher et al., 2009; see Figure 5) supplemented with data collected by the authors and previously

published in summary form (Puts et al., 2017).

The majority of MRS studies of GABA at 3 T have utilized J-difference editing to selectively ‘edit’

the GABA signal (e.g. Mullins et al., 2014). Editing is necessary at 3 T due to the low concentration

of GABA in the human brain (1–2 mM) (Harris et al., 2017). In unedited MRS, signal from higher

concentration molecules like N-acetylaspartate (NAA) and Cr+PCr masks the GABA signal. The most

widely used J-difference editing MRS technique is MEGA-PRESS (Mescher et al., 1998), in which a

GABA-selective editing pulse at 1.9 ppm is applied in half of the experiment (edit-ON and is cou-

pled to a GABA signal at 3 ppm) but not in the other half (edit-OFF, where ON and OFF acquisitions

are typically interleaved). The difference spectrum (ON-OFF acquisitions) shows only those signals

affected by the frequency-selective editing pulse, revealing a GABA signal at 3 ppm. The difference

spectrum is further complicated by a macromolecule signal at 3 ppm which is coupled to another

macromolecule signal at 1.7 ppm and thus falls within the envelope of the editing pulse, resulting in

a co-edited macromolecule signal as part of the 3 ppm GABA signal (Edden et al., 2014;

Henry et al., 2001). Consequently, most studies refer to the GABA signal as ‘GABA+’. Both macro-

molecule-suppressed and GABA+ measures are included here (Table 2). Due to its low concentra-

tion, measurement of the GABA-edited signal in humans requires a large voxel (most commonly 27

cm3; Mullins et al., 2014; Peek et al., 2020) to keep acquisition times reasonable (~10 min) and to

provide an adequate signal-to-noise ratio (SNR) (Mikkelsen et al., 2018). This limitation constrains

the spatial specificity of the measurement to coarse regions that often lack discrete functional

specificity.
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The functional relevance of MRS measures of GABA is important to note. Measured GABA levels

include both intracellular (both somatic and synaptic) and extracellular contributions to the overall

GABA concentration. However, these relative contributions are not well known; GABA levels mea-

sured via MRS at rest describe a physiological characteristic of the tissue measured and, while associ-

ated with functional metrics (e.g. neurophysiological response or behavior), are better interpreted in

a manner similar to structural neuroimaging. However, studies have suggested that the majority of

the GABA measured using MRS reflects intracellular somatic levels rather than synaptic or extracellu-

lar levels since MRS measures of GABA were associated with expression of the 67 isoform of gluta-

mic acid decarboxylase (GAD) which is predominantly present in the soma of the neuron

(Marenco et al., 2011; Rae, 2014; Stagg et al., 2011). Other than that, no study has shown clear

discrimination between contributions of different pools to the GABA signal. As such, the GABA sig-

nal is considered to be reflective of inhibitory tone (Rae, 2014). GABA levels measured via MRS in

young adults at rest have been reported to be stable for up to 7 months (Near et al., 2014) and do

not exhibit a diurnal rhythm (Evans et al., 2010).

In this manuscript, we statistically combine datasets of published research that used MEGA-

PRESS to measure GABA in discrete age ranges where individual data points were presented rela-

tive to age to present a non-linear model for GABA estimates over the human lifespan using an indi-

vidual participant data approach. This work is motivated by several studies showing that MEGA-

PRESS measures of cortical GABA are relevant to both development and aging with a specific

emphasis on cognition and perception. We further discuss the lack of available data across the

lifespan.

The importance of GABA in the context of aging in health and disease
GABA as measured with MRS has been linked to clinical and cognitive outcomes. Alterations of

GABA levels are seen in neurodevelopmental disorders such as ADHD (Bollmann et al., 2015;

Edden et al., 2012), autism spectrum disorder (Cochran et al., 2015; Drenthen et al., 2016;

Gaetz et al., 2014; Puts et al., 2017), and Tourette syndrome (Puts et al., 2015), as well as in other

neurological and psychiatric disorders. These clinical differences are reviewed by Puts and Edden,

2012 and by Schür et al., 2016. Associations with GABA measures have been reported across a

variety of sensory and cognitive domains (for a review, see Duncan et al., 2014) associations with

other measures of brain function (for a review, see Duncan et al., 2014). Given the functional rele-

vance of GABA in the context of both pathological and healthy cohorts (especially in the context of

development and aging), understanding how GABA changes with age in a healthy cohort is impor-

tant to understand typical and atypical progression of behavior. However, few studies have included

the impact of age to their investigations. Our approach allows for a systematic review of existing

work studying GABA across development and aging with immediate impact on future studies in the

context of development and aging.

GABA across the lifespan
To date, cross-sectional and longitudinal investigations of cortical GABA across the entire human

lifespan have yet to be published. However, there have been recent reports investigating the rela-

tionship between cortical GABA levels and discrete age ranges in humans that test a linear associa-

tion focused on a specific population (e.g. ‘aging’). As discussed above, using these studies to make

blanket statements about correlations between age and GABA is inappropriate as these studies

report a variety of effects. Some suggest a positive correlation between GABA and age, others hint

at a negative correlation, and still others conclude that there is no relationship at all. Here, we dis-

cuss these reports in the context of human development and divide them into three categories:

developmental, adult, and aging.

Developmental
The developmental component of the lifespan of cortical GABA as measured by MRS of GABA is

explored in less depth than in adult or aging cohorts. Port et al., 2017 and Silveri et al., 2013 report

a maturational increase in GABA+/Cr+PCr in typically developing children and adolescents. The

majority of evidence comes from non-MRS work, showing dramatic change in GABAergic function

during early life. Human autopsy data describes large changes in both GABA synthesis and receptor
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expression (Pinto et al., 2010) and animal models describe a shift in GABA from excitatory to inhibi-

tory (Leonzino et al., 2016). Yet, in vivo reports in healthy younger populations (particularly infants

and young children) are sparse or missing. Several reasons exist for the absence of high-quality MRS

data during development with technical challenges being one main challenge. These challenges are

not unique to MRS but exist for most – if not all – magnetic resonance modalities. For example, it is

well established that imaging of MRS of GABA is highly sensitive to motion (Edden et al., 2016;

Mullins et al., 2014), thus compounding the challenges involved when imaging pediatric cohorts.

Many studies in pediatric cohorts, including our own (Puts et al., 2017), also suffer from the limita-

tion that age relationships are not reported due to individual studies often studying a restricted age

range to minimize developmental effects within the cohort.

Adult
The vast majority of studies in healthy populations focus on age ranges between development and

aging to minimize the effect of age on the measures of interest (and for ease of recruitment). How-

ever, this limits the reporting of GABA-age relationships within this range. Mikkelsen et al., 2017

conducted a multisite study collecting GABA+ levels in 272 participants between 18 and 35 years

of age, providing a substantial dataset to assess this relationship. The sample size and restriction to

healthy adults in this study provide a reasonable representation of normal GABA estimates in the

target demographic. Their objective with this study was to report stability of the GABA+ measure

across multiple 3 T MRI platforms with systems by GE, Phillips, and Siemens well represented. Voxel

placement was selected for the medial parietal lobe. While their original manuscript contains neither

a report nor a visualization of the GABA/age relationship, we are able to provide this information for

our review (data are freely available from the Big GABA repository, Mikkelsen et al., 2017, https://

www.nitrc.org/projects/biggaba/). There was no aging-related increase or decrease between age

and GABA+/Cr+PCr [�2(7)=3.52, pboot = 0.31] in this large cohort of adults between 18 and 35 years

of age.

Aging
Most, if not all, MRS of GABA studies that investigate aging populations report a decrease in cortical

GABA as a function of age in both frontal (Gao et al., 2013; Porges et al., 2017a) and parietal

(Gao et al., 2013) voxels. Marenco et al., 2018 also show a decrease in GABA with aging. It is

important to note that other reports (Hermans et al., 2018; Maes et al., 2018) have compared

MRS of GABA between defined groups of older and younger adults rather than with continuity

across the lifespan. These findings are consistent with continuous approaches, with older adults hav-

ing reduced GABA. However, a categorical approach comparing two groups does little to elucidate

the aging-related trajectory. Manuscripts that employ MEGA-PRESS methodology in a manner that

is inconsistent with methods outlined in consensus papers (Mullins et al., 2014; Puts and Edden,

2012) have insufficient SNR or other technical limitations that have not been considered for this

assessment.

In conclusion, an understanding of the link between GABA and age is incredibly important for the

study of inhibition across the lifespan, the study of development- and aging-related behavioral and

cognitive processes, and the study of health and disease. No study has attempted to study GABA

across the entire lifespan. Here, we utilize an IPD-MA approach for combining all existing and eligi-

ble cortical edited MRS of GABA data across the lifespan (from childhood development to aging) to

build a model that informs us of the best-fit model of GABA across the lifespan. We hypothesize

that the model of best fit would be consistent with that of other cortical measures of development

and maturation, including indices of white matter (Lebel et al., 2012) and gray matter

(Gilmore et al., 2012; Gogtay et al., 2004), as well as EEG power (Whitford et al., 2007), revealing

non-linear trajectories, increasing during development and slowly decreasing during aging.

Results
A naı̈ve approach to describing GABA as a function of age is to assume a linear trend. The resulting

regression models, fit separately for each of the eight datasets, are depicted in Figure 1 (scaled

with respect to each dataset’s geometric mean), with corresponding regression statistics reported in
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Table 1. A cursory examination of this approach reveals that such an assumption is inappropriate,

suggesting that changes in this relationship over time render extrapolation from any of the datasets

ineffective. Furthermore, assuming a linear trend is unsuccessful even at describing the data within

each study. In six of the eight datasets, the linear trend explained less than 20% of the variance.

More dramatically, linear fits were even less successful at predicting extrapolated trend beyond each

study’s age range, and although the slope in the dataset with the youngest participants was positive,

slopes tended to become more negative as the age of the participants increased. When combined

into a naı̈ve aggregate of all studies, the extrapolated trendlines show no coherent pattern (Figure 1,

right panel). Although a linear trend may provide an approximate summary over short periods of

time, a linear trend over the entire lifespan is not appropriate. Since unqualified statements about

the correlation between age and any neurophysiological measure are, effectively, linear models, Fig-

ure 1 also shows how poorly such statements extrapolate to larger datasets. With this in mind, our

meta-analysis did not rely on a linear trend. Instead, we sought to balance our estimation of the

overall non-linear function that described the common pattern across datasets with the need to con-

trol for systematic differences between studies.
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Figure 1. Linear relationships between age and g-aminobutyric acid (GABA) signal, showing that linear extrapolation over the lifespan is not

appropriate. In each dataset, GABA was scaled relative to the geometric mean. Linear models were fit for each dataset separately. Dark shaded regions

represent the 95% credible interval for the interpolated regression line, given the data from each study and the assumption of a linear effect, whereas

the light shaded regions represent the 95% credible interval for the extrapolated regression line.

Table 1. Regression statistics for simple linear fits.

Intercepts are omitted because rescaling causes them to be entirely determined by the slopes and the mean age. Further study details

can be found in Tables 2 and 3.

GABA
study Mean slope

Lower and upper bounds
(0.025–0.975 quantiles) Mean residual s

Lower and upper bounds
(0.025–0.975 quantiles) R2

Aufhaus �0.0008 �0.0055 to 0.0041 0.155 0.125 to 0.194 0.003

Gao �0.0075 �0.0092 to �0.0058 0.121 0.106 to 0.140 0.459

Ghisleni 0.0034 0.0007 to 0.0061 0.111 0.092 to 0.134 0.106

Mikkelsen �0.0019 �0.0054 to 0.0016 0.129 0.117 to 0.142 0.005

Porges �0.0099 �0.0133 to �0.0064 0.172 0.148 to 0.200 0.279

Puts 0.0436 0.0085 to 0.0795 0.215 0.188 to 0.249 0.058

Rowland �0.0032 �0.0060 to �0.0004 0.176 0.151 to 0.207 0.061

Simmonite �0.0023 �0.0040 to �0.0005 0.160 0.127 to 0.203 0.156
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To provide a meta-analytic synthesis of these datasets without biasing our result through an arbi-

trary choice of our function gðÞ; we fit two models: both non-linear and able to accommodate the

pattern visible from the individual trendlines.

The estimate for our basis spline model is depicted in Figure 2 (left). Overall, this time course is

characterized by an increase in GABA during childhood, followed by a plateau from adolescence

through midlife, and then a gradual decline from approximately 40 years onward. Note that

although Figure 2 (left) depicts the mean spline, any of the wide variety of smooth curves that fit

within the shaded credible interval are in principle nominated by this analysis. A future expansion of

this model to a larger assemblage of datasets would further refine which of those curves is a suitable

candidate for the population’s canonical function. The estimate for our log-normal model is depicted

in Figure 2 (right).

To confirm that the models in Figure 2 did a reasonable job of combining the data despite their

differing origins and methodologies, we examined the posterior estimates of the scaling factors. Fig-

ure 3 (left) shows the posterior estimates for each dataset’s scaling factor for our basis spline model,

whereas Figure 3 (right) shows the estimates for the log-normal model. These scaling factors were

Table 2. Neuroimaging acquisition and analysis details for eight studies included in the analysis.

Reference method refers to either reference to water (in estimated concentration/H2O) or as a ratio to creatine plus

phosphocreatine (Cr+PCr) and describes whether data was acquired macromolecule-suppressed (g-aminobutyric acid [GABA]) or as

GABA+ macromolecules (GABA+). MRS averages refer to the number of ON + OFF transients. *The manuscript refers to 96 averages.

It was clarified with the authors that this referred to 96 ON and 96 OFF averages.

GABA
study

Type of
scanner

Analysis
software

Reference
method

Voxel
volume
(ml3)

MRS
means

TE
(ms)

TR
(ms)

Voxel
location

Aufhaus et al., 2013* 3 T Siemens jMRUI/
LCModel

GABA/H2O 24 192* 68 3000 Medial frontal lobe

Gao et al., 2013 3 T Philips jMRUI GABA+/Cr
+PCr

27 320 68 2000 Medial frontal lobe

Ghisleni et al., 2015 3 T GE LCModel GABA+/H2O 30 320 68 2000 Left dorsolateral prefrontal
lobe

Mikkelsen et al., 2017 3 T GE/Philips/
Siemens

Gannet GABA+/Cr
+PCr

27 320 68 2000 Medial parietal lobe

Porges et al., 2017a 3 T Philips Gannet GABA+/H2O 27 320 68 2000 Medial frontal lobe

Puts et al., 2017 3 T Philips Gannet GABA+/H2O 27 320 68 2000 Right precentral sulcus

Rowland et al., 2016 3 T Philips Gannet GABA/H2O 24 256 68 2000 Medial frontal lobe

Simmonite et al.,
2019

3 T Philips Gannet GABA+/Cr
+PCr

22.5 256 68 1800 Medial occipital lobe

Table 3. Descriptive statistics for eight studies included in the analysis.

This gives a basic description of sample size and age range for the eight datasets. Additionally, Figure 6 depicts the distribution of

ages using a raincloud plot (Allen et al., 2018).

GABA
study # of subjects Mean age Age (SD) Age range Reference

Aufhaus 44 35.5 10 21–53 Aufhaus et al., 2013

Gao 96 45.7 14.5 20–76 Gao et al., 2013

Ghisleni 55 27.2 11 13–53 Ghisleni et al., 2015

Mikkelsen 220 26.5 4.9 18–48 Mikkelsen et al., 2017

Porges 86 71.8 10.6 43–92 Porges et al., 2017a

Puts 101 10.3 1.2 8–13 Puts et al., 2017

Rowland 82 38.0 13.7 18–62 Rowland et al., 2016

Simmonite 38 50.1 29.2 18–87 Simmonite et al., 2019
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given broad prior distributions. Rather than trying to characterize possible contributions to each scal-

ing factor (e.g. by reference method or scanner manufacturer), we allowed the scaling factors to be

estimated in a manner that was agnostic to any label beyond which dataset each observation came
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Figure 2. Non-linear regression models of g-aminobutyric acid (GABA) signal integrating all data simultaneously.

The shaded region depicts the 95% credible interval for the mean. (Left) Penalized basis spline model. (Right) Log-

normal model.
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Figure 3. Posterior estimates of the relative scaling factor Fs for each study in the penalized basis spline model

(left) and the log-normal model (right), sorted by reference method. Boxes represent the 80% credible interval for

the posterior estimate, whereas whiskers represent the 95% credible interval.
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from. Thus, scaling factors were governed only by (1) the observed values of the data and (2) the

constraints of the model.

Despite our decision to keep our priors broad and agnostic, the model nevertheless recapitulates

expected differences in measured outcomes. The Big GABA series of meta-analyses

(Mikkelsen et al., 2017; Mikkelsen et al., 2019) are the largest published multi-site studies to date

characterizing GABA measurement, and our estimated scaling factors line up with the score ranges

consistent with those reported in that series of studies. For example, our three Cr+PCr-referenced

datasets (Gao, Mikkelsen, and Simmonite) all yielded scaling factors well below 1.0, consistent with

the measurement scale typically observed in GABA+/Cr+PCr studies (Mikkelsen et al., 2017),

whereas water-referenced data yielded scaling factors one or two orders of magnitude larger than

Cr+PCr-referenced data, also consistent with typical measurement (Mikkelsen et al., 2019). In this

respect, our estimated scaling factor not only put our observations on a comparable scale but did so

in a way that provides a sanity check against published findings.

Importantly, however, the scaling factor estimates are themselves distributions, and those distri-

butions depend not only on the variation in the original data but on their covariance with other varia-

bles and on the model assumptions. The scaling factor estimates display less uncertainty in the log-

normal case because that model imposes much stronger assumptions on the time course of the data

than would be expected from a spline model. The estimated scaling factor for the Mikkelsen data

varies less than that of the Simmonite data in part because the former dataset is nearly six times as

large. Since every parameter estimate within each model covaries with every other parameter
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Figure 4. Non-linear regression models of g-aminobutyric acid (GABA) signal performed using a leave-one-out

(LOO) cross-validation approach. The gray shaded region and black line depict the 95% credible interval for the

mean for the model and the colored shaded region and dotted line show the model with the respective data left

out. In all cases, a similar overall trajectory to the full data is implied by each of the subsets, albeit with greater

variation in the posterior estimates.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. To accompany Figure 4, we performed additional analysis on frontal data only (removing
Mikkelsen et al. and Simmonite et al., respectively) to investigate whether the inclusion of non-frontal regions
biased our data.
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estimate, and furthermore is relative to the other reported factors, it is important to treat these scal-

ing factors as strictly relative and contingent on the current data and model assumptions.

To ensure that the directionality of the ‘late-age’ component was not driven by differences in Cr

+PCr, we performed an additional ‘leave-one-out’ (LOO) cross-validation approach (Arlot and Cel-

isse, 2010) for each of the three datasets that included late-age participants. Figure 4 shows that

when datasets are left out, the general shape of both models remains the same, with wider 95%

credible intervals for the oldest of age due to limited available data. This suggests that the overall

pattern of a negative slope in late age is unlikely to be driven by Cr+PCr differences, as the data

contributed by Porges et al., 2017a made the largest contribution to this slope (having the most

observations to contribute) and relied on a water-based reference method. That said, since the

Porges dataset contains most of the observations over 60 in this analysis, its removal leaves only a

handful of cases from the Simmonite dataset as evidence for late-life model estimates, resulting

in substantial uncertainty in the spline model. By contrast, the age ranges represented by Gao and

Simmonite have good coverage by other studies, so their removal does not have as large an impact

on the estimate.

Figure 5. PRISMA 2009 flow diagram of study identification and inclusion.
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Figure 4 also helps to demonstrate the importance of model assumptions: The removal of the

Porges dataset affords the spline model the possibility that the model of best fit might level off or

even become positive in late life, whereas the log-normal model’s rigid shape is only able to predict

a downward trajectory. On the one hand, the log-normal model can probably be criticized for its

inflexibility in this respect; however, on the other, this demonstrates that without much data to guide

it, the spline model is perhaps too agnostic about the direction of the effect. The spline model’s

advantage is that it can be persuaded to turn, provided the evidence is consistent with that conclu-

sion. The log-normal, by contrast, is too inflexible to accommodate a change in direction in late life

regardless of the volume of data it is provided.

We additionally also explored the potential effect of region by performing the analysis on only

frontal data (removing Mikkelsen et al. and Simmonite et al., respectively) with no substantial impact

on the direction of the slope over time. This information can be found in Figure 4—figure supple-

ment 1.

Discussion
Here, we show that the aging-related trajectory of GABA across the lifespan is characterized by a

fairly quick increase in GABA during development, followed by a flattening during adolescence and

by a subsequent slow decrease with aging. It should be noted that we included studies reporting

GABA levels in institutional units and as measured ratios. No single study with a limited age range

reveals such a relationship (as evidenced by Figure 1) – it is only by meta-analysis of multiple data-

sets that we are able to identify this relationship. Here, we will discuss the case for a biological

mechanism that drives a non-linear trajectory of GABA measures with age and then discuss method-

ological and biological factors that may influence these results. Finally, we review the implications of

our evaluation and suggest potential directions of future research characterizing the trajectories of

GABA over the lifetime.

Biological mechanisms
Although previous work, including the authors’ own, has generally reported a linear relationship

between GABA and age within a given stage of life, it is far more plausible that differences across

the lifespan are non-linear, in line with other biological effects. For example, while Gao et al., 2013

might capture a decrease in GABA with age, the broad age range studied in Ghisleni et al., 2015

might prevent observation of a linear relationship. Indeed, a decline in GABAergic interneurons with

age has been widely reported in animal models (Hua et al., 2008; Stanley et al., 2012). Post-mor-

tem data from human samples showed a reduction in the 65 isoform of GAD (the enzyme responsi-

ble for the production of GABA, GAD) in visual cortex, suggesting reduced GABA production with

aging (Pinto et al., 2010). MRS of GABA by itself cannot provide sufficient resolution to determine

what these reductions in GABA reflect; we can only make vague assumptions and conclusions on the

relationship between brain structure, cognitive function, and potential molecular mechanisms.

In considering a non-linear model for GABA across the human lifespan, we find three major

stages: (1) a developmental stage where GABA measures increase, (2) a stabilization phase during

adulthood where GABA concentrations remain mostly stable, and (3) a gradual descending period

of GABA with advanced aging. This is consistent with previous studies of brain structural and cogni-

tive function across the lifespan. Non-linear trajectories have been reported in aging effects of total

gray matter (Lenroot et al., 2007; Sussman et al., 2016) and cortical thickness (Shaw et al., 2008).

Diffusion tensor imaging studies show non-linear aging-related differences through childhood and

adolescence (Lebel and Beaulieu, 2011), with an ‘inverted U-shaped’ trajectory that peaks at

approximately 40 years of age (Bendlin et al., 2010; Good et al., 2001; Lebel et al., 2012;

Westlye et al., 2010). A similar trajectory pattern for cognitive abilities is reported in memory, ver-

bal ability, and inductive reasoning (Kobayashi et al., 2015), as well as word recall, verbal fluency,

math skills (Whitley et al., 2016), and behavioral inhibition (Williams et al., 1999).

GABA differences throughout development
An increase in cortical GABA could be extrapolated from the proliferation of new GABAergic neu-

rons during development. GABA is thought to be linked to the myelination of frontal white matter

trajectories by controlling oligodendrocyte precursor cell activity through the developmental phase
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(Ghisleni et al., 2015; Vélez-Fort et al., 2012). An increase in cortical GABA concentrations could

also be the result of increased synaptic activity of GABAergic neurons during development. This

potentiation-like mechanism of cortical GABA is supported by studies where astrocytes have been

shown to mediate plasticity of rodent hippocampus (Kang et al., 1998) and visual cortex

(Chen et al., 2012), suggesting a possible potentiation-like mechanism of cortical GABA concentra-

tions. In addition, upregulation of GAD could lead to increased production of GABA and indeed,

GABA levels as measured with MRS have been shown to relate to expression of the GAD1 gene

(Marenco et al., 2010). GABAergic neuronal function is reported to become more efficient through

synaptic pruning and long-term depression during development (Paolicelli et al., 2011;

Wagner and Alger, 1995; Wu et al., 2012). It should be pointed out that no eligible MRS studies of

GABA were available for infancy and early development, which is a significant gap in the literature

that should be addressed in future work.

GABA differences throughout aging
Decreased GABA concentrations during aging are most likely linked to gray matter atrophy and

demyelination associated with pathology and normal aging. Animal models have explored the physi-

ological underpinnings and functional implications of these changes. Rodent studies have shown a

reduction in the number of interneurons expressing GAD in the medial prefrontal cortex. These

reductions were accompanied by altered spatial working memory, linking altered GABA function to

altered behavior in aging (Spiegel et al., 2013). Additionally, rodent models of cognitive decline

have shown altered function at both GABA-A and GABA-B receptors (McQuail et al., 2015), as well

as a reduction in GABAergic neurons in cats and monkeys (Hua et al., 2008; Leventhal et al.,

2003).

GABA differences across the lifespan
Very few non-MRS studies have assessed changes or differences in GABA function across the life-

span. In those that report differences in the GABAergic system across the lifespan, a pattern of

change similar to our findings has been presented. Using GAD labeling methodology in the human

visual cortex, GAD65 has been reported to increase early in life and gradually decrease during aging

(Pinto et al., 2010). Provocatively, they show GAD67 to be stable across the lifespan. Similarly, a

recent cross-sectional exploration of sex differences in young and old adults found reduction in

GAD65, but not GAD67 in the superior temporal gyrus of females (but not males). No change in

GAD65 or GAD67 was found in other regions, though prefrontal cortex was not reported

(Pandya et al., 2019). We are unaware of other reports of normal human aging-related differences

in GAD; however medial temporal lobe reductions (prefrontal cortex was not reported) in GAD65,

but not GAD67, have also been reported in Alzheimer’s disease (Schwab et al., 2013). Given the

more specific relationship between GAD65 and neurotransmission, this may underlie reports of

GABA-associated alterations in cognitive function that occur during periods of GABAergic change

(Porges et al., 2017a) throughout the lifespan. Future studies should aim to address the relationship

between these two different functional isoforms, brain GABA levels, and function in both health and

disease.

Regional differences
It can be assumed that regional differences in GABA are not homogeneous. We do not presume

that the model we have presented is characteristic of aging-related differences in GABA in all neural

tissues due to well-known ontological and aging-related regional variation in tissue that influences

GABA (Lebel et al., 2012). One could even argue that regional differences are likely to exist within

smaller regions of the frontal lobe. However, limiting this regional selectivity even further would

have not allowed for our analysis, as (1) we would not be able to correct for covariation between

frontal and parietal regions, and (2) inclusion of multiple observations per participant would violate

the independence of individual data points in our analysis. Because all data we included from a par-

ticular study were restricted to the same cortical region, differences between regions would be

absorbed by the studies’ scaling factors Fs and would be indistinguishable from methodological sys-

tematics (further discussed below). We therefore decided to include frontal data when available, and

other regions when not available, but given the potential regional differences, we also show our
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aging-related trajectory without the inclusion of Mikkelsen et al., 2017 and show that the model

shows a similar trajectory for frontal-only data (Figure 4—figure supplement 1). The majority of

published studies on MRS of GABA focus on cortical, rather than subcortical, regions of interest. The

few publications that describe subcortical GABA often show trends that are difficult to associate

with cortical GABA levels. For instance, GABA was negatively associated with age in subcortical vox-

els but positively associated with age in anterior and posterior cortical voxels (Ghisleni et al., 2015).

Subcortical GABA undoubtedly plays an important role in brain function, as evidenced by increased

GABA concentrations in subcortical basal ganglia that have been associated with schizophrenia and

depression (Puts and Edden, 2012). However, the role of subcortical GABA—measured via MRS—

in cognitive function is not thoroughly investigated in the literature, and thus there are too few stud-

ies to perform a suitable meta-analysis. In the current review, we limit our discussion to GABA con-

centrations in cortical voxels in order to provide a meaningful initial evaluation of GABA over the

lifespan. Both the publication of future participant-level data and the release of participant-level

data from past studies will increase the sample available to the field, which in turn will make possible

the rigorous examination of the contributions of these covariates.

Methodological differences
Inconsistencies in aging-related differences in GABA estimates may stem from differences between

study methodologies or inherent structural differences across the lifespan. We discuss each of these

in turn below.

Quantification of MRS is relative and expresses the ratio between the signal of interest and an

internal reference signal. The most widely used references for GABA measures are the Cr+PCr signal

in editing-off spectra and the unsuppressed water signal from the same volume (Alger, 2010;

Mullins et al., 2014). Each quantification approach has its advantages and disadvantages. For

instance, the Cr+PCr at 3.05 ppm has minimal chemical shift from the GABA signal at 3 ppm

(Mullins et al., 2014) and is acquired during the MEGA-PRESS sequence. Therefore, its signal comes

from the same location as the GABA signal, and it does not require a separate acquisition. In con-

trast, the water signal represents a more concentrated chemical yielding a higher SNR, but it may

also introduce error in estimates of location due to chemical shift effects (Mullins et al., 2014) when

not acquired from the same voxel as GABA and on some scanners requires a separate acquisition

(see Choi et al. for a discussion). Furthermore, the Cr+PCr signal arises only from tissue, whereas

water signal arises from tissue and cerebrospinal fluid (CSF) with substantially different relaxation

behavior. A small number of studies have looked at the relationship between Cr+PCr and age

(Ding et al., 2016; Lind et al., 2020) showing an increase or no change with age (for a review, see

Cleeland et al., 2019). The impact of increasing Cr+PCr during aging would be to make the any

aging-related decrease in GABA/Cr+PCr more pronounced, and the potential of this to contribution

should not be ruled out. However, Gao et al. investigated both GABA/Cr+PCr and GABA/NAA and

found similar aging-related reductions in GABA referenced to both molecules. Given that NAA has,

in contrast to the increase of Cr+PCr, been shown to consistently decrease in aging (Cleeland et al.,

2019), it makes it unlikely that Gao’s aging-related reduction was solely driven by a Cr+PCr increase

during aging. Still the potential for a Cr-bias on the final model that needs to be considered. Our

LOO approach to the ‘late-age’ data (Figure 4) found no substantial differences in the final models,

providing some support to the notion that differences in Cr+PCr are not driving the GABA findings

presented here, but the impact of reference compound needs to be considered.

One of the cornerstone assumptions of our analysis is that, although the use of different referen-

ces results in different fundamental units, participants within any given study using a given method

can be compared to one another in relative terms. If, for example, participants in the oldest quartile

of a study show only 80% of the GABA signal on average of participants in the youngest quartile,

then there is a basis for reporting a reduction in GABA regardless of the reference method used. In

other words, our analysis presumes that the measures’ scores in any given study share a common

scaling factor (which we denote as Fs) that can be estimated in order to factor out its influence, thus

allowing studies to be compared in terms of their relative expressions of GABA. This approach thus

relies on different reference methods displaying consistent sensitivity within each study; that is, par-

ticipants with comparatively low scores in a study should be measured with a precision that is similar

to that of participants with comparatively high scores. If this assumption is violated, a more complex

analysis would be needed to address it, such that each participant’s contribution is given a weight as
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a function of their measurement error relative to other participants in the same study. Provided this

assumption is met, however, simultaneous estimation of between-list scaling factors and within-list

participant differences provides a robust means of integrating multiple studies into a single overall

trajectory.

Another limitation is that voxel location can be inconsistent between studies (e.g. the medial pre-

frontal cortex in one study may not be localized the same way as in another study; also see a recent

review: Peek et al., 2020). This becomes more problematic in younger cohorts where, due to

smaller intracranial volumes, the methodologically limited size of the voxel (Mullins et al., 2014) nec-

essarily incorporates a proportionally larger fraction of the brain.

It is well known that voxel tissue composition has a significant impact on the quantification of

GABA levels (Harris et al., 2015a). In many cases, tissue correction is appropriate due to existing

partial volume effects (Barker et al., 1993; Christiansen et al., 1993; Danielsen and Henriksen,

1994; Ernst et al., 1993; Hennig et al., 1992; Kreis et al., 1993; Thulborn and Ackerman, 1983).

Researchers frequently tissue-correct GABA values by segmenting the T1 weighted structural images

(Ghisleni et al., 2015). Interestingly, none of the studies included in this review showed significant

differences in segmented tissue content with age. This is surprising because other studies
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Figure 6. Raincloud plot depicting the age distribution in each of the eight included datasets. Plotted densities

are scaled within study. Boxes represent the first and third quartiles, while whiskers represent the range of the

data. The central notch corresponds to the bootstrapped confidence interval for median. Kernel density estimates

for each dataset were computed using a Gaussian kernel according to Silverman, 1986. The relevant analysis

script for these densities is included as supplementary material.
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(Maes et al., 2018; Porges et al., 2017b) showed that aging-related differences in GABA depend

on tissue correction due to atrophy being common in older participants. Unfortunately, there is no

consensus on the appropriate tissue correction approach except that accounting for different com-

partments when using a water reference is strongly advised. The potential effect of tissue composi-

tion on GABA levels is limited if a study focused on a young cohort where aging-related atrophy

would be negligible. All of the studies included in this review assume a linear model to represent

change in GABA. Thus, while tissue correction could potentially contribute to the variance and differ-

ences between MRS-GABA studies, they are unlikely to explain the discrepancies between study

populations of different age ranges.

In water-referenced studies of aging-related differences in older cohorts (where bulk tissue

changes are most likely to impact this relationship), accounting for CSF in the tissue correction

approach does not remove a significant relationship between age and cortical GABA (Porges et al.,

2017b). Given our concern was with relative differences in GABA, our analysis approach used a

feature scaling approach to examine within-study variation as an estimation problem that was simul-

taneous with the estimation of the time course. Given this approach, the scaling factor Fs for each

study s is conceptually very similar to a method of correcting ‘house effects’ in the analysis of politi-

cal polling data (Jackman, 2005), allowing pollsters that show systematic bias (e.g. to a particular

party) to be included in aggregate measures of public opinion. Furthermore, a limited effect of tis-

sue is also suggested by consistency between findings of GABA+/Cr+PCr and estimated concentra-

tions. There is no significant difference in the correlation for GABA � age in the overlapping age

range of 43–76 years between Porges et al. (GABA+/H2O) and Gao et al. (GABA+/Cr+PCr) who

looked at comparable samples (Fisher R-to-Z [z = 1.48, p = 0.19]) showing consistency between stud-

ies focusing on the same population (see also the discussion above).

As for other methodological differences (Table 2 and Table 3), studies used a variety of scanner

vendors: a variation that is known to contribute to between-site variability (Mikkelsen et al., 2017)

but is unlikely to lead to substantial difference in the age relationship. Furthermore, a variety of anal-

ysis techniques have been used, making direct comparison between studies problematic. A given

analysis pipeline is unlikely to be biased to substantial differences in the age relationship. By rescal-

ing the data in a way that emphasized scale ratios within each dataset, we minimized the impact of

differences in site and vendor-driven GABA magnitude estimations. Furthermore, inconsistencies

between reference compound (e.g. water or Cr+PCr) additionally complicate interpretation of the

findings. Future studies should provide concentration values across the lifespan; we recommend

reporting of values both as metabolite and water ratios to look at within-study consistency and

robustness of the effect of GABA. Recent developments in MRS of GABA methodology will allow for

this, even when data is collected on multiple scanner platforms (Saleh et al., 2019).

It should be noted that all datasets used for this meta-analysis were cross-sectional. Although it is

tempting to draw longitudinal inferences from our analysis, there are several limitations in doing so.

For example, the present data provide no insight into long-term survival trends, so the population

that is represented at age 20 likely differs in various ways from the population that is represented at

age 70 and we cannot rule out a relationship between GABA and survival-related confounds. Addi-

tionally, because our method simultaneously estimated the scaling factor and the time course for

each dataset, areas of minimal overlap between datasets (e.g. at around 13 years) are particularly

uncertain.

While here we discuss potential methodological origins of bias, it should be noted that many of

these cannot be extracted from the literature. We opted to use the MRS-Q as a guideline to assess

quality, and recent consensus (Lin et al., 2021) also addresses issues in reporting important data

acquisition, analysis, and quality information moving forward, including measures that may impact

quantification, including proxy measures of motion, fit errors/CRLB, and shim.

The present analysis provides a model of the lifespan based on the data that is currently available.

It would be valuable to test these in a longitudinal study of MRS of GABA across the lifespan. Even if

it is not feasible to measure GABA in the same individual over a 70-year span, obtaining multiple

estimates per participant over a moderate length of time (e.g. 5 years) would greatly facilitate esti-

mating rate of change over time.
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Conclusion and future research
This review considered research of cortical GABA concentrations over the lifespan. After combining

datasets, we conclude that a linear model of GABA over the lifetime is not supported. Instead, con-

sistent with other developmental aging studies of neurophysiology and cognitive function, we pro-

pose non-linear models to describe lifespan GABA measurements. A log-normal trajectory provides

a satisfactory parametric description of the life course for the time being, but large and longitudinal

datasets may necessitate the use of nonparametric regression strategies to best characterize the

age-GABA relationship.

In the future, it will be important to investigate the neurophysiological and anatomical processes

that drive apparent differences in bulk metabolite and neurotransmitter levels. While it is clear that

GABA changes with age and seems to follow trends reported in other lifespan datasets, non-linear

relationships in GABA and other neurotransmitter and neurometabolite (e.g. NAA, myoinositol, and

choline) concentrations merit further exploration. Glutamate in particular, given its close functional

and metabolic relationship with GABA, would warrant a similar lifespan approach. In fact, Glx (com-

bined glutamate and glutamine) can typically be quantified from the edited difference spectrum as a

result of MEGA-PRESS but most studies do not report Glx. This may be due to the absence of clear

hypotheses regarding Glx and a mechanistic focus on GABA, or simple omission of these data. Fur-

thermore, it would be important to link these findings to anatomical measures underlying the differ-

ent neurochemical measures, such as evidence of non-linear cortical thinning and histological studies

of GABAergic neurons (Pandya et al., 2019; Vidal-Pineiro et al., 2020).

Future inquiries would benefit from recruiting cohorts that encompass the entire lifespan, and suf-

ficient representation and characterization of males and females, as sex differences have been

reported in both GABA (O’Gorman et al., 2011) and GAD65 (Pandya et al., 2019). This would

address that a limitation of the present study was the inability to distinguish males from females in

the figures data was extracted from. Studies of development including those of infants and young

children are virtually non-existent but are crucial given the importance of GABA in early develop-

ment. Furthermore, alterations in GABA have been seen in neurodevelopmental and neurodegener-

ative disorders—a better understanding of abnormal GABAergic function early in development may

elucidate this relationship, point to potential early-intervention targets, or explain variability in

response to pharmacological treatments for these conditions.

Here, we report on the relationship between GABA and age across the lifespan. It is well known

that GABA contributes to cognition and perception, which in and of themselves change with age. It

would be extremely interesting to apply an IPD-MA approach to the investigation of how aging-

related differences in GABA might correlate with cognition. However, this is greatly complicated by

the wide variety of cognitive measures used across studies, which would be much more difficult to

standardize across studies than feature-scaled GABA as measured using an MRI machine. While pur-

suit of this work is notably challenging, conducting such research is undeniably crucial going

forward.

While many papers exist that report on aging-related differences that are consistent with our

asymmetrical lifespan trajectory, these are often reported as group or cohort differences without the

presentation of individual data points necessary for such meta-analyses as applied here

(Hermans et al., 2018; Port et al., 2017). Collaborative and group science approaches are becom-

ing increasingly important in generating large datasets that allow for a broader and larger-scale

application of this work and we hope that sharing data, or at least reporting individual data points,

becomes more common in the future even in studies where age may not be the main focus.

Materials and methods
We conducted and reported this systematic review in accordance with the PRISMA statement

(Moher et al., 2009) and we used an IPD-MA approach (Debray et al., 2015).

A systematic literature search was performed in two iterations by BF and EP to retrieve studies in

which MRS of GABA using the MEGA-PRESS method was collected in the human brain from voxels

that included the frontal lobe. In the first iteration, a search was performed using Google Scholar

and Medline with the following combination of terms: (GABA OR GABA+ OR g-aminobutyric acid

OR gamma-Aminobutyric acid) AND (MRS OR Magnetic Resonance Spectroscopy) AND (MEGA-

PRESS OR MEGA-PRESS OR MEshcher-GArwood Point RESolved Spectroscopy OR edited). Both
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GABA+ and macromolecule-suppressed measures were deemed inclusive. We purposely did not

include unedited measures of GABA as it is not clear whether these allow for specific and reliable

estimation of GABA as per consensus (Choi et al., 2021; Mullins et al., 2014). The following con-

straints were applied to limit results: the result should be (1) a full-text article or a conference

abstract, (2) peer-reviewed, (3) written in English, (4) included in the publication must be a scatter

plot with GABA by age suitable format for extraction of individual human subject data via WebPlot-

Digitizer. The search was conducted on April 2, 2019, resulting in a total of 271 studies. Out of

these, 55 were relevant.

Additional criteria
Study design
A second step was performed by BF, EP, and NP to exclude based on the following criteria: studies

must report GABA, acquired using MEGA-PRESS, in at least one cortical voxel (subcortical voxels

were excluded) in populations reported as being ‘healthy’, ‘normal’, or free of reported relevant dis-

orders. To exclude a potential region effect, when a frontal voxel (any inclusion of frontal cortex) was

available, we included that voxel. We chose to focus on frontal regions given this region is most-

widely studied with respect to aging-related differences (see Introduction), making it suitable for an

individual data meta-analysis; we are first and foremost interested in its relation to behavioral and

cognitive associations with GABA. Furthermore, we can link neurochemical aging-related differences

to other established brain indices in frontal regions during aging (e.g. white matter). Additionally,

we were interested in the apparent contradictory reports in the change trajectory in frontal regions

which we attempt to reconcile and finally, frontal regions allowed us to use data-informed predic-

tions on aging-related differences in GABA to support the design and interpretation of future work.

However, to maximize the available data, if no frontal regions were reported, we used the other

cortical voxel only as was the case for Mikkelsen et al. If a study sampled multiple voxels, we only

extracted data from a frontal voxel to prevent multiple sampling of a single subject as this would

include in inclusion of non-independent datasets. If multiple frontal voxels were available, we chose

the dataset with the largest sample. Then, data were only included when they originated from pub-

lished figures of sufficient quality for data extraction of individual data points, and psychiatric or neu-

rologic populations, if presented in the same figure could be distinguished. Finally, the data

extracted required contiguous age ranges of 5 or more years for inclusion in the analysis. Studies

failing to satisfy all criteria were deemed incompatible with the IPD-MA approach (as described

below). Duplicate datasets were excluded as well.

Data quality
A third step was performed to assess whether studies adhered to consensus quality assurance crite-

ria for data collection, analysis, and reporting. For this purpose, two coauthors (NP and EP) evalu-

ated all remaining studies using the MRS-Q, which was specifically designed for MRS and based

upon consensus documentation (Peek et al., 2020). MRS-Q identifies a limited number of edited

MRS approaches to report and is specific for edited MRS and consistent with the recently published

MRS standards in reporting (Lin et al., 2021). These criteria are necessary methodological minimum

requirements (e.g. voxel size) as reported in existing consensus work for GABA quantification

(Mullins et al., 2014; Wilson et al., 2019; Peek et al., 2020). Spectral quality was not a criterion for

exclusion, as individual data spectra or quality metrics (e.g. linewidth, CRLB, etc.) are rarely if ever

published in manuscripts used for extraction in our IPD-MA approach.

Of the 55 relevant studies retrieved in the systematic search, only seven included figures suitable

for data extraction or had data freely available in available online repositories. One dataset was only

partly published (Puts et al., 2017) but was supplied in full by authors of this manuscript NP and

RAEE, for a total of eight datasets. While full-text article and conference abstracts were included in

the initial search, no conference abstracts meet our inclusion criteria, thus all included datasets were

from peer-reviewed manuscript. At final review, these datasets were reviewed for consistency in

research methods (see Figure 5 and Table 2), evaluated for age distributions (see Figure 6 and

Table 3), and combined in aggregate (see Figure 2 and Table 1).
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Risk of bias
All eight studies included in the systematic review included both male and female participants,

although the pediatric data were somewhat skewed to include more males. No data were excluded

based on acquisition parameters as assessed with the MRS-Q. Most studies were well matched for

acquisition and followed published recommendations (Mullins et al., 2014). No exclusions were

made based on the direction of the correlations. With the exception of two publications (Gao et al.,

2013; Porges et al., 2017a), the age-by-GABA relationship was not a primary outcome and was

therefore unlikely to have been a driver of publication bias in the majority of studies included. How-

ever, a risk of publication bias cannot be ruled out.

Individual data points were extracted from figures using WebPlotDigitizer (Rohatgi, 2019). None

of the data included were corrected for voxel tissue fractions (see Discussion). MEGA-PRESS sequen-

ces can vary between and within MRI vendors; these can impact editing efficiency and in turn abso-

lute quantification (Harris et al., 2015b; Saleh et al., 2019). However, the consequence of this will

not impact the within-site relationship to age (the metric used in this review) as the consequences of

such variation are stable within-site and function as a scaling factor (Mikkelsen et al., 2018).

Statistical methodology
Our meta-analysis made use of an IPD-MA approach (Debray et al., 2015). The chief advantage of

this approach is that it allows the analyst to account for the evidence provided by the individual

observations recorded in each study while also accounting for any systematic differences between

studies using the framework of a multi-level model that evaluates both the data overall and within

the context of each separate study as a simultaneous estimation problem. As a result, methodologi-

cal steps like estimating an overall ‘weight’ associated with each study in order to determine how to

combine reported statistics is rendered unnecessary, as the relative effect size and uncertainty of

each study is communicated to the model by the data themselves (Riley et al., 2010). Such an

approach is especially important in non-linear regression paradigms because the goodness of fit pro-

vided by each value of a parameter is interdependent with every other parameter. Put another way,

optimal parameter values cannot be estimated for each parameter in isolation of the others, as the

posterior distributions for the parameters covary with one another. As such, the meta-analytic mod-

els’ uncertainty for any value of a continuous predictor depends on the complex covariance of

parameters. In the present analysis, we are concerned with scaling every study relative to every other

study, so it would be inappropriate to convert the data to some kind of standard score prior to com-

bining them; instead, this standardization should happen simultaneously with the estimation of other

model parameters.

Our general statistical framework in this analysis was to assume that some unknown ‘canonical

function’ describes the average change in the feature-scaled GABA signal over the lifespan as a func-

tion of age. In other words, given participant i in study s, their age is denoted by xs;i and the relative

change in GABA over the lifespan is given by the function g xs;i
� �

: This change cannot be directly

observed though imaging, but is instead inferred indirectly from a measurable reference (in our

case, either water or Cr+PCr). As such, the mean observed effect in each study has an unknown fea-

ture scaling factor Fs, which is expected to vary by orders of magnitude as a function of reference

method, variations in equipment, and other systematics that may not be documented in all (or even

any) of the included studies. By estimating both g xs;i
� �

and Fs, simultaneously, the model was able to

find the optimal balance between the shape of the function and the alignment of observations along

zones of overlapping age. Finally, individual observations are assumed to vary with respect to the

lifespan function given normally distributed noise " with an unknown error term s, chosen as a mini-

mally informative maximum entropy distribution for the error (Jaynes, 2003). In total, this gives the

following general form for each observation in our data ys;i:

ys;i ¼ g xs;i
� �

�Fsþ ";where"¼Normal 0:0;sð Þ

The scaling factor Fs is intended to act as a feature-scaled standardization of the unitless

function g xs;i
� �

. Because of this, the scaling factors were constrained in two ways. The first was a

hard constraint that truncated their distributions to exclude negative values. The second was a soft

constraint imposed by using a weakly regularizing prior to favor values close to unity. Since each of
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the datasets had at least a few dozen subjects, the lion’s share of the scaling factor’s effect size was

determined by the data themselves, with regularization serving mainly to keep the tails of the poste-

rior distribution from considering unreasonably large values, effectively penalizing the likelihood of

such extreme values. The net effect of the scaling factor was that the geometric mean of all values

g xs;i
� �

was equal to 1.0, despite the unscaled values from different studies varying dramatically in

their original units. In addition to allowing different reference methods to be combined, the relative

values of Fs act as a study-by-study correction for any systematics that might otherwise shift one

study’s observations relative to any other study, including both known and unknown factors that

might introduce a bias. As with all other parameters in our models, the scaling factor estimates are

not point values, but rather are posterior probability distributions with a lower bound of zero but no

proscribed upper bound.

This model is highly general, accommodating any function gðÞ the analyst deems appropriate. The

parameters that must be estimated are one scaling factor Fs for each study included in the meta-

analysis, a global error term s, and whichever parameters the function gðÞ requires to specify its

shape. Because parameter estimates in any non-linear regression model necessarily covary, it is

essential that all parameters be estimated simultaneously (McElreath, 2020). If, for example, each

dataset was ‘feature scaled’ prior to the meta-analysis and then subsequently stitched together, any

vertical shift needed to maximize the overlap of outcomes recorded at overlapping age ranges

would necessarily be ad hoc and would not be able to balance the relative weight of the evidence

from each study in that area of overlapping age. By this same token, it was important that all studies

included in our analysis included a range of ages that overlapped with at least one other study.

We chose two models as candidates for gðÞ. Our first function gðÞ was a penalized cubic basis

spline model, adapting the procedure described by Kharratzadeh, 2017. This provided a non-linear

and semiparametric estimate of GABA differences over the lifespan as described by these eight

datasets. Since it does not make strong assumptions of its own, such a model requires considerable

data to make good inferences. Our second candidate was a parametric function that followed the

shape of a log-normal distribution, which has been chosen in the past as a way to characterize the

pattern of increases in GABA in childhood, followed by a gradual decline that describes other neuro-

physiological changes across the lifespan (Lebel et al., 2012). We include this second function pri-

marily to contrast how powerfully the choice of functions, and of their underlying assumptions, can

influence the estimate.

In order to ensure that all estimates were permitted to covary appropriately, we obtained poste-

rior probability distributions for each parameter numerically using a Bayesian paradigm

(Gelman et al., 2014) and implemented with the Stan programming language (Carpenter et al.,

2017). Note that a ‘posterior probability distribution’ is a statistical term in this context and is not

intended for use in anatomical orientation. Details of these analyses can be found in the supplemen-

tary information.
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