
RESEARCH ARTICLE

Unsupervised tensor decomposition-based

method to extract candidate transcription

factors as histone modification bookmarks in

post-mitotic transcriptional reactivation

Y-h. TaguchiID
1*, Turki Turki2

1 Department of Physics, Chuo University, Tokyo, Japan, 2 Department of Computer Science, King Abdulaziz

University, Jeddah, Saudi Arabia

* tag@granular.com

Abstract

The histone group added to a gene sequence must be removed during mitosis to halt tran-

scription during the DNA replication stage of the cell cycle. However, the detailed mecha-

nism of this transcription regulation remains unclear. In particular, it is not realistic to

reconstruct all appropriate histone modifications throughout the genome from scratch after

mitosis. Thus, it is reasonable to assume that there might be a type of “bookmark” that

retains the positions of histone modifications, which can be readily restored after mitosis.

We developed a novel computational approach comprising tensor decomposition (TD)-

based unsupervised feature extraction (FE) to identify transcription factors (TFs) that bind to

genes associated with reactivated histone modifications as candidate histone bookmarks.

To the best of our knowledge, this is the first application of TD-based unsupervised FE to

the cell division context and phases pertaining to the cell cycle in general. The candidate

TFs identified with this approach were functionally related to cell division, suggesting the

suitability of this method and the potential of the identified TFs as bookmarks for histone

modification during mitosis.

1 Introduction

During the cell division process, gene transcription must be initially terminated and then reac-

tivated once cell division is complete. However, the specific mechanism and factors controlling

this process of transcription regulation remain unclear. Since it would be highly time- and

energy-consuming to mark all genes that need to be transcribed from scratch after each cycle

of cell division, it has been proposed that genes that need to be transcribed are “bookmarked”

to easily recover these positions for reactivation [1–4]. Despite several proposals, the actual

mechanism and nature of these “bookmarks” have not yet been identified. [5] suggested that

condensed mitotic chromosomes can act as bookmarks, some histone modifications were sug-

gested to serve as these bookmarks [6–8], and some transcription factors (TFs) have also been

identified as potential bookmarks [9–13].
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Recently, [14] suggested that histone 3 methylation or trimethylation at lysine 4 (H3K4me1

and H3K4me3, respectively) can act as a “bookmark” to identify genes to be transcribed, and

that a limited number of TFs might act as bookmarks. However, there has been no compre-

hensive search of candidate “bookmark” TFs based on large-scale datasets.

We here propose a novel computational approach to search for TFs that might act as

“bookmarks” during mitosis, which involves tensor decomposition (TD)-based unsupervised

feature extraction (FE) (Fig 1). In brief, after fragmenting the whole genome into DNA

regions of 25,000 nucleotide, the histone modifications within each region were summed. In

this context, each DNA region is considered a tensor and various singular-value vectors asso-

ciated with either the DNA region or experimental conditions (e.g., histone modification, cell

line, and cell division phase) are derived. After investigating singular-value vectors attributed

to various experimental conditions, the DNA regions with significant associations of singu-

lar-value vectors attributed to various experimental conditions were selected as potentially

biologically relevant regions. The genes included in the selected DNA regions were then

identified and uploaded to the enrichment server Enrichr to identify TFs that target the

genes. To our knowledge, this is the first method utilizing a TD-based unsupervised FE

approach in a fully unsupervised fashion to comprehensively search for possible candidate

bookmark TFs.

2 Materials and methods

Sample R code is available in S1 Text.

2.1 Histone modification

The whole-genome histone modification profile was downloaded from the Gene Expression

Omnibus (GEO) GSE141081 dataset. Sixty individual files (with extension .bw) were extracted

from the raw GEO file. After excluding six CCCTC-binding factor (CTCF) chromatin immu-

noprecipitation-sequencing files and six 3rd replicates of histone modification files, a total of

48 histone modification profiles were retained for analysis. The DNA sequences of each chro-

mosome were divided into 25,000-bp regions. Note that the last DNA region of each chromo-

some may be shorter since the total nucleotide length does not always divide into equal

regions of 25,000. Histone modifications were then summed in each DNA region, which was

used as the input value for the analysis. In total, N = 123,817 DNA regions were available for

analysis. Thus, with approximately 120,000 regions of 25,000 bp each, we covered the approxi-

mate human genome length of 3 × 109.

2.2 Tensor data representation

Histone modification profiles were formatted as a tensor, xijkms 2 R
N�2�4�3�2, which corre-

sponds to the kth histone modification (k = 1: acetylation, H3K27ac; k = 2: H3K4me1; k = 3:

H3K4me3; and k = 4:Input) at the ith DNA region of the jth cell line (j = 1: RPE1 and j = 2:

USO2) at the mth phase of the cell cycle(m = 1: interphase, m = 2: prometaphase, and m = 3:

anaphase/telophase) of the sth replicate (s = 1,2). xijkms was normalized as ∑i xijkms = 0 and
P

ix
2
ijkms ¼ N (Table 1). There are two biological replicates for each of the combinations of one

of cell lines (either RPE1 or USO2), one of ChIP-seq (either acetylation or H3Kme1 or

H3Kme4 or inout), and one of three cell cycle phases.
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2.3 Tensor decomposition

Higher-order singular value decomposition (HOSVD) [15] was applied to xijkms to obtain the

decomposition

xijkms ¼
X2

‘1¼1

X4

‘2¼1

X3

‘3¼1

X2

‘4¼1

XN

‘5¼1

Gð‘1‘2‘3‘4‘5Þu‘1 ju‘2ku‘3mu‘4su‘5 i; ð1Þ

Fig 1. Flow chart of analyses performed in this study.

https://doi.org/10.1371/journal.pone.0251032.g001
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where G 2 R2�4�3�2�N
is the core tensor, and u‘1 j 2 R

2�2
; u‘2k 2 R

4�4
; u‘3m 2 R

3�3
; u‘4s 2 R

2�2
,

and u‘5 i 2 R
N�N are singular-value vector matrices, which are all orthogonal matrices. The rea-

son for using the complete representation instead of the truncated representation of TD is that

we employed HOSVD to compute TD. In HOSVD, the truncated representation is equal to

that of the complete representation; i.e., uℓ1 j, uℓ2k, uℓ3m, and uℓ4s are not altered between the

truncated and the full representation. For more details, see [15].

Here is a summary on how to compute Eq (1) using the HOSVD algorithm, although it has

been described in detail previously [15]. At first, xijkms is unfolded to a matrix, xiðjkmsÞ 2 R
N�48.

Then SVD is applied to get

xiðjkmsÞ ¼
XN

‘5¼1

u‘5 il‘5v‘5 jmks ð2Þ

Then, only uℓ5i is retained, and vℓ5
,jmks is discarded. Similar procedures are applied to xijkms

by replacing i with one of j, k,m, s in order to get uℓ1 j, uℓ2k, uℓ3m, uℓ4s. Finally, G can be computed

as

Gð‘1‘2‘3‘4‘5Þ ¼
XN

i¼1

X2

j¼1

X4

k¼1

X3

m¼1

X2

s¼1

xijmksu‘5 iu‘1 ju‘2ku‘3mu‘4s ð3Þ

2.4 TD-based unsupervised FE

Although the method was fully described in a recently published book [15], we summarize the

process of selecting genes starting from the TD.

• To identify which singular value vectors attributed to samples (e.g., cell lines, type of histone

modification, cell cycle phase, and replicates) are associated with the desired properties (e.g.,

“not dependent upon replicates or cell lines,” “represents re-activation,” and “distinct

between input and histone modifications”), the number of singular value vectors selected are

not decided in advance, since there is no way to know how singular value vectors behave in

advance, because of the unsupervised nature of TD.

• To identify which singular value vectors attributed to genomic regions are associated with

the desired properties described above, core tensor, G, is investigated. We select singular

value vectors attributed to genomic regions that share G with larger absolute values with the

singular value vectors selected in the process mentioned earlier, because these singular value

vectors attributed to genomic regions are likely associated with the desired properties.

• Using the selected singular value vectors attributed to genomic regions, those associated

with the components of singular value vectors with larger absolute values are selected,

Table 1. Combinations of experimental conditions. Individual conditions are associated with two replicates.

Phases Histone modifications

Cell lines

H3K27ac H3K4me1 H3K4me3 Input

RPE1 U2OS RPE1 U2OS RPE1 U2OS RPE1 U2OS

interphase � � � � � � � �

prometaphase � � � � � � � �

anaphase/telophase � � � � � � � �

https://doi.org/10.1371/journal.pone.0251032.t001
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because such genomic regions are likely associated with the desired properties. Usually, sin-

gular value vectors attributed to genomic regions are assumed to obey Gaussian distribution

(null hypothesis), and P-values are attributed to individual genomic regions. P-values are

corrected using multiple comparison correction, and the genomic regions associated with

adjusted P-values less than the threshold value are selected.

• There are no definite ways to select singular value vectors. The evaluation can only be done

using the selected genes. If the selected genes are not reasonable, alternative selection of sin-

gular value vectors should be attempted. When we cannot get any reasonable genes, we

abort the procedure.

To select the DNA regions of interest (i.e., those associated with transcription reactivation),

we first needed to specify the singular-value vectors that are attributed to the cell line, histone

modification, phases of the cell cycle, and replicates with respect to the biological feature of

interest, transcription reactivation. Consider selection of a specific index set ℓ1, ℓ2, ℓ3, ℓ4 as one

that is associated with biological features of interest, we then select ℓ5 that is associated with G
with larger absolute values, since singular-value vectors uℓ5i with ℓ5 represent the degree of

association between individual DNA regions and reactivation. Using ℓ5, we attribute P-values

to the ith DNA region assuming that uℓ5i obeys a Gaussian distribution (null hypothesis) using

the χ2 distribution

Pi ¼ Pw2 >
u‘5 i
s‘5

 !2" #

; ð4Þ

where Pχ2[> x] is the cumulative χ2 distribution in which the argument is larger than x, and

s‘5 is the standard deviation. P-values are then corrected by the BH criterion [15], and the ith
DNA region associated with adjusted P-values less than 0.01 were selected as those signifi-

cantly associated with transcription reactivation.

Algorithm displayed with mathematical formulas can be available in Fig 2.

2.5 Enrichment analysis

Gene symbols included in the selected DNA regions were retrieved using the biomaRt package

[16] of R [17] based on the hg19 reference genome. The selected gene symbols were then

uploaded to Enrichr [18] for functional annotation to identify their targeting TFs.

2.6 DESeq2

When DESeq2 [19] was applied to the present data set, six samples within each cell lines mea-

sured for three cell cycles and associated with two replicates were considered. Three cell cycles

were regarded to be categorical classes associated with no rank order since we would like to

detect not monotonic change between cell cycles but re-activation during them. All other

parameters are defaults. Counts less than 1.0 were truncated so as to have integer values (e.g.,

1400.53 was converted to 1400).

2.7 csaw

Since csaw [20] required bam files not available in GEO, we first mapped 60 fastq files to hg38

human genome using bowtie2 [21] where 60 fastq files in GEO ID GSE141081 were down-

loaded from SRA. Sam files generated by bowtie2 were converted and indexed by samtools

[22] and sorted bam files were generated. Generated bam files that correspond to individual
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Fig 2. Algorithm of TD based unsupervised FE. (1) Perform TD to derive G(ℓ1, ℓ2, ℓ3, ℓ4, ℓ5). (2) Select uℓ1 j that takes

constant values between two cell lines as much as possible. (3) Select uℓ2k that has distinct values for Histone

modification toward inputs. (4) Select uℓ3m that represents reactivation during three cell cycle phases as much as

possible. (5) Select uℓ1 j that takes constant values between two biological replicates as much as possible. (6) Select ℓ5

associated with G having largest absolute values given ℓ1, ℓ2, ℓ3, ℓ4 (7) Attribute P-values to is with assuming that uℓ5i
obeys Gaussian distribution (Null hypothesis). (8) Select is associated with adjusted P-values less than 0.01.

https://doi.org/10.1371/journal.pone.0251032.g002
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combinations of cell lines and ChIP-seq were loaded into csaw in order to identify differential

binding among three cell cycle phases.

2.8 Identification of overlapping regions between peak call

We retrieved 36 peak call data set (with extension peaks.txt.gz) that correspond to 48 Chip-Seq

files with excluding 12 input files. Starting from these 48 peak call files, using findOver-
lapsOfPeaks function included in ChIPpeakAnno package in R, we selected overlap

regions step by step as follows.

• Identify overlap regions between two biological replicates; this results in 9 regions for U2OS

cell lines and RPE1 cell lines, respectively, in total 18 peak calls.

• Identify overlap regions among three cell cycles; retrieve regions commonly expressed in

three cell cycle phases for H3K4me1 and H3K4me3 whereas those expressed only in inter-

phase and anaphase/telophase; this results in three regions, each of which was attributed to

H3K4me1, H3K27ac, or H3K4me3, for U2OS cell lines and RPE1 cell lines, respectively, in

total 6 peak calls.

• Identify overlap between 6 peak calls.

This process was illustrated in Fig 3.

3 Results and discussion

We first attempted to identify which singular-value vector is most strongly attributed to tran-

scription reactivation among the vectors for cell line (uℓ1 j), histone modification (uℓ2k), cell

cycle phase (uℓ3m), and replicate (uℓ4s) (Fig 4). First, we considered phase dependency. Fig 5

shows the singular-value vectors uℓ3m attributed to cell cycle phases. In the case that there are a

set of genes that share some dependence, singular value vectors reflect their mean behaviour.

Specifically, singular value vectors act as some kind of pseudo representative genes. Thus, by

investigating singular value vectors, we can find what kind of cell cycle dependence can appear

in the group of genes. Since the reactivation means that being expressive in inter and ana/telo-

phases whereas not expressive in prometapahse, singular value vectors supposed to be related

to be reactivation take opposite signs between inter/ana/telophased and prometaphase. Thus,

u3m are most likely associated with reactivation. Although u2m and u3m were associated with

reactivation, we further considered only u3m since it showed a more pronounced reactivation

profile. Next, we investigated singular-value vectors uℓ2m attributed to histone modification

(Fig 6). There was no clearly interpretable dependence on histone modification other than for

Fig 3. Flow chart on how we integrated peak call files.

https://doi.org/10.1371/journal.pone.0251032.g003
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u1k, which represents the lack of histone modification, since the values for H3K27ac,

H3K4me1, and H3K4me3 were equivalent to the Input value that corresponds to the control

condition; thus, u2k, u3k, and u4k were considered to have equal contributions for subsequent

analyses. By contrast, since u1j and u1s showed no dependence on cell line and replicates,

respectively, we selected these vectors for further downstream analyses (Fig 7).

Finally, we evaluated which vector uℓ5i had a larger
P4

‘2¼2
jGð1; ‘2; 3; 1; ‘5Þj

a
; a ¼ 1; 2; 3

(Fig 8); in this case, we calculated the squared sum for 2� ℓ2� 4 to consider them equally.

Fig 4. Schematic of the process for selecting u4i to be used for DNA region selection.

https://doi.org/10.1371/journal.pone.0251032.g004

Fig 5. Singular-value vectors associated with cell cycle phase. Left: u1m, middle: u2m, right: u3m.

https://doi.org/10.1371/journal.pone.0251032.g005
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Although we do not have any definite criterion to decide α uniquely, since ℓ5 = 4 always takes

largest values for α� 1, ℓ5 = 4 was further employed. The P-values attributed to the ith DNA

regions were calculated using Eq (4), resulting in selection of 507 DNA regions associated with

adjusted P-values less than 0.01.

We next checked whether histone modification in the selected DNA regions was associated

with the following transcription reactivation properties:

1. H3K27ac should have larger values in interphase and anaphase/telophase than in prometa-

phase, as the definition of reactivation.

Fig 6. Singular-value vectors associated with histone modification. Upper left: u1k, upper right: u2k, lower left: u3k, lower right: u4k.

https://doi.org/10.1371/journal.pone.0251032.g006
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2. H3K4me1 and H3K4me3 should have constant values during all phases of the cell cycle, as

the definition of a “bookmark” histone modification

3. H3K4me1 and H3K4me3 should have larger values than the Input; otherwise, they cannot

be regarded to act as “bookmarks” since these histones must be significantly modified

throughout these phases.

To check whether the above criteria are fulfilled, we applied six t tests to histone modifica-

tions in the 507 selected DNA regions (Table 2). The results clearly showed that histone modi-

fications in the 507 selected DNA regions satisfied the requirements for transcription

Fig 7. Dependence of vectors on cell line (j) and replicate (s). Top left: u1j, top right: u2j, bottom left: u1s, bottom right: u2s.

https://doi.org/10.1371/journal.pone.0251032.g007
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reactivation; thus, our strategy could successfully select DNA regions that demonstrate reacti-

vation/bookmark functions of histone modification.

After confirming that selected DNA regions are associated with targeted reactivation/book-

mark features, we queried all gene symbols contained within these 507 regions to the Enrichr

server to identify TFs that significantly target these genes. These TFs were considered candi-

date bookmarks that remain bound to these DNA regions throughout the cell cycle and trigger

reactivation in anaphase/telophase (i.e., after cell division is complete). Table 3 lists the TFs

Fig 8.
P4

‘2¼2
jGð1; ‘2; 3; 1; ‘5Þj

a
; ‘5 � 100. Because of HOSVD algorithm, G(ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) = 0 for ℓ5 > 2 × 4 × 3 × 2 = 48. α = 1 (Top), 2 (middle), and

3 (bottom).

https://doi.org/10.1371/journal.pone.0251032.g008
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associated with the selected regions at adjusted P-values less than 0.05 in each of the seven cate-

gories of Enrichr.

Among the many TFs that emerged to be significantly likely to target genes included in the

507 DNA regions selected by TD-based unsupervised FE, we here focus on the biological func-

tions of TFs that were also detected in the original study suggesting that TFs might function as

histone modification bookmarks for transcription reactivation [14]. RUNX was identified as

an essential TF for osteogenic cell fate, and has been associated with mitotic chromosomes in

multiple cell lines, including Saos-2 osteosarcoma cells and HeLa cells (Young et al. 2007).

Table 4 shows the detection of RUNX family TFs in seven TF-related categories of Enrichr;

three RUNX TFs were detected in at least one of the seven TF-related categories. In addition,

TEADs (Kegelman et al. 2018), JUNs [23], FOXOs [24], and FosLs citepKang01072020 were

reported to regulate osteoblast differentiation. Tables 5–8 show that two TEAD TFs, three JUN

TFs, four FOXO TFs, and two FOSL TFs were detected in at least one of the seven TF-related

categories in Enrichr, respectively.

Other than these five TF families reported in the original study [14], the TFs detected most

frequently within seven TF-related categories in Enrichr were as follows (Table 9): GATA2

Table 2. Hypotheses for t tests applied to histone modification in the selected 507 DNA regions. The null hypothesis was that the inequality relationship of the alterna-

tive hypothesis is replaced with an equality relationship. int: interphase, ana: anaphase, tel: telophase, pro: prometaphase.

Test Alternative hypothesis P-value Description of desired relationships

1 {xij1ms|m = 1, 3} > {xij12s} 3.30 × 10−3 H3K27ac reactivation (int & ana/tel > pro)

2 {xij2ms|m = 1, 3} 6¼ {xij22s} 0.60 H3K4me1 bookmark (int & ana/tel = pro)

3 {xij3ms|m = 1, 3}6¼{xij32s} 0.72 H3K4me3 bookmark (int & ana/tel = pro)

4 {xij4ms|m = 1, 3} 6¼ {xij42s} 0.86 Input as control (int & ana/tel = pro)

5 {xij2ms} > {xij4ms} 8.98 × 10−6 H3K4me1> Input

6 {xij3ms} > {xij4ms} 3.79 × 10−3 H3K4me3> Input

https://doi.org/10.1371/journal.pone.0251032.t002

Table 3. Number of transcription factors (TFs) associated with adjusted P-values less than 0.05 in various TF-

related Enrichr categories. See S2 Table for the full list.

Adjusted P-values

Terms > 0.05 < 0.05

(I) ChEA 2016 537 97

(II) ENCODE and ChEA Consensus TFs from ChIP-X 91 12

(III) ARCHS4 TFs Coexp 1533 54

(IV) TF Perturbations Followed by Expression 1577 346

(V) Enrichr Submissions TF-Gene Coocurrence 587 1135

(VI) ENCODE TF ChIP-seq 2015 788 28

(VII) TF-LOF Expression from GEO 239 11

https://doi.org/10.1371/journal.pone.0251032.t003

Table 4. Identification of RUNX transcription factor (TF) family members within seven TF-related categories in Enrichr. Roman numerals correspond to the first col-

umn in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)

1 RUNX1 � �

2 RUNX2 �

3 RUNX3 �

https://doi.org/10.1371/journal.pone.0251032.t004
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Table 5. Identification of TEAD transcription factor (TF) family members within seven TF-related categories in Enrichr. Roman numerals correspond to the first col-

umn in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)

1 TEAD4 � �

2 TEAD3 �

https://doi.org/10.1371/journal.pone.0251032.t005

Table 6. Identification of JUN transcription factor (TF) family members within seven TF-related categories in Enrichr. Roman numerals correspond to the first col-

umn in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)

1 JUN � � � �

2 JUND � � � �

3 JUNB � �

https://doi.org/10.1371/journal.pone.0251032.t006

Table 7. Identification of FOXO transcription factor (TF) family members within seven TF-related categories in Enrichr. Roman numerals correspond to the first col-

umn in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)

1 FOXO1 � �

2 FOXO3 �

3 FOXO4 �

4 FOXO6 �

https://doi.org/10.1371/journal.pone.0251032.t007

Table 8. Identification of FosL transcription factor (TF) family members within seven TF-related categories in Enrichr. Roman numerals correspond to the first col-

umn in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)

1 FOSL2 � �

2 FOSL1 � �

https://doi.org/10.1371/journal.pone.0251032.t008

Table 9. Top 10 most frequently listed transcription factor (TF) families (at least four, considered the majority) within seven TF-related categories in Enrichr.

Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)

1 GATA2 � � � � �

2 ESR1 � � � � �

3 TCF21 � � � �

4 TP53 � � � �

5 JUN � � � �

6 JUND � � � �

7 WT1 � � � �

8 NFE2L2 � � � �

9 GATA1 � � � �

10 GATA3 � � � �

https://doi.org/10.1371/journal.pone.0251032.t009
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[25], ESR1 [26], TCF21 [27], TP53 [28], WT1 [29], NFE2L2 (also known as NRF2 [30]),

GATA1 [10], and GATA3 [31]. All of these TFs have been reported to be related to mitosis

directly or indirectly, in addition to JUN and JUND, which are listed in Table 6. This further

suggests the suitability of our search strategy to identify transcription reactivation bookmarks.

One might wonder why we did not compare our methods with the other methods. As can

be seen in Table 1, there are only two samples each in as many as 24 categories. Therefore, it is

difficult to apply standard statistical tests for pairwise comparisons between two groups

including only two samples. In addition, the number of features, N, which is the number of

genomic regions in this study, is as many as 1,23,817, which drastically reduces the significance

of each test if we consider multiple comparison criteria that increase P-values that reject the

null hypothesis. Finally, only a limited number of pairwise comparisons are meaningful; for

example, we are not willing to compare the amount of H3K4me1 in the RPE1 cell line at inter-

phase with that of H3K27ac in the U2OS cell line at prometaphase. Therefore, usual proce-

dures that deal with pairwise comparisons comprehensively, such as Tukey’s test, cannot be

applied to the present data set as it is. In conclusion, we could not find any suitable method

applicable to the present data set that has a small number of samples within each of as many as

24 categories, whereas the number of features is as many as 1,23,817.

In order to demonstrate inferiority of other method compared with our method, we applied

DESeq2 [19] to the present data set, although DESeq2 was designed to not ChIP-seq but RNA-

seq. The outcome is disappointing as expected (Table 10) if it is compared with Table 2. First

of all, there are no coincidences between two cell lines. Although there are as many as 4227

regions within which H3K4me1 is distinct among three cell cycle phases when RPE1 is consid-

ered, there were no regions associated with distinct H3K4me1 when U2OS was considered. In

addition to this, although only H3K27ac among three histone modifications measured is

expected to be distinct during three cell cycle phases, other histone modifications are some-

times detected as distinct during three cell cycle phases. Finally, the number of genomic

regions considered in each comparison varies, since DESeq2 automatically discarded regions

associated with low variance among distinct classes. The reason why there are no regions asso-

ciated with distinct histone modification for Input and H3K4me1 when RPE1 was considered

is definitely because almost all genomic regions were considered for these two comparisons;

too many comparisons increase the P-values because of multiple comparison corrections. On

the other hand, our proposed TD based unsupervised FE can deal with all of the genomic

regions, which resulted in more stable outcomes. Thus, it is obvious that DESeq2 was inferior

to TD based unsupervised FE when it is applied to the present data set.

One might still wonder if it is because of usage of DESeq2 not designed specific to ChIP-seq

data. In order to confirm this point, we sought integrated approaches designed specific to

treatment of ChIP-seq data. In addition, we need some approaches that enable us not only

pairwise comparison but also comparisons among more than two categories, since we have to

compare among three cell cycle phases, i.e., terphase, prometaphase, and anaphase/telophase.

There are not so many approaches satisfying these conditions [32–34]. For example, although

Table 10. The performances achieved by DESeq2 applied to the present data set. Adjp: adjusted P-values computed by DESeq2.

RPE1 U2OS

Adjp > 0.01 Adjp < 0.01 Adjp > 0.01 Adjp < 0.01

H3K27ac 30649 1829 28849 1425

H3K4me1 113784 0 52323 4227

H3K4me3 26420 8259 24359 1559

Input 112976 0 5995 196

https://doi.org/10.1371/journal.pone.0251032.t010
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DBChIP [35] was designed to treat ChIP-seq data set, since it was designed to be specific to TF

binding, it required to input single nucleotide positions where binding proteins bind, Thus, it

is not applicable to histone modification measurements where not binding points but binding

regions are provided. On the other hand, although DiffBind [36] was designed to deal with his-

tone modification, it can accept only pairwise comparisions. SCIFER [37] can identify enrich-

ment within single measurement compared with input experiment, MACS2 which is modified

version of MACS [38], can also accept only pairwise comaprisons, ODIN [39] also can accept

only pairwise comparisons, RSEG [40] also can accept only pairwise comparisons, MAnorm

[41] also can accept only pairwise comparisons, HOMER [42] also can accept only pairwise

comparisons, QChIPat [43] also can accept only pairwise comparisons, diffReps [44] also can

accept only pairwise comparisons, MMDiff [45] also can accept only pairwise comparisons,

PePr [46] does not perform even pairwise comparison. ChIPComp [47] was tested toward

only pairwise comparisons when it was applied to real data set. Although MultiGPS [48] can

deal with multiple files, they must be composed of condition A and its corresponding input vs

condition B and its corresponding input, it cannot be applied to the present case composed of

three cell cycle phases and their corresponding inputs. Thus as far as we investigated there are

no approaches designed to be applicable to three independent conditions, each of which is

composed of a pair of treated and input experiments.

This difficulty is because of two kinds of distinct differential binding analyses required (Fig

9), one of which is the comparison between treated and input experiments and another of

which is the comparison between two experimental conditions (e.g., patients versus healthy

control, two different tissues) whereas they are easily performed in tensor representation as

shown in the above. Nevertheless, in order to emphasize the inferiority of ChIP-seq specific

pipeline aiming differential binding analysis toward TD based unsupervised FE, we considered

csaw [20] as a representative since it accepts, at least, not pairwise but comparisons among

multiple conditions as performed by DESeq2 (Table 10). Table 11 shows the results. It is very

disappointing as expected. For example, although H3K27ac is expected to support reactivation,

differential binding region among distinct cell cycle phases in U2OS cell line is almost none

(only 0.1% of whole tested regions). Although H3K4me3 should not distinctly bind to chromo-

some among thee cell cycles since it is expected to play a role of bookmark, it distinctly binds

Fig 9. Schematics that illustrates the difficulty of differential binding analysis. In contrast to differential expression analysis that requires only inter

conditions comparisons (displayed by broken bidirectional arrows), differential binding analysis requires additional intra conditions comparisons between

treated and input experiment (displayed by bidirectional solid arrows). There are no pipelines that aim to identify differential binding considering

simultaneously more than two conditions.

https://doi.org/10.1371/journal.pone.0251032.g009
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to chromosomes among three cell cycle phases for two cell lines. These behaviours are very

contrast to those in Table 2 which exhibits the expected differential/undifferential binding to

chromosome. Thus, in conclusion, even if we employ pipelines specifically designed to ChIP-

Seq data analyses, they cannot outperform the results obtained by TD based unsupervised FE.

Since one might wonder why we have specifically used region length of 25,000 nucleic acid

length, we discuss about it as follows.

• We have successfully used the region length [49, 50]. When started to employ this procedure,

we tried multiple values and identified that it is most successful.

• Optimizing region length from studies to studies is not a good way to identify something

biological. Region length should not be optimization parameters. If the optimal region

length vary from studies to studies, we need to rationalize it. Nevertheless, the fact that

employment region of 25,000 nucleic acid length was successful in three independent studies

(including the present one) definitely suggest that this choice is reasonable.

• We expected that each region is coincident with one gene in average. Since the number of

selected regions, 507, is almost equivalent to the number of gene symbols in these 507

regions, 525 (see S1 Table), employment of region of 25,000 nucleic acid length seems to be

reasonable.

• Since average gene length on human genome is * 3 × 104, the selection of region of 25,000

nucleic acid length is supposed to be association of one gene in each region. As denoted in

the above, this expectation was fulfilled.

Although the above discussion might be enough to rationalize the usage of region of 25,000

nucleic acid length, we tried an alternative strategy as described in Materials and Methods. We

downloaded peak call data set from GEO and tried to identify overlaps between peak regions.

As a result, we could find only 22 regions of mean length of 5000 nucleic acid, with which only

13 gene symbols were associated. This tells us two things. Smaller region length, 5,000, results

in regions without gene symbols. Shorter region length reduces the number of commonly

identified regions between multiple experiments. This prevents us from performing down-

stream analysis. This failure of an alternative approach definitely suggests the suitability of the

selection of region of 25,000 nucleic acid length.

One might also wonder if TFs can also work in cell line specific ways; thus there might be

no reasons to select TFs common between two cell lines. It is really true that TFs can work in

cell line specific ways; nevertheless, what we are interested in is a more robust bookmark that

can likely work in mitoic process universally. If we selected TFs that work in cell line specific

manner, it reduces the possibility that selected TFs work universally in mitoic process. The rea-

son why we validated the selected genes based upon Enrichr that might include the results for

other cell lines than U2OS and RPE1 is similar; if the selected genes are coincident with data

Table 11. The performances achieved by csaw applied to the present data set. Adjp: adjusted P-values computed by csaw.

RPE1 U2OS

Adjp > 0.01 Adjp < 0.01 Adjp > 0.01 Adjp < 0.01

H3K27ac 4127704 113803 4477318 6126

H3K4me1 5552148 0 6060553 5

H3K4me3 3054309 140962 2197717 27570

Input 3310106 0 5040796 0

https://doi.org/10.1371/journal.pone.0251032.t011
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bases retrieved from other cell lines, results are more unlikely accidental and are more likely

robust and universal.

In this study, reliability of selected genes was evaluated by enrichment analysis. Since we

have selected very small amount of genes, as small as c.a. 500, it is very unlikely for them to be

associated with numerous enrichment. In spite of that, since our selected genes are associated

with so many TF activities, we can assume that our selection of genes are reasonable. In the

case that we cannot find any enrichment, we regard that our selection of singular value vectors

is failure and we try to check if other selections can work better or not. It is worth noting that

because other methods are not designed to deal with the studied problem, applying these

methods generate inferior outcomes.

We show that selected TFs are expressive in cell lines as follows: First of all, we evaluated

TFs by not only binding to genome but also co-occurrence with selected genes (e.g. (III) and

(V) in Table 3). Thus, it is very likely that some TFs are expressive in cell lines where the

selected genes are expressive. Second, we seek GEO Profiles in order to see if these TFs are

expressive in U2OS cell lines and RPE cells. Then, we have found that almost all TFs were

expressive in both U2OS cell lines and RPE cells in GEO profiles (see S3 Table). Thus, it is not

unreasonable to expect the expression of these TFs in two cell lines used in this study.

4 Conclusions

We applied a novel TD-based unsupervised FE method to various histone modifications across

the whole human genome, and the levels of these modifications were measured during mitotic

cell division to identify genes that are significantly associated with histone modifications.

Potential bookmark TFs were identified by searching for TFs that target the selected genes.

The TFs identified were functionally related to the cell division cycle, suggesting their potential

as bookmark TFs that warrant further exploration.
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