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Abstract: The conventional function described for platelets is maintaining vascular integrity. Never-
theless, increasing evidence reveals that platelets can additionally play a crucial role in responding
against microorganisms. Activated platelets release molecules with antimicrobial activity. This ability
was first demonstrated in rabbit serum after coagulation and later in rabbit platelets stimulated with
thrombin. Currently, multiple discoveries have allowed the identification and characterization of
PMPs (platelet microbicidal proteins) and opened the way to identify kinocidins and CHDPs (cationic
host defense peptides) in human platelets. These molecules are endowed with microbicidal activity
through different mechanisms that broaden the platelet participation in normal and pathologic
conditions. Therefore, this review aims to integrate the currently described platelet molecules with
antimicrobial properties by summarizing the pathways towards their identification, characterization,
and functional evaluation that have promoted new avenues for studying platelets based on kinocidins
and CHDPs secretion.

Keywords: platelets; platelet microbicidal proteins (PMP); kinocidins; CHDPs (cationic host
defense peptides)

1. Introduction

Platelets are anucleate cells ranging from 2–5 µm in size and are the most abundant
cells in the blood circulation after erythrocytes [1]. Once released from their precursors,
the megakaryocytes present in the bone marrow, platelets enter the bloodstream and
circulate for 7 to 10 days [2]. Platelets are complex cells containing three different granules:
the α, dense or δ, and lysosomal granules [3]. The α-granules carry diverse proteins,
cytokines, chemokines, and growth factors, while the δ granules contain small molecules
such as adenosine diphosphate (ADP), serotonin, glutamate, histamine, and calcium
necessary for hemostasis [4]. Finally, lysosomal granules contain glycohydrolases and
enzymes that degrade glycoproteins, glycolipids, and glycosaminoglycans [5]. Despite
being anucleated cells, platelets contain stable messenger RNA (mRNA) transcripts and the
translation machinery for protein synthesis due to the inheritance of their megakaryocytic
precursors [6].

The principal described platelet function is their evident participation in hemostasis.
In this process, platelets detect vascular damage by recognizing subendothelial components
such as the von Willebrand factor (vWF) and collagen fibers through glycoproteins present
on their surface. This recognition results in platelet activation and a hemostatic plug
formed by platelet aggregation and fibrin deposits, avoiding blood loss [7,8]. In addition,
to preserve vascular integrity, platelets own a broad functional repertoire of molecules
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participating in the immune system [9]. Platelets act as sensors of innate immunity because
they present surface and intracellular pattern recognition receptors (PRRs) to recognize
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) [10]. Platelets also express complement receptors (CRs) [11], receptors
for the crystallizable fraction of immunoglobulins (FcRs) [12], and receptors to recognize
proinflammatory cytokines [13–16] and chemokines [17].

Additionally, activated platelets express on their surface ligands as CD62P, CD40L,
and integrins, and secrete inflammatory mediators as IL-1β or chemokines that allow them
to interact and induce certain functions in the innate immune response. Such functions
include the respiratory burst, extravasation, transcription, cytokine release, the induction
of neutrophil extracellular traps (NETs), or dendritic cell maturation [18]. In the adaptive
immune response, platelets promote B lymphocyte isotype switching [19] and possess the
molecular machinery for antigen presentation to cytotoxic T lymphocytes (CTL), including
the immunoproteasome, the β2-microglobulin, and Major Histocompatibility Complex
(MHC) class I molecules [20–22].

Outstandingly, platelets can also produce molecules with microbicidal activity. These
particles include kinocidins (antimicrobial chemokines) [23,24] and cationic host defense
peptides (CHDPs) [25]. In addition to antimicrobial properties, kinocidins and CHDPs
are endowed with multiple biological functions expanding the platelet involvement in
different physiological and disease-associated processes [26,27]. Therefore, this review
aims to provide an overview of the discovery and identification of platelet-produced
antimicrobial molecules, emphasizing recent advances and suggesting new avenues for
investigating these undervalued cells.

2. Current Classification of Antimicrobial Molecules in Platelets

The assigned terms to name antimicrobial molecules initially described in rabbit
platelets and later in human platelets arose gradually over time, and their definition was
coined depending on the species, structure, or functions performed (Figure 1). In 1981, the
first serum component of peptide nature, with antimicrobial activity produced during the
coagulation of rabbit platelets, was identified and called PC-III (third purification peak
with antimicrobial activity obtained by column chromatography) [28]. In this same species,
a group of not thrombin-induced platelet microbicidal proteins (PMP-1-5) was described
within these cells, while the thrombin-induced secreted PMPs received the names tPMP-1,
-2, demonstrating that PMPs and tPMPs are different from each other [29–31]. In humans,
the first peptide purification with microbicidal activity from thrombin-stimulated platelets
revealed chemokine CXCL7-derived fragments, called thrombocydins 1 and 2 (TC1 and
TC2) [32]. The subsequent identification of more human microbicidal molecules revealed
several CC and CXC chemokines families (CCL5, CXCL4, and CXCL7); hence, they were
called kinocidins [33,34]. Although this name was initially used for platelet microbicidal
chemokines, the term kinocidin now refers to microbicidal chemokines regardless of their
cellular origin [35]. Between species, the human kinocidin CXCL4 or Platelet Factor 4
(PF-4) was described as an ortholog protein of PMP-1 and tPMP-1 in rabbits [34]. Finally,
in the last ten years, other antimicrobial molecules termed CHDPs have been identified in
human platelets; these particles include the human neutrophil peptides (HNPs), human
β-defensins (HBD), and cathelcidin LL-37 [36]. The most recently described molecule with
microbicidal function in human platelets is an RNAse-type enzyme (RNAse 7) [37].
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Figure 1. Classification of antimicrobial molecules in platelets. In rabbit and human platelets, anti-
microbial molecules are chronologically grouped according to species, structure, or function (left to 
right). In rabbits, only a serum component (PC-III) and the platelet microbicidal proteins (PMP) not 
induced and induced by thrombin (tPMP) are found. PMP1 and tPMP-1 are orthologous with the 
human kinocidin CXCL4 or Platelet Factor 4 (PF-4). Some human kinocidins or kinocidin-derived 
fragments are primarily produced by platelets (highlighted in blue). In the group of cationic host 
defense peptides (CHDPs), both human neutrophil peptides 1 (HNP-1), human beta-defensins 
(HBD 1-3), and cathelicidin (LL-37) belong to this category. Currently, a single RNAse with antimi-
crobial activity (RNAse 7) is found in this classification. 

3. Initial Findings of Antimicrobial Molecules in Platelets 
Since the beginning of the 19th century, a thermostable substance with microbicidal 

activity against Bacillus anthracis was described in horse platelets. It was named plakin, 
whose bactericidal mechanism was described by inhibiting the cellular respiration [38]. 
D. M. Donaldson et al. [39] demonstrated that, by preventing rabbit platelet activation 
using anticoagulants in vivo or in vitro, treatment with X-irradiation, or the administra-
tion of antiplatelet antibodies, leads to a loss of the serum microbicidal capacity of these 
animals [39,40]. Interestingly, platelet-rich plasma (PRP) revealed more effectiveness than 
erythrocytes and isolated leukocytes to prevent B. subtilis growth. However, these micro-
bicidal effects using human serum were slightly extended [41]. Subsequently, different 
assays using ethanol extractions identified two components responsible for the antimicro-
bial activity of rabbit serum; the sum of the two components was necessary to present this 
activity [40,42,43]. In the early 1980s, Carroll et al. [28,44,45] published a series of articles 
showing that the main thermostable factor responsible for the antibacterial activity against 
B. subtilis, L. monocytogenes, and E. coli present in rabbit serum is PC-III [44]. This compo-
nent is a single peptide weighing 2000 daltons, composed of 17 amino acid residues, 24% 
basic and 34% nonpolar [28]. PC-III exerts a microbicidal activity against B. subtilis (the 
complete microorganism and its membrane vesicles). PC-III activity is mediated by a cal-
cium-dependent mechanism capable of abolishing bacterial respiration in a lactate- and 
glucose-dependent manner, intervening in the respiratory complex that participates in the 
passage of the electrons from NADH to oxygen, by blocking the electron transport chain 
between cytochromes b and a, acting as an inhibitor of cytochrome c oxidase and cyto-
chrome c reductase activity [45]. However, up to date, no further research has been con-
ducted on this issue.  

  

Figure 1. Classification of antimicrobial molecules in platelets. In rabbit and human platelets,
antimicrobial molecules are chronologically grouped according to species, structure, or function (left
to right). In rabbits, only a serum component (PC-III) and the platelet microbicidal proteins (PMP)
not induced and induced by thrombin (tPMP) are found. PMP1 and tPMP-1 are orthologous with the
human kinocidin CXCL4 or Platelet Factor 4 (PF-4). Some human kinocidins or kinocidin-derived
fragments are primarily produced by platelets (highlighted in blue). In the group of cationic host
defense peptides (CHDPs), both human neutrophil peptides 1 (HNP-1), human beta-defensins (HBD
1-3), and cathelicidin (LL-37) belong to this category. Currently, a single RNAse with antimicrobial
activity (RNAse 7) is found in this classification.

3. Initial Findings of Antimicrobial Molecules in Platelets

Since the beginning of the 19th century, a thermostable substance with microbicidal
activity against Bacillus anthracis was described in horse platelets. It was named plakin,
whose bactericidal mechanism was described by inhibiting the cellular respiration [38].
D. M. Donaldson et al. [39] demonstrated that, by preventing rabbit platelet activation
using anticoagulants in vivo or in vitro, treatment with X-irradiation, or the administra-
tion of antiplatelet antibodies, leads to a loss of the serum microbicidal capacity of these
animals [39,40]. Interestingly, platelet-rich plasma (PRP) revealed more effectiveness than
erythrocytes and isolated leukocytes to prevent B. subtilis growth. However, these micro-
bicidal effects using human serum were slightly extended [41]. Subsequently, different
assays using ethanol extractions identified two components responsible for the antimicro-
bial activity of rabbit serum; the sum of the two components was necessary to present
this activity [40,42,43]. In the early 1980s, Carroll et al. [28,44,45] published a series of
articles showing that the main thermostable factor responsible for the antibacterial activity
against B. subtilis, L. monocytogenes, and E. coli present in rabbit serum is PC-III [44]. This
component is a single peptide weighing 2000 daltons, composed of 17 amino acid residues,
24% basic and 34% nonpolar [28]. PC-III exerts a microbicidal activity against B. subtilis
(the complete microorganism and its membrane vesicles). PC-III activity is mediated by
a calcium-dependent mechanism capable of abolishing bacterial respiration in a lactate-
and glucose-dependent manner, intervening in the respiratory complex that participates
in the passage of the electrons from NADH to oxygen, by blocking the electron transport
chain between cytochromes b and a, acting as an inhibitor of cytochrome c oxidase and
cytochrome c reductase activity [45]. However, up to date, no further research has been
conducted on this issue.
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4. Platelet Microbicidal Proteins of Rabbit: PMPs and tPMPs

In 1971, total platelet extracts, granules, and their secretion products obtained from ac-
tivated rabbit platelets with collagen and ADP showed that they exert microbicidal activity
against B. subtilis [46]. Approximately 20 years later, the thrombin-induced secretion prod-
ucts of rabbit platelets received the name of platelet microbicidal proteins (tPMP) [29–31].
The tPMP bactericidal action mainly occurs at 37 to 42 ◦C and pH 7.2 to 8.5. The presence
of Na+, K+, Ca2+, and Mg2+ cations decreases tPMP microbicidal activity in a time- and
concentration-dependent manner. In contrast, low-molecular-weight carbohydrates (glu-
cose, sucrose, and melicytose) do not affect this function. The aforementioned indicates
that tPMP has its highest microbicidal activity under conditions close to physiological [30].
tPMP can increase the effectiveness of the antibiotics oxacycline and vancomycin in killing
S. aureus by reducing the minimum inhibitory concentration (MIC) and delaying the re-
covery time of microbial growth [31]. Similarly, tPMPs were found destroying different
C. albicans strains and, to a lesser extent, C. neoformans through a mechanism involving
cell surface structure damage [47]. In support of this idea, evaluating the response of
tPMP-resistant strains of C. albicans, it became clear that they generate endocarditis with a
higher density of fungal vegetation and dissemination to the spleen than rabbits treated
with tPMP-susceptible strains [48]. Considering that pathogenic microorganism adherence
to platelets can lead to hematogenous dissemination, the use of tPMP at sublethal doses
conveniently demonstrated a decrease in platelet-S. aureus [49] and platelet-C. albicans
interactions [50].

The characterization of rabbit platelet intracellular molecules through gel filtration
and reverse-phase high-performance liquid chromatography (RP-HPLC) demonstrated the
existence of five low-molecular-weight proteins with antimicrobial activity, which were
assigned as PMP-1-5. On the other hand, two proteins were identified in the supernatant
of thrombin-stimulated platelets using the same methodology and were called tPMP-1
and tPMP-2. PMPs and tPMPs are different from each other, and, until now, it has not
been reported that PMPs 1-5 can be secreted or that tPMPs are present inside unstimulated
rabbit platelets [51,52].

Using a protoplast model derived from tPMP-1 susceptible and resistant S. aureus
strains, the importance of the bacterial growth phase was confirmed since the protoplasts
of both resistant and susceptible bacterial strains showed the same tendency to membrane
disruption during the logarithmic phase visualized by transmission electron microscopy
(TEM) [53]. The bacteriolytic mechanism was demonstrated through artificial flat lipid
bilayer membranes, where tPMP-1 addition caused an initial conductance increase with
fluctuations from −30 mV to −90 mV and a voltage decrease to −30 mV; despite de-
creasing in voltage magnitude, the permeabilization was not abolished [53]. For tPMP-1
voltage-dependent action, the protein concentration is essential, as well as the polarity
and extent of the membrane voltage, since permeabilization is even four times higher at a
membrane voltage of −90 mV than at +90 mV, requiring a lower tPMP-1 amount to initiate
permeabilization at −90 mV [54]. Furthermore, depending on the tPMP-1 quantity, the
membrane damage pattern is different since low tPMP-1 concentrations correlate with a
more significant effect on negative voltages in contrast to membrane damage at positive
voltages related to high tPMP-1 concentrations [54]. Once the rabbit platelet proteins
mechanism was decoded, it was compared with that exerted by HNP1. When analyzing
the platelet microbicidal proteins (PMP and tPMP-1), substantial differences were found
mainly due to environmental pH and critical membrane depolarization factors. In S. aureus
strains with different membrane potentials, 6850 (∆ψ −150 mV) and JB-1 (∆ψ −100 mV),
both PMP and tPMP-1 exert a membrane-potential-dependent mechanism, being more
efficient against bacteria with a high membrane potential, 6850 (−150 mV), but at differ-
ent pH, neutral for tPMP-1 and acidic for PMP-2. This is unlike HNP1, which showed
a membrane-potential-independent mechanism eliminating both bacteria equally at a
physiological pH [55].
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On the other hand, antibiotics inhibiting cell wall synthesis (penicillin and vancomycin)
increase the tPMP-1 ability to eliminate S. aureus. In contrast, bacteria pretreatment
with drugs modifying intracellular processes by inhibiting protein synthesis (tetracy-
cline, azithromycin, quinupristin), or DNA synthesis (novobicin), decrease its bactericidal
capacity, suggesting that tPMP-1 also has intracellular targets [56].

Among the bacterial features providing specific resistance to tPMP-1-mediated elim-
ination is a gene at the qacA locus of S. aureus. qacA encodes a proton motive force-
dependent transporter, a pump exporting membrane-bound cations [57]. Another re-
sistance mechanism employed by S. aureus strains is the phospholipid composition of
the cytoplasmic membrane outer face. Phosphatidyl glycerol-lysine (LPG), a positively
charged phospholipid, prevents tPMP-1 binding [58]. The tPMPs findings have been of
great importance, the beginning of identifying human platelet microbicidal molecules.

5. Microbicidal Molecules in Human Platelets
5.1. Kinocidins

The first group demonstrating a bactericidal substance released by thrombin-stimulated
human platelets named it “thrombodefensins” in a doctoral thesis in 1988 [59]. Subse-
quently, this term was changed to “thrombocidins”. These molecules were identified as
low-molecular-weight cationic peptides capable of exerting bactericidal activity against
S. viridans [60]. The first human thrombocidins identification was made using cation ex-
change chromatography and continuous acid-urea polyacrylamide gel electrophoresis
from the α-granules of platelets. This study found two peptides: thrombocidin-1 (TC-1)
and thrombocidin-2 (TC-2). TC-1 and TC-2 characterization revealed that these peptides
are derived from platelet basic protein (PBP, CXCL7) and are truncated variants in two
amino acids (Ala-Asp) in the amino-terminal region of CXC chemokines: TC-1, from
neutrophil-activating peptide 2 (NAP-2), and TC-2, from connective tissue activating pep-
tide 3 (CTAP-3). Both components (TC-1 and TC-2) exerted potent bactericidal activity
against B. subtilis, to a lesser extent against E. coli and S. aureus, and fungicidal activity
against C. neoformans [32].

Subsequently, Tang et al. [33] purified seven platelet-derived antimicrobial peptides
from supernatant resulting from thrombin stimulation or total platelet extract. In addi-
tion, using techniques such as RP-HPLC, mass spectrometry, amino acid analysis, and
sequence determination revealed that the nature of the analyzed peptides corresponded
to chemoattractant peptides (CXC and CC chemokines), previously characterized. Some
identified chemokines were: platelet factor-4 (PF-4; CXCL4), Regulated on Activation
Normal T cell Expressed and Secreted (RANTES or CCL5), CTAP-3, PBP, thymosin beta 4
(Tβ-4), fibrinopeptide (FP)-A, and FP-B. hPF4 and CTAP-3 are the most abundant peptides
found in the secretion product of stimulated platelets. Additionally, the antimicrobial
activity exerted by these isolated components was more potent against bacteria (E. coli and
S. aureus) than against fungi (C. albicans and C. neoformans), mainly in acidic conditions
(pH 5.5) [33].

The comparative analysis between rabbit and human microbicidal peptides showed
that PMP-1 (ser-PMP-1, because of the serine presence at its N-terminal), and tPMP-1
(asp-PMP-1) present significant homology with human PF4 (hPF4) in their amino acid
sequence (76% in the mature peptide), as well as their conformation, being considered
ortholog proteins [34] (Figure 2A). Furthermore, using the hPF4 crystallographic structure
as a basis [61], the following domains were identified in hPF4 as well as in ser-PMP-1 and
Asp-PMP-1: (1) an N-terminal anionic region (from amino acid residue Ser1 or Asp1 to
Arg25/24), with a CXC motif characteristic of chemokines; (2) an intermediate domain
(from residue His25/26 to Arg 52/51), which conforms a β-sheet, antiparallel motif; (3) a C-
terminal cationic domain (from residue Lys53/52 to Glu73/72), containing an α-helix motif
consistent with peptides exhibiting direct microbicidal activity, and (4) a three-dimensional
structure stabilized by two disulfide bridges [34] (Figure 2B). From this moment on, the
term thrombocidins evolved towards another denomination that encompassed the main
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characteristics of these molecules, their chemotactic and microbicidal activity, to later be
called kinocidins (kino- chemokine; cidins- microbicide) [35].
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chemokine domain in the dotted red line box. A dotted line indicates disulfide bonds. The human hPF4 is colored in green
and PMP-1 of rabbit in pink. On the right side, a zoom of each domain. The chemokine domain was rotated to the right for
more precise visualization of this structure.

The domains that constitute the hPF4 and PMP-1 peptides have different function-
alities: half molecule (residues 1–37) corresponds to the CXC chemokine domain, with a
neutral charge and low antimicrobial activity, while the other half (residues 38-74) has a
positive charge, an α-helix structure, and inhibits the growth of S. aureus, S. typimurium,
and C. albicans [62] (Figure 2B). Despite the great hPF4 abundance in human platelets, there
are few studies related to its antimicrobial (Table 1), viral (Section 6.1), and antiparasitic
(Section 6.2) activity, and because hPF4 and PMP-1 are ortholog proteins, they might share
similar chemotactic or antimicrobial mechanisms [62]. In addition to thrombin, the direct
S. aureus/platelets interaction leads to kinocidins secretion through an ADP-dependent
mechanism, in such a way that ADP degradation, or the use of antagonists of its receptors
(P2X1 and P2Y12), prevents S. aureus clearance [63].

Finally, it is essential to mention some inconsistencies among different authors about
the microbicidal activity of platelet kinocidins, maybe attributable to the experimental
conditions or the microorganism type used in each investigation. For example, the studies
performed by Cole AM et al. did not detect the antimicrobial capability of the chemokine
RANTES against E. coli and L. monocytogenes at neutral pH [64]. The findings of Yang et al.
ruled out the antimicrobial function of RANTES against E. coli and S. aureus at pH 7.4.
Nevertheless, despite these variations, the authors detected variable antimicrobial activity
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against these pathogens using other chemokines identified in platelets: CXCL1, CXCL2,
CXCL10, CXCL12, CXCL14, CCL17, and CCL20 [65]. Because there are more kinocidins in
platelets, a complete list is included in Table 1 that summarizes their microbicidal activity
and details their presence in human platelets. In conclusion, platelets can be activated
by vascular damage signals (thrombin and ADP) or by direct microorganism recognition,
leading to kinocidin releasing, which has microbicidal and chemoattractant functions for
the immune system cells (Figure 3).
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Figure 3. The activity of platelet antimicrobial chemokines/kinocidins. Nonactivated resting platelets
store antimicrobial chemokines/kinocidins. Highlighted in blue in the box are those mainly produced
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activation by agonists (ADP and thrombin), platelets release these molecules exerting dual functions,
i.e., antimicrobial and chemoattractant for immune cells.
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Table 1. Kinocidins in human platelets.

Chemokine Platelet Findings Target Microorganism

CXCL1 Presence of mRNA [66,67] E. coli, S. aureus, S. typhimurium and C. albicans [35,65]

CXCL2 Proteomic analysis [68] and
RNA sequencing [69] E. coli and S. aureus [65]

CXCL3 Proteomic analysis [68] and
RNA sequencing [69] E. coli and S. aureus [65]

CXCL4 Isolation and characterization [70] and
release by stimulation [71] E. coli, S. aureus, S. typhimurium and C. albicans [35,62]

CXCL6 Proteomic analysis [68] N. gonorrhoeae, E. faecalis, P. aeruginosa, S. pyogenes, S.
dysgalactiae subsp, S. aureus, E. coli, and B. subtilis [72,73]

CXCL7 Purification of the secretion product
and sequence analysis [33] E. coli, S. aureus and C. neoformans [33]

CXCL7 (fragment TC-1) Purification from granule-α and
sequence analysis [32] E. coli, B. subtilis, C. neoformans and S. aureus [32,74]

CXCL7 (fragment TC-2) Purification from granule-α and
sequence analysis [32] E. coli, S. aureus and B. subtilis [32]

CXCL12 Protein expression and release
by stimulation [75,76] E. coli and S. aureus [65]

CXCL14 Surface expression and release by
stimulation [77] E. coli, S. aureus, E.coli and C. albicans [65,78]

CCL5 Expression of mRNA [66] and release
by stimulation [79] E. coli, S. aureus and S. typhimurium, [33,35]

CCL15 Release by stimulation [80] E. coli, S. aureus [33]

CCL17 Release by stimulation (in vitro) and
during coagulation [80,81] E. coli, S. aureus [33]

5.2. Cationic Host Defense Peptides (CHDPs) in Platelets

Cationic host defense peptides (CHDPs), also known as antimicrobial peptides (AMPs),
are small, amphipathic peptides with less than 50 amino acids and a net positive charge
of +2 to +9 at physiological pH [82]. Cationic CHDPs primarily target anionic bacterial
membranes rich in phosphatidylglycerols; membrane-bound peptides can have several
mechanisms, including causing lipid clustering and membrane permeabilization, or even
membrane damage from carpet/toroidal models [83]. Membrane permeabilization of
target cells is an important event necessary for translocating certain CHDPs into their
cytoplasm. Furthermore, CHDPs target essential cellular processes, including DNA/RNA
and protein synthesis, protein folding, enzymatic activity, and cell wall synthesis [84].

The two main CHDPs in vertebrates are defensins and cathelicidins, which are synthe-
sized as immature peptides and, upon enzymatic cleavage, yield active peptides. Defensins
have a common β-laminin core, stabilized with three disulfide bridges between six con-
served cysteine residues, and are categorized into α-, β- and θ -defensins, based on their
cysteine residue bonds [36]. α-defensins are found only in some mammals, primarily ro-
dents and humans (HD, human defensins), where they have high expression in neutrophils,
hence α-defensins are also known as human neutrophil peptides (HNPs), corresponding to
HNPs 1-4. Additionally, in the human small intestine, Paneth cells express the α-defensins
HD-5 and -6 [85–87]. β-defensins are ubiquitous and present in all vertebrates; humans
have more than 30 genes coding for β-defensins, mainly expressed in epithelial cells [85].
Finally, cyclic θ-defensins have been identified in non-human primates [88].

The scientific knowledge of CHDPs in human platelets has significantly increased in
the last ten years because they have become noticeable in these cells. Tohidnezhad et al.
showed that human platelets contain β-defensins (HBD)-2 [89] and HBD-3 [90] and can
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secrete them after thrombin stimulation. This supernatant is microbicidal for multiple
bacterial strains. However, only HBD-3 contribution against E. coli and P. mirabillis was
demonstrated [89]. On the other hand, HBD-1 was also found in platelets at mRNA and
peptide levels outside α-granules; stimuli promoting platelet degranulation do not favor
HBD1 release. Yet, HBD1 release can be induced by α-toxin from S. aureus, a platelet
membrane permeabilizing molecule [91]. Impressively, platelet HBD-1 suppresses S. aureus
growth and triggers neutrophil extracellular traps (NETs) generation [91]. Our research
group described for the first time that platelets and megakaryocytes express both mRNA
and HNP-1 peptide; the latter is found within platelet α-granules, and stimuli promoting
platelet degranulation such as thrombin, recognized by PAR (protease-activated receptors)-
1, -4; lipopolysaccharide (LPS), recognized by TLR4; and ADP, recognized by P2Y1 and
P2Y12 receptors induce HNP-1 secretion [92]. Likewise, an in vitro differentiation system
revealed that megakaryocytes inherit both mRNA and HNP-1 peptides to nascent platelets,
which can also absorb this peptide from plasma. Importantly, platelet HNP-1 showed a
relevant microbicidal function by inhibiting E. coli growth [92] (Figure 4).
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Figure 4. Platelet immune and hemostatic functions through cationic host defense peptides (CHDPs). (a) Platelet CHDPs
arise as part of the arsenal inherited by their precursor cells or from extracellular uptake from plasma. (b) Some CHDPs
are stored within granules and are released upon recognizing activation-inducing components exposed during vascular
damage (collagen, thrombin, and ADP) or by the presence of microbial components (lipopolysaccharide). Taken together,
platelet CHDPs are capable of eliminating a great diversity of pathogens. (c) Platelets contain HBD1 in their cytoplasm,
and the presence of permeabilizing agents on the bacterial membrane (e.g., α-toxin) induces its release. HBD1 released
by platelets kills bacteria directly or through NETs induction. (d) CHDPs of platelet originated or produced by other cells
increase platelet activation (increased CD62P, GPIIb/IIIa surface expression, or TSP-1 and CD40L secretion), particularly
for LL-37, through recognizing FPR2 receptor. Human neutrophil peptide-1 (HNP-1), human beta defensin 1-3 (HBD1-3),
adenosine diphosphate (ADP), protease-activated receptors-1, -4 (PAR-1, -4), thrombospondin (TSP-1).
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Cathelicidins are also produced as immature peptides containing an amino-terminal
signal peptide, a cathelin-like domain, and a mature peptide at the carboxyl-terminal. Once
the peptide is secreted, the cathelin-like domain is cleaved by serine proteases [93]. The
only human cathelicidin is LL-37, one of several cleavage products of human cationic
antimicrobial protein 18 Kda (hCAP18), a product of the CAMP gene [94]. LL-37 has
a broad inhibition spectrum, including bacteria, fungi, and viruses [95]. Interestingly,
Salamah MF et al. identified LL-37 inside human platelets and showed that agonists such
as collagen, selective glycoprotein VI (GPVI) agonist (CRP-XL), and thrombin receptor acti-
vating peptide 6 (TRAP6) could induce its release [96]. In addition, LL-37-treated platelets
form more platelet-neutrophil aggregates, which in turn cause neutrophil activation, char-
acterized by increased CD11b integrin expression and reactive oxygen species (ROS) [97]
(Figure 4). Nevertheless, the relevance of platelet-derived LL-37 as a direct antimicrobial
peptide needs further investigation. Given that megakaryocytes share the common myeloid
progenitor (CMP) with neutrophils and monocytes, the presence of LL37 and other CHDPS
in peripheral blood platelets might derive from megakaryopoiesis [98,99].

An aspect of great interest is that CHDPs expressed in human platelets can induce
platelet activation and aggregation. HNP-1 has different effects on these cells, including
increased binding to fibrinogen, augmented surface expression of activated glycopro-
tein GP IIb/IIIa, thrombospondin 1 (TSP-1), CD62P, CD63, secretion of soluble CD40L,
and induction of platelet aggregation by forming amyloid-like structures, which can
bind microorganisms [97]. Several HNP-1-induced effects on platelets are also triggered
by LL-37, as human platelets express the LL-37 receptor, FPR2 (N-formyl peptide recep-
tor 2)/AXL [96,100] (Figure 4). Endogenous LL-37 is of great importance for normal platelet
activation because treatment of these cells with WRW4, an FPR2/AXL antagonist, inhibits
the activation of agonist (CRP-XL or ADP)-treated platelets, and bleeding times are longer
in Fpr2/3-deficient mice (an orthologous receptor for FPR2/AXL) [96]. Concerning these
findings, LL-37 is abundant in thrombi of acute myocardial infarction patients, as well as
CRAMP (a homologous molecule to LL37 in mice) in a model of carotid artery injury [100].
In addition to endogenous platelet CHDPs significance, it is necessary to consider the
supply of neutrophil-derived CHDPs and a bidirectional platelet–neutrophil activation
axis from CHDPs. In this sense, the importance of the adoptive transfer of CRAMP-treated
platelets favoring neutrophil extravasation to sites of traumatic inflammation has been
demonstrated [100].

5.3. RNAse 7

The most recent report of platelet antimicrobial molecules revealed that these cells
express RNase 7 in basal conditions or when infected with M. tuberculosis, showing its
localization within platelets by electron microscopy. Likewise, the authors detected the
presence of hPF4 and HBD-2. Despite this discovery, the results indicate that platelets do
not show direct antimycobacterial activity but secrete higher amounts of the proinflam-
matory cytokine IL-1β [37]. RNase 7 is an RNase with a cationic domain, which endows
microbicidal activity against a wide range of pathogens. RNase 7 is primarily produced by
epithelial cells, and different stimuli such as IL-17A, IFN-γ, IL-1β, and epidermal growth
factor (EGF) increase its release [101]. In this sense, it is relevant to consider that platelets
are the primary EGF producers in blood [102,103]; hence, through releasing this factor,
increased RNase 7production might be induced in epithelial cells, being an indirect platelet
mechanism participating in the innate immune response.

6. Platelet Antibacterial Molecules Participation against Other Infectious Agents
6.1. Antiviral Activity

During viral infections, platelets are not only bystander cells in the organism because
they exhibit alterations in their number and behavior [104,105]. Research has highlighted
the platelets’ role in favoring virus and host damage [106]. However, there is also evidence
of platelet contribution to virus elimination through various mechanisms, ranging from
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virus phagocytosis, ROS production, attraction, and activation of other immune cells [106]
and even by direct antiviral processes throughout kinocidins participation [107]. hPF4,
RANTES, and SDF-1 can suppress human immunodeficiency virus (HIV) infection in T
lymphocytes by different mechanisms. hPF4 interacts with the external domain of the en-
velope glycoprotein gp120, preventing the virus entry process [108,109]. RANTES interacts
with CD4 by blocking HIV binding to this receptor [110]. Finally, SDF-1 decreases CXCR4
surface expression, a coreceptor employed by HIV [111,112]. RANTES also participates in
herpes simplex virus (HSV) elimination by interacting with its envelope glycoprotein (gB)
and producing pores in the virions [113].

In addition to kinocidins, platelet-released CHDPs might perform an antiviral role.
However, it has not been explored yet. The above due to HNP 1-3 have shown a broad
antiviral activity against various viruses such as HIV [114], hepatitis C virus (HCV) [115],
and human papillomavirus (HPV) [116]. Similarly, HBD-2 and -3 inhibit HIV [117] and
vaccinia virus (VV) infections [118].

In this same sense, LL-37 has also shown a broad antiviral activity, including effects on
several influenza virus strains [119], HCV [120], and dengue virus serotype 2 (DENV-2) [121].
In the most recent and alarming pandemic originating from SARS-CoV-2 [122,123], there is
an evident platelet activation reflected by thrombocytopenia [124], high CD62P surface
expression, reduced aggregation time after agonist treatment, and increased spreading
on fibrinogen and collagen surfaces [125,126]. In COVID-19, the high hPF4 blood levels
indicate platelet activation and degranulation [126]. However, at this time, the role of
kinocidins and platelet-released CHDPs in SARS-CoV-2 infection remains unknown.

6.2. Antiparasitic Activity

Human platelets have been described as killing the responsible parasite of malaria
(P. falciparum) without affecting the host’s erythrocytes [127]. This mechanism is mediated
by platelet-secreted hPF4 and its interaction with Duffy antigen in the infected erythrocytes
with P. falciparum. [128]. In this sense, the research of hPF4 antiparasitic effects against
other protists such as T. cruzi or Leishmania species would be relevant. On the other hand,
LL-37 has been located in biopsies of patients with leishmaniasis, and the exposure of L.
major and L. aethiopica to recombinant LL-37 induces DNA fragmentation and death in a
dose-dependent manner [129]. Similarly, LL-37 and its peptide fragments (KR-12, KR-20,
and KS-30) reduce E. histolytica trophozoites integrity [130]. Likewise, the CHDPs LL-37,
HBD1, and HBD2 reduce C. parvum sporozoites infectivity, whose effect increases when
these CHDPs are combined with a neutralizing antibody targeting the apical complex of
C. parvum, essential for its infective capability [131]. These findings suggest that platelet-
derived kinocidins and CHDPs could play crucial protective roles in the pathogenesis of
parasitic diseases.

7. New Non-Microbicidal Pathways for Platelet Antimicrobial Molecules

This last section explores some additional functions where platelet antimicrobial
molecules can contribute. Beyond the microbicidal response, platelet kinocidins and
CHDPs may also participate in other pathological processes such as cancer (explored in
this section), autoimmunity [132], wound repair [133], and fibrosis [134]. The above aims
to propose new possible platelet functions of their microbicidal molecules.

7.1. Immunoregulation

The relevance of platelet kinocidins is widely described, primarily due to their
chemoattractant activity towards different leukocyte populations (monocytes, neutrophils,
T and B lymphocytes, among others) [135]. In addition, kinocidins can regulate im-
mune function in other ways. hPF4 inhibits interferon-α production in DENV-infected
monocytes [136]. hPF4 and RANTES induce pro- and anti-inflammatory cytokines produc-
tion in CD4 + T lymphocytes and their differentiation to Th1 and Th17 effector cells [137].
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These facts highlight the relevant microbicidal role of platelet chemokines in immunoregu-
lation and the need to search for new action mechanisms on immune cells.

There is now a better understanding of CHDPs ability for direct leukocytes recruit-
ment. For example, HNP1 is a potent chemoattractant for T lymphocytes [138] and imma-
ture dendritic cells [139], whereas LL-37 is a chemoattractant for monocytes, neutrophils,
eosinophils, and T lymphocytes, since these cell lineages express formyl peptide receptor-
like 1 (FPRL1) [140,141]. Indirectly, LL-37 may favor leukocyte recruitment by increasing IL-
1β and MCP-1 cytokines expression in whole blood and human epithelial cells [142], while
HBD-2 and -3 stimulate keratinocytes to increase the expression and production of inflam-
matory cytokines IL-6, IP-10, MCP-1, MIP-3α, and RANTES [143]. Regarding the adaptive
immune response polarization, some evidence shows that LL-37 and HBD-2, -3 can in-
duce dendritic cells maturation and the subsequent Th1 lymphocytes generation [144–146];
similarly, HBD-2 and -3 favor plasmacytoid dendritic cells activation and the consequent
IFN-α production [147]. Moreover, platelets express functional Toll-like receptors (TLRs)-1
to -10 [10], such that TLR4 stimulation with LPS in platelets and megakaryoblasts leads
to HNP-1 secretion [92], whereas platelets stimulation with polyinosinic: polycytidylic
acid (poly IC), the TLR3 ligand, leads to increased hPF4 secretion [148]. Parallelly, CHDPs
can bind TLRs and modulate their activation, and LL-37 and HBD3 modulate the TLR4
signaling pathway, inhibiting inflammation in vitro and in vivo [149–153].

In sepsis patients, CHDPs levels are elevated in the bloodstream. This effect is associ-
ated with poor prognosis and, given that neutrophils are also present high numbers in this
condition, CHDPs levels are deemed mainly derived from neutrophils secretion [154–158].
On the other hand, platelet activation in sepsis patients is evident by increased CD62P,
TLR4, and protease-activated receptor 1 (PAR1) surface expression [159], as well as an
increased hPF4 amount and platelet-derived microparticles [160]. In this scenario, platelets
and megakaryocytes might contribute to these patients’ high CHDPs concentrations and
the subsequent multifunctional effects mentioned above.

7.2. Anticancer Activity

CHDPs can also employ the membrane disruption mechanism described to kill bac-
teria to destroy cancer cells [161]. The above is due to detecting intracellular targets
and altered qualities in the cancer cell membrane that distinguish them from normal
cells [162–164]. HNPs disrupt the nucleus and membrane integrity [165] and counteract the
proliferation of A549 cells (lung carcinoma) by inhibiting mitosis and angiogenesis. In addi-
tion, HNPs induce apoptosis and leucocyte infiltration to arrest tumor growth in a murine
model [166], while HBD-1 and -3 act mainly by membrane permeabilization [167], leading
to caspase-dependent apoptosis in tumor cells without damaging normal cells [168].

LL-37 exhibits antitumor activity by inducing apoptosis and mitochondria membrane
depolarization in oral squamous cell carcinoma cells (OSCC) without causing death in
the immortalized human keratinocytes HaCaT cell line [169]. In addition, LL-37 can in-
duce apoptosis of colon cancer cells as well as T lymphocyte tumor cells (Jurkat cells)
in a calpain-dependent manner and nuclear translocation of the pro-apoptotic factors
AIF (apoptosis-inducing factor) and EndoG (endonuclease G) through overexpression of
p53-dependent members of the Bcl-2 family (Bax and Bak), triggering DNA fragmentation,
chromatin condensation, loss of mitochondrial membrane potential and phosphatidylserine
externalization (apoptosis signals) [170,171]. Finally, Figure 5 outlines the described func-
tions of human platelet antimicrobial molecules and the new functions yet to be explored.
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