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Abstract

The widely used pathway-based approach for interpreting Genome Wide Association Studies (GWAS), assumes that since
function is executed through the interactions of multiple genes, different perturbations of the same pathway would result
in a similar phenotype. This assumption, however, was not systemically assessed on a large scale. To determine whether
SNPs associated with a given complex phenotype affect the same pathways more than expected by chance, we analyzed
368 phenotypes that were studied in .5000 GWAS. We found 216 significant phenotype-pathway associations between 70
of the phenotypes we analyzed and known pathways. We also report 391 strong phenotype-phenotype associations
between phenotypes that are affected by the same pathways. While some of these associations confirm previously reported
connections, others are new and could shed light on the molecular basis of these diseases. Our findings confirm that
phenotype-associated SNPs cluster into pathways much more than expected by chance. However, this is true for ,20% (70/
368) of the phenotypes. Different types of phenotypes show markedly different tendencies: Virtually all autoimmune
phenotypes show strong clustering of SNPs into pathways, while most cancers and metabolic conditions, and all
electrophysiological phenotypes, could not be significantly associated with any pathway despite being significantly
associated with a large number of SNPs. While this may be due to missing data, it may also suggest that these phenotypes
could result only from perturbations of specific genes and not from other perturbations of the same pathway. Further
analysis of pathway-associated versus gene-associated phenotypes is, therefore, needed in order to understand disease
etiology and in order to promote better drug target selection.
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Introduction

Molecular pathways can assist in revealing disease
underpinnings

Genome-wide association studies (GWAS) are a major tool in

unraveling genome-phenome relationships. They typically associ-

ate a single-nucleotide polymorphism (SNP) with a phenotype with

a certain probability, but the molecular relationship between that

genomic variation and the phenotype is not apparent in most

cases. Attempting to better understand the molecular basis of a

phenotype, studies often identify the pathways to which the genes

that may be linked to the SNPs belong. However, to establish the

association of the phenotype with a pathway, one needs to show

that phenotype associated SNPs tend to fall within that pathway

more than expected by chance [1]. Analysis of gene sets - defined

based on known pathways, GO ID numbers, or other criteria - has

been used to bolster results of expression microarrays [2–5].

Recently it has also been applied to analyzing GWAS with specific

focus on pathways [6,7]. Results of GWAS have been increasingly

used in an attempt to determine which pathways are associated

with a certain disease or phenotype [8]. For example, attempts to

use GWAS to unravel the molecular basis of major depressive

disorder (MDD) have identified only a relatively small number of

associated SNPs. Pathway analysis, however, has shown that these

SNPs could be used to statistically establish a connection between

MDD and inflammatory and immune response [9].

Are there phenotypes that could not be associated with
pathways based on GWAS?

This approach has been applied to GWAS results to identify

phenotype-related pathways in various diseases including glioblas-

toma [10], breast cancer [11], multiple sclerosis [12], Parkinson’s

disease [13], autoimmune diseases [14], and other phenotypes [8].

The underlying assumption in such studies is that a given

phenotype may be the result of different perturbations of the

same pathway. Thus, SNPs that are associated with that

phenotype may affect different genes in the same pathway.

However, it is conceivable that some phenotypes could be the

result of very specific sets of variations that affect some genes but

not others, in which case the phenotype-associated SNPs will not

cluster into pathways. To our knowledge, the clustering of

phenotype-associated SNPs into known pathways has not been

assessed systematically on a large scale to determine whether, and

to what extent, such clustering occurs in different complex

phenotypes. To assess this question, one needs to establish a

framework to explore the relationship between phenotypes, SNPs,
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genes and pathways. Such a framework will also help map

pathways to phenotypes systematically in an unsupervised manner,

based solely on GWAS results.

Disease-disease associations based on common
molecular basis

Diseases are commonly classified (e.g. in the International

Classification of Diseases (ICD)) according to clinical, pathological

or epidemiological criteria. However, several studies suggested that

classifying diseases according to their common molecular basis

could reveal new disease-disease associations and may lead to

novel diagnostics and therapies [15,16]. Large-scale analysis of

phenotype-SNP-gene-pathway relationships may help reveal novel

disease-disease connections based on pathways that are associated

with several diseases.

Analysis of Phenotype-SNP-Gene-pathway associations
To explore the relationships between phenotype associated

SNPs and known pathways, we analyzed all available GWAS data

in the NHGRI GWAS catalog [4]. For each phenotype that was

associated by SNPs with multiple genes, we assessed whether these

genes tend to fall within the same pathway. We found that, indeed,

SNPs that are related to the same phenotype tend to affect the

same pathway significantly more than expected by chance.

However, we identified diseases, conditions, and phenotypes, in

which such clustering is not observed despite being significantly

associated with a large number of SNPs. In the cases where we

found that SNPs significantly fall within specific pathways, we

revealed hundreds of phenotype-pathway associations, many of

them novel. Based on these associations we could identify

molecular connections between phenotypes that are linked to the

same pathways. The strongest associations we identified showed a

robust link between several autoimmune diseases, which connect-

ed not only to each other and to diseases that are suspected as

autoimmune, but also to nasopharyngeal carcinoma (NPC). On

the other hand, we found that while several types of cancers

showed significant associations to pathways, rarely did two types of

cancer associate with the same pathway.

Results

Clustering of phenotype associated SNPs into pathways
is extremely significant

We extracted 368 diseases, conditions, and phenotypes for

which there are GWAS with significant SNPs. Of those, however,

only 213 had $2 SNPs that could be associated with a gene (the

rest had either none or only one SNP in, or in the vicinity of, a

coding region). Thus, only for these 213 phenotypes we were able

to assess the clustering of SNPs into pathways. The average

number of SNPs per phenotype for these 213 phenotypes was 9.6

(SD = 12.6). For 70 of these testable 213 phenotypes we found 216

significant phenotype-pathway associations. This is extremely

significant with respect to what we expect by chance (p-value ,

1025, resampling test, see Figure 1).

More SNPs typically mean more significant associations,
but there are exceptions

Figure 2 shows how different parameters affect the clustering of

SNPs into pathways. In particular, phenotypes for which GWAS

found more significant SNPs were more likely to be significantly

associated with a pathway (Figure 2A). There are, however,

phenotypes with many SNPs that could not be significantly

associated with any pathway. For example, cognitive performance

or LDL level, each with .30 SNPs identified by GWAS, were not

associated with any pathway. On the other hand, esophageal

cancer that was found, based on GWAS results, to be associated

with only two genes, was significantly associated with 2 different

pathways: Fatty acid metabolism and Glycolysis/Gluconeogenesis,

as both pathways include the two genes. Thus, significant

clustering of phenotype SNPs into pathways can also occur with

very few genes.

Autoimmune diseases tend to cluster much more than
cancer and other phenotypes

As shown in Figure 2B, certain types of phenotypes tended more

strongly than others to be associated with pathways. Most

autoimmune diseases (15 of 20) show significant clustering into

pathways. Even when GWAS found only a few disease genes for

an autoimmune condition they usually affected the same

Figure 1. Number of significant phenotype-pathway associations. Curve depicts the distribution of significant phenotype-pathway
associations through 1,000 instances of multiple testing runs. X-axis represents the number of phenotype-pathway associations, while the Y-axis
represents the frequency. The solid line depicts the real number of phenotype-pathway associations (216), while the dashed line depicts the median
of all multiple testing runs (74 phenotype-pathway associations). Any value above the dotted line is significant (0.05). The observed number of
phenotype-pathway associations is 12.7 standard deviations above the mean.
doi:10.1371/journal.pone.0100887.g001
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pathways. The exceptions were comorbidities of two autoimmune

diseases (e.g. celiac disease and rheumatoid arthritis), for which no

significant associations were found. On the other hand, none of

the 8 cardiac-electrophysiological phenotypes showed significant

clustering of disease genes into pathways despite the fact that

several of them had many associated SNPs (e.g. QT interval

duration studies had 13 associated genes). As for cancer, 7 of the

25 cancer-related phenotypes show significant clustering into

pathways. This number is similar to that of the general category

‘‘other’’, which lumps together numerous phenotypes that could

not be classified into any of the categories we defined. In both

categories, some phenotypes with many SNPs showed no

clustering while some phenotypes with a few SNPs showed

clustering into pathways. For example, upper aerodigestive tract

cancers was associated with only three genes based on its SNPs,

but these genes significantly clustered into 6 different pathways

(note, many genes appear in several pathways. Thus, 3 genes can

fall together into 6 different pathways, which strengthen the

hypothesis that they are functionally related). Breast cancer, on the

other hand, had 10 associated genes that did not significantly

cluster into any pathway (some of these 10 genes did fall together

into some pathways, but the resampling procedure showed that

this may happen often with 10 random genes as well). Metabolic

phenotypes were found to associate with pathways more rarely.

GWAS typically found less disease genes for metabolic conditions

than they did for autoimmune diseases. However, even if we

consider only metabolic conditions with $10 disease genes, a mere

54% of them could be associated with pathways (compared to

100% for autoimmune and suspected autoimmune phenotypes

with $10 genes). Neurological and blood-traits related phenotypes

show high clustering into pathways, and cardiovascular, psychi-

atric and developmental conditions show lower levels of clustering

than cancers and ‘‘others’’. The full list of phenotypes and their

results is in Table S1.

Figure 2. Tendency of different classes of phenotypes to have their SNPs cluster into pathway. X-axis presents phenotypes grouped by
categories, while Y-axis represents what fraction of the conditions in this category had at least one significant association with pathways. A.
Conditions are grouped according to the number of disease SNPs they have (that is SNPs that are significantly associated with the phenotype).
Phenotypes for which GWAS found more phenotype SNPs are more likely to be significantly associated with pathways. B. Phenotypes are grouped
according to types. Autoimmune diseases have a high tendency to cluster to pathways, while other categories, such as psychiatry and metabolic
related phenotypes, much less so.
doi:10.1371/journal.pone.0100887.g002
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Larger cohorts find more associated SNPs, but not always
more pathways

Figure 2A shows that phenotypes for which GWAS found more

significant SNPs were more likely to be significantly associated

with a pathway. One may expect, therefore, that for complex

phenotypes, GWAS in which more subjects were tested may

identify more associated SNPs, which will reveal more relevant

genes, which will then lead to more significant associations of the

phenotype to pathways. This expectation is explored in Figure 3.

Figure 3A plots the number of patients+controls in all the GWAS

of a given phenotype versus the number of pathways with which

the phenotype is associated. The correlation is significant but fairly

weak (Pearson = 0.28, p-value,0.0001). Notwithstanding, as

shown in Figure 3B, the number of subjects is more strongly

correlated with the number of associated SNPs (Pearson = 0.59, p-

value,0.0001). The number of SNPs is correlated to a similar

extent with the number of significant pathways (Figure 3C,

Pearson = 0.58, p-value,0.0001). However, since correlation is

not transitive, the facts that more patients mean more SNPs, and

more SNPs mean more pathways, does not entail that more

patients mean more pathways.

Autoimmune, but not other phenotypes, are associated
with the same pathways

Figure 4 compares the number of phenotype-pathway associ-

ations for each group of phenotypes to the number of unique

pathways with which they are associated. For most classes of

phenotypes, each pathway is associated with only one phenotype

from that class. However, for autoimmune diseases, there are 90

different phenotype-pathway associations for only 22 pathways.

That is, each pathway is associated, on average, with more than

four different autoimmune diseases. This can also be seen in

Figure 5A, which shows in a bipartite graph the links between

phenotypes and pathways. The autoimmune conditions are linked

repeatedly to the same pathways while the other categories of

conditions link to different pathways.

Phenotype-pathway associations highlight molecular
connections between phenotypes

Based on the significant phenotype-pathway associations, we

were able to link phenotypes that are associated with the same

pathways to each other. This link indicates that the two

phenotypes may be affected by similar molecular mechanisms.

The 216 significant phenotype-pathway associations we identified

created 391 phenotype-phenotype links between 63 phenotypes.

Each of these 391 links (which are, of course, only a small fraction

of all possible links) is based on at least two significant phenotype-

pathway associations (at least one for each phenotype). The full list

of phenotype-phenotype links and their scores is in Table S2.

Based on these links it is possible to draw a network of phenotypes

where each node is a phenotype and each edge represents a shared

molecular basis, manifested in at least one significant disease-

phenotype association for each phenotype. Figure 5 presents such

a network. In Figure 5B we present a network that is based only on

pairs of phenotypes that are associated by at least 3 pathways (that

is, by at least 6 significant phenotype-pathway associations, 3 for

each phenotype). This network has one large connected compo-

nent of mainly autoimmune diseases. Interestingly, three pheno-

types that are not clearly autoimmune are connected with multiple

edges to the rest of the, mostly autoimmune, connected

component. They are HIV control and replication, nephropathy

and NPC. Importantly, the network is generated automatically in

an unsupervised manner without manual interferences or labeling

Figure 3. Correlations between number of patients, number of
genes and number of pathways. The correlations between the
number of individuals in GWAS studies, the number of genes that were
found to be significantly associated with the phenotype and the
number of pathways significantly associated with the phenotype. A.
Weak correlation between size of case-control studies and number of
pathways significantly associated with phenotypes (Pearson correla-
tion = 0.28). B. Correlation between number of phenotype-gene
associations and size of case-control studies (Pearson correlation = 0.59).
C. Correlation between number of phenotype-gene associations and
number of significant phenotype-pathway associations (Pearson
correlation = 0.58).
doi:10.1371/journal.pone.0100887.g003
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of phenotypes by type. Thus it simply reveals groups of phenotypes

that affect individuals with genomic variations in the same

pathways. Table 1 presents the KEGG pathways that associate

HIV control and replication, nephropathy and NPC to the rest of

the network. The connected component is not a clique, that is, not

all autoimmune conditions in it share pathways with all other

autoimmune diseases, indicating that not all autoimmune diseases

could be associated with the same pathways. Moreover, not all

autoimmune conditions in the data are included in this connected

component. A full network based on all 391 links is presented in

Figure 6. It is possible to see that most autoimmune diseases are

connected to each other while different types of cancer are very

sparsely connected to each other. Out of 7 types of cancers that

have significant associations with pathways, only 6 are in this

Figure 4. Number of associations and number of unique pathways for different classes of phenotypes. On the Y-axis is the number of
pathways and on the X-axis are the classes of phenotypes. In most classes of phenotypes the number of associations found between the phenotypes
and pathways is virtually identical to the number of unique pathways associated with the phenotypes in that class. Autoimmune diseases, however,
have 90 associations with only 22 pathways.
doi:10.1371/journal.pone.0100887.g004

Figure 5. Network representations of phenotype-pathway and phenotype-phenotype associations. A. Each node on the top row of this
bipartite graph represents a phenotype. Each square on the bottom row represents a pathway. Autoimmune diseases tend to associate with the
same pathways while other classes of phenotypes associate with different pathways B. Nodes represent phenotypes. An edge indicates that both
phenotypes are significantly associated with at least 3 common pathways. Blue nodes are autoimmune phenotypes while red nodes are non-
autoimmune. Solid lined links are between two autoimmune phenotypes while dotted lines show links to other phenotypes.
doi:10.1371/journal.pone.0100887.g005
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network, indicating that 1 of the cancers was associated with

pathways that are not associated with any other phenotype.

Discussion

Genes affecting a phenotype tend to come from the
same molecular pathways

Our results provide statistical evaluation of the general

assumption that disease-associated genes cluster into pathways

significantly more than randomly selected gene sets of the same

size. Figure 1 shows the extent of clustering we see in real GWAS

data compared to the clustering we should expect from

comparable random sets of genes. Compared to the clustering of

random sets of genes into KEGG pathways, the number of

significant phenotype-pathway associations we found is 12

standard deviations greater than the mean of 1000 random

reshuffles. It is important to note that these assessments are

conservative as we ignore the fact that the number of genes that

fall into a pathway is typically larger for the real GWAS data than

it is for the background random model (see for example the

analysis of the association of NPC to KEGG pathway hsa04514 in

Figure S1).

These results suggest that for many of the phenotypes, different

perturbations of different genes in the same pathway lead to the

same phenotype. However, we also find that for most phenotypes,

the genes identified by GWAS could not be associated significantly

with any pathway. Is this due to a failure in identifying existing

phenotype-pathway associations, or is it because these phenotypes

are a result of specific genomic variations and could not be caused

by alternative perturbations to the same pathway? It is hard to

answer this question conclusively. First, a pathway is not a well-

defined entity. Second, our knowledge of pathways is partial at

best. Many pathways are not yet known and many of the pathways

that we used for our analysis may include in reality components of

which KEGG curators are not yet aware. Moreover, it is possible

that biases in the definitions of pathways in KEGG, to which we

are not aware, affected our results (for a discussion on the coverage

and accuracy of KEGG see [17]). As knowledge of biological

networks grows, it will probably be possible to discover additional

phenotype-pathway associations using the same SNP data.

Similarly, as more disease SNPs are identified by new GWAS, it

will be possible to find more phenotype-associated genes and

hence more phenotype-pathway associations even with the

currently known pathways. Notwithstanding, in some cases,

Table 1. Pathways significantly associated with autoimmune diseases and also with HIV, nephropathy or NPC.

Phenotype Pathway ID
Number of Phenotype-
genes in Pathway P-value Pathway name

HIV-1 control and replication hsa04010 3 0.03195861 MAPK signaling pathway

HIV-1 control and replication hsa04144 4 0.005693633 Endocytosis

HIV-1 control and replication hsa04514 3 0.03195861 Cell adhesion molecules (CAMs)

HIV-1 control and replication hsa04612 4 0.005693633 Antigen processing and presentation

HIV-1 control and replication hsa04650 5 0.000965442 Natural killer cell mediated cytotoxicity

HIV-1 control and replication hsa04940 3 0.03195861 Type I diabetes mellitus

HIV-1 control and replication hsa05320 3 0.03195861 Autoimmune thyroid disease

HIV-1 control and replication hsa05330 3 0.03195861 Allograft rejection

HIV-1 control and replication hsa05332 3 0.03195861 Graft-versus-host disease

HIV-1 control and replication hsa05416 3 0.03195861 Viral myocarditis

Nasopharyngeal carcinoma hsa04144 3 0.005692787 Endocytosis

Nasopharyngeal carcinoma hsa04514 5 4.95E-05 Cell adhesion molecules (CAMs)

Nasopharyngeal carcinoma hsa04612 4 0.00039602 Antigen processing and presentation

Nasopharyngeal carcinoma hsa04940 4 0.00039602 Type I diabetes mellitus

Nasopharyngeal carcinoma hsa05320 4 0.00039602 Autoimmune thyroid disease

Nasopharyngeal carcinoma hsa05330 4 0.00039602 Allograft rejection

Nasopharyngeal carcinoma hsa05332 4 0.00039602 Graft-versus-host disease

Nasopharyngeal carcinoma hsa05416 4 0.00039602 Viral myocarditis

Nephropathy hsa04514 2 0.046744722 Cell adhesion molecules (CAMs)

Nephropathy hsa04612 2 0.046744722 Antigen processing and presentation

Nephropathy hsa04672 2 0.046744722 Intestinal immune network for IgA production

Nephropathy hsa04940 2 0.046744722 Type I diabetes mellitus

Nephropathy hsa05310 2 0.046744722 Asthma

Nephropathy hsa05320 2 0.046744722 Autoimmune thyroid disease

Nephropathy hsa05322 2 0.046744722 Systemic lupus erythematosus

Nephropathy hsa05330 2 0.046744722 Allograft rejection

Nephropathy hsa05332 2 0.046744722 Graft-versus-host disease

Nephropathy hsa05416 2 0.046744722 Viral myocarditis

doi:10.1371/journal.pone.0100887.t001
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clustering of the phenotype-associated genes into pathways should

not be expected. For example, Mendelian phenotypes may be

caused by different variations in one protein, while other

perturbations of the same pathway that do not affect that protein

will typically not lead to a similar phenotype (note, we considered

SNPs to be clustered into one pathway only if they are associated

Figure 6. Large scale network representation of phenotype-phenotype associations. This network was created by all 391 phenotype-
phenotype associations based on significantly associated phenotype-pathway associations of the entire GWAS dataset.
doi:10.1371/journal.pone.0100887.g006

Figure 7. The procedure for assessing significance of phenotype-pathway associations. For phenotype i and we counted how many of
the genes associated with it fall within each of 198 KEGG pathways. A pathway was said to be significantly associated with a phenotype if this
number was significantly higher than expected by chance. To determine what is expected by chance, we randomly sampled the same number of
genes 1,000 times.
doi:10.1371/journal.pone.0100887.g007
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with different genes. Thus, cases in which different perturbations

of a single protein lead to the same phenotype were not

considered). While our results also show, not surprisingly, that it

is more likely to find an underlying pathway for a phenotype if

GWAS found more disease genes, we also show that some types of

phenotypes cluster into pathways more than others, regardless of

the number of disease genes.

Large-scale analysis of the entire Catalog of Published Genome-

Wide Association Studies allowed us to explore how different

parameters affect disease-gene or disease-pathway associations.

We see a moderate positive correlation between the number of

patients in a study and the number of genes detected (Fig. 3B). We

further show a moderate positive correlation between the number

of associated genes and the number of phenotype-pathway

associations (Fig. 3C). However, this is not transitive: we found a

significant but weak correlation between patient group size and

disease-pathways (Fig. 3A), suggesting that a larger patient group

only marginally increases the likelihood of finding more associa-

tions with pathways. Incidentally, if one focuses on the phenotypes

with the largest number of patients (.100.000), none of them

could be associated with more than 2 pathways, and most of them

could be associated with none. On the other hand, some of the

phenotypes that were associated with the highest number of

pathways (e.g. 14) were studied on relatively small groups (e.g. ,

1000).

Various studies have used GWAS to identify phenotype-

pathway associations but they have done so only for a small set

of diseases or phenotypes [8,14,18–20]. Many of these studies rely

on data from large case-specific studies such as the WTCCC [21],

Farmingham Heart Study [22], or the International Cancer

Genome Consortium (ICGC) [23]. Our study uses integrated data

from all GWAS curated into the NIH GWAS Catalog. This

allowed us to explore phenotype etiology on a larger scale, and

provide a significantly broader view of phenotype pathway and

phenotype-phenotype relationships.

Many autoimmune diseases are associated with the same
set of pathways

The large connected component of mostly autoimmune diseases

presented in Figure 5B indicates that these diseases are affected by

similar molecular mechanisms. Several autoimmune diseases, such

as primary biliary cirrhosis, multiple sclerosis, rheumatoid

arthritis, and celiac, associated with pathways which are marked

in KEGG as related to immunity, like the pathways ‘‘Type 1

Diabetes’’, ‘‘viral myocarditis’’, ‘‘graft vs. host disease’’, ‘‘autoim-

mune thyroid disease’’, ‘‘systemic lupus erythematosus’’, and

‘‘asthma’’. Other pathways associated with autoimmune diseases

include pathways related to cell adhesion molecules, allograft

rejection, antigen processing, cytokine-cytokine receptor interac-

tions, and intestinal immune network, known to be associated with

immunological processes. It has been shown that autoimmune

responses are involved in transplant rejections [24]. Inflammation,

a major factor in many autoimmune disorders, involves cell

adhesion molecules that are critical for leukocyte activation,

circulation, and localization [25]. The association of autoimmune

diseases to viral myocarditis that came up in our analysis is

consistent with a previous report [26]. The autoimmune

relationships seen here are consistent with the tendency of

autoimmune diseases to appear together in patients or in families.

This is manifested, for example, in Polyglandular Autoimmune

Syndromes, which classify autoimmune disease co-morbidities

[27]. Our results demonstrate the genomic basis for these co-

morbidities.

Molecular connection between NPC and autoimmunity
NPC is more common in Southeast Asian regions and to

individuals of southern Chinese origin [28–30]. It has higher

incidence in areas where Chinese-style salted fish is common

[31]. This suggests that genetic factors play a major role in NPC,

but there are possibly environmental factors that affect its

incidence as well [30]. NPC has also been shown to be closely

related to EBV infection [32], which may suggest involvement of

an abnormal immunological response to this common virus. We

found NPC to be significantly associated with 10 immune and

autoimmune related pathways, while other cancers in the dataset

did not show such strong associations (NPC is also associated

with 8 other pathways that are not related to autoimmunity). In

particular, NPC is significantly associated with pathways related

to cell adhesion molecules, allograft rejection, antigen processing

and presentation, autoimmune thyroid disease, graft-versus-host

disease, Type I Diabetes, and viral myocarditis. The role of cell

adhesion molecules in cancer has been discussed before [33–36].

Cell adhesion molecules can influence metastatic potential of

tumors by both encouraging and suppressing adhesion. Adhe-

sion is enhanced near primary tumor sites, and is also a key

factor in cell migration, e.g. adhesion to venular endothelial cells

when migrating across vessel walls. Adhesion is suppressed when

cells travel through vessels as well as when they pass through

vessel walls into surrounding tissues [37]. This has also been

studied specifically in NPC [38,39]. NPC’s association with

antigen presentation and processing (particularly with HLA-

related pathways) has been previously discussed [40]. It has been

suggested that MHC antigens play a crucial role in tumor

development in general [41], but not specifically in NPC. We

did not find a link in the literature between NPC and graft-

versus-host disease, Type I Diabetes, or viral myocarditis.

Possible connections between autoimmune diseases and cancer

have been discussed, particularly the association between

autoimmunity, inflammation, and cancer development [42].

There is also a known link between cancer immunosuppression

and autoimmune diseases [43]. While previous studies suggested

that some autoimmune diseases increase the risk for some types

of cancer (including e.g. Type 1 Diabetes patients [44]), to our

knowledge, NPC was not specifically pointed out to be

associated with autoimmune diseases. Our findings are partic-

ularly interesting in this context as this association is data-driven,

and not hypothesis-driven. It emerges from the GWAS results

connecting NPC to autoimmune diseases in multiple highly

significant connections. Thus, further investigation of this

association is warranted.

NPC linked to HIV
A link was found between NPC and HIV. It has been shown

that incidence of cancer is higher for HIV-infected persons than

the general population [45], mainly regarding Kaposi sarcoma

and non-Hodgkin lymphoma [46]. However, risk elevation has

been shown in various other cancer types, such as leukemia,

melanoma, lung and liver [47]. While an increased risk for head

and neck cancers (HNC) is mentioned [48], we did not find NPC

discussed specifically. Our results indicate a link between

autoimmunity, HIV, and NPC. EBV is known to be strongly

associated with NPC [49–52], as well as HIV [53,54] and

autoimmune diseases [55]. This may suggest a direction for future

investigation of these suggested links.
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HIV replication associated with immune and
autoimmune pathways

HIV-related SNPs in our dataset are common variants that

were found to be phenotypically associated with viral load. The

impact of genetic variation on viral replication/viral load has been

demonstrated in the past [56–58]. We found that viral load is

significantly associated with pathways related to antigen processing

and presentation, Type 1 Diabetes, and natural killer cell mediated

cytotoxicity. Variations related to antigen processing have been

shown to affect the course of HIV infection in numerous ways,

such as epitope abundance, and cleavage patterns [59–61].

Natural killer cells have an important role in HIV control [62–

64], and HIV’s evasion of these cells has been discussed as well

[65]. The cytotoxic effects they have on virus infected cells may be

inhibited by overruling the actions of the activating receptors, such

as tampering with MHC expression [66]. Although the majority of

HIV patients that developed diabetes, developed Type 2 Diabetes

[67], it has been reported that autoimmune diabetes (Type 1)

develops in some HIV-infected patients after immune restoration

during highly active antiretroviral therapy (HAART) [68]. Genetic

variations in the associated pathway may be related to this co-

morbidity. Immune dysregulation and factors associated with the

immunopathology of HIV infection fit the current understanding

of autoimmunity [69,70]. The relationship between HIV and

autoimmunity we report may assist in further studying this

relationship.

Different choices may affect some of the results, but the
overall trends will remain

Our attempt to assess the clustering of SNPs into known

pathways in an unbiased manner forced us to make many

choices. For example, KEGG is one of several pathway

repositories. It is possible that choosing another repository or

combining several such sources would have allowed for the

identification of other associations. Our decision to manually

group phenotypes by a physician, which went over the published

GWAS publications and grouped phenotypes based on patho-

logical and etiological similarities, could have been done in other

ways (e.g. using ontological definitions of diseases such as Disease

Ontology [71] or Human Phenotype Ontology [72]). This could

have led to somewhat different associations. Clearly, each

grouping that one may use, disregards some similarities. For

example, asthma is categorized as a respiratory system disease in

Disease Ontology. We categorized it as a suspected autoimmune

disease due to studies suggesting a relationship between asthma

and autoimmunity [73,74] based, in part, on the role of mast cells

in the disease [75–77]. We put autism under psychiatry, while

others may classify it as developmental. Different choices may

result in slightly different categories. However, the overall trend

will remain. Our results show that grouping phenotypes that have

real common denominators reveals which phenotypes have

similar behaviour (e.g. autoimmune diseases as compared to the

category ‘‘other’’).

In conclusion, we present a framework for the study of the

relationships between phenotypes, SNPs, genes and pathways, and

show that phenotype-associated SNPs can reveal novel and

unexpected connections between phenotypes and pathways.

Applying this framework to additional SNP data using larger sets

of pathways may allow for more insights into the molecular basis

of diseases and reveal more connections between diseases.

Methods

Data
Phenotype-SNP associations were extracted from GWAS data

in the NHGRI GWAS catalog (June 2011) [4]. This database

contains manually curated entries of published GWAS, in which

SNPs were associated with diseases, phenotypes, and traits. We

merged different GWAS entries of the same phenotype, which

resulted in 368 phenotypes. Gene symbols were taken from Gene

names [78], while the genomic locations of SNPs and genes were

taken from the UCSC genome browser [79]. Biological pathways

and their associated genes were taken from the KEGG pathway

database (release 53) [80].

Grouping phenotypes into categories
Entries in the NHGRI GWAS catalog encompassed 368

phenotypes. Phenotypes were manually grouped into categories

by a physician based on pathogenesis. Phenotypes were grouped

into 13 categories such as ‘‘cancer’’ and ‘‘chronic kidney disease’’.

Phenotypes not fitting into any group were placed in ‘‘others’’.

The phenotypes and categories can be seen in Table S3. For

example, the etiology of cardiovascular diseases is different from

cardio/electrophysiology related diseases. Atherosclerotic process-

es are the basis for cardiovascular diseases, whereas cardio/

electrophysiology diseases are mainly based on genetic factors.

The difference between neurology and psychiatry is based on the

classification of the ICD-10 classification of mental and behav-

ioural disorders [81]. Diseases present in ICD-10 were classified as

psychiatric in our research.

Association of phenotypes to pathways
We defined a SNP as a phenotype SNP if it is associated with

the phenotype in the NHGRI GWAS catalog (see Hindorff et al.

[4]). Entries are listed in the catalog if they associate with the

phenotype with p-values ,1e25. We link SNPs to genes as in

[82,83]. The gene in which, or near which [82,83], a phenotype

SNP occurs is defined as a phenotype-associated gene or

phenotype gene. To determine whether a pathway is significantly

associated with a phenotype we assessed whether the phenotype-

associated genes fall within that pathway significantly more than

expected at random, based on the number of phenotype-

associated genes and the size of the pathways in KEGG [80]

(see below).

Scoring methods
To assess significance of a phenotype-pathway association, we

defined an association score DPij, for the association between

phenotype i and pathway j. DPij is the number of genes in pathway

j that are associated with SNPs of phenotype i. The significance of

each association is assessed as follows: Gi is the number of disease

genes of phenotype i that also appear in any KEGG pathway. We

randomly selected Gi genes from all genes in all KEGG pathways

and calculated DPij for this random set. That is, for each pathway,

we counted how many of the Gi random genes fall within that

pathway. This was done 1,000 times for each phenotype i,

resulting in a set of vectors of scores, which we dub expected

random scores (ERS). The vector ERSij (of 198,000 elements,

1,000 random scores for the clustering of Gi genes into each of

KEGGs 198 pathways) represents the distribution of DPij expected

at random for the association between phenotype i and pathway j

under the null hypothesis that SNPs of phenotype i do not cluster

into any pathway. Figure 7 presents this procedure schematically.

If the real DPij $95% of scores in ERSij (i.e. it is within, or higher
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than, the top 0.05 of the random scores) then the association

between phenotype i and pathway j is defined as significant.

In addition, we assessed the number of significant phenotype-

pathway associations that are expected at random given the

procedure above under the null hypothesis, to account for multiple

testing. To this end we repeated the procedure described above

1,000 times for each phenotype versus all pathways, each time

with a random set of pseudo phenotype genes, to determine how

many significant disease-pathway association we should expect at

random given the procedure. This was done as follows:

For each phenotype i, we randomly picked Gi genes from

KEGG genes as described above. This random set was now

defined as the pseudo phenotype genes pGi = Gi. For these pGi

genes we calculated pDPij as described above for each pathway.

Next, for this pseudo phenotype-pathway association we again

calculated ERSij with 1,000 randomly selected Gi genes and

determined whether the pGi ‘‘significantly’’ cluster into that

pathway. We repeated this for each pathway and recorded the

number of pathways with which phenotype i is associated. This

was performed over all the phenotypes, yielding a number that

represents all the significant associations between the pseudo

phenotype genes and KEGG pathways.

The above procedure was repeated 1,000 times for each

phenotype. The result of these 1,000 simulations gave us the

number of phenotype-pathway associations expected at random

given the sizes of our data sets.

The approach we have taken here makes no theoretical

assumptions regarding the distributions of the statistics and

provides us with a genuine assessment of the expected results

given our specific datasets under the null hypothesis. Indeed, we

took the strictest approach, ignoring distributions of each

individual score and factors like the number of genes that were

clustered into each pathway. Thus, this approach does not take

into account the fact that the real genes tend to cluster more

strongly into pathways than the pseudo disease genes. In this sense,

it describes the worst-case scenario in terms of the random

expectation and exacerbates the burden of proving significance.

Phenotype-phenotype links
Two phenotypes were linked if they are associated with the

same pathway. The strength of the association between two

phenotypes could be measured by the number of different

pathways with which both of the phenotypes are significantly

associated. However, some phenotype-pathway associations are

stronger than others. A phenotype-phenotype link is scored using

the number of shared pathways between these phenotypes.

Calculations were run in python under Red Hat Linux as well

as Microsoft Excel, which was also used to generate the figures.

Supporting Information

Figure S1 Association of nasopharyngeal carcinoma to
KEGG pathway hsa04514 (cell adhesion molecules).
Curve depicts the amount of randomly selected genes found in

each pathway through 1,000 random runs. X-axis represents the

number of genes in the pathway, while the Y-axis represents the

frequency. The solid line depicts the actual number of NPC genes

in pathway hsa04514 (5), while the dashed line depicts the median

of all random runs (0). p-value is 0.01E-4. Any value higher than

the dotted line is significant (,0.05).

(PDF)

Table S1 Full list of phenotypes and their results. Table

lists the number of associated SNPs, genes, and pathways for each

phenotype.

(XLSX)

Table S2 Full list of phenotype-phenotype links and
their scores. Table lists phenotype-phenotype links and the

number of significant associations to the same pathways.

(XLSX)

Table S3 Phenotypes grouped into categories. Table lists

phenotypes and categories they were grouped into. Phenotypes not

fitting into any of the groups were placed in ‘‘other’’.

(XLSX)
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