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Abstract: Arthritis is a degenerative disease that primarily affects the cartilage and meniscus of the
knee joint. External acoustic stimulation is used to treat this disease. This article presents a numerical
model of the knee joint aimed at the computer-aided study of the regenerative effects of shockwave
treatment. The presented model was verified and validated. A numerical analysis of the conditions
for the regeneration of the tissues of the knee joint under shockwave action was conducted. The
results allow us to conclude that to obtain the conditions required for the regeneration of cartilage
tissues and meniscus (compressive stresses above the threshold value of 0.15 MPa to start the process
of chondrogenesis; distortional strains above the threshold value of 0.05% characterized by the
beginning of the differentiation of the tissues in large volumes; fluid pressure corresponding to the
optimal level of 68 kPa to transfer tissue cells in large volumes), the energy flux density of therapeutic
shockwave loading should exceed 0.3 mJ/mm2.

Keywords: bone diseases and mechanical properties; poroelasticity; computer simulation; shock
wave treatment

1. Introduction

Degenerative diseases of the knee joint, such as arthritis and others, significantly
reduce a person’s quality of life. The average age of the onset of degenerative diseases
of this type is 45 years, which leads to disability among a significant part of the working
population. However, arthritis can also result from injury [1]. In the end, osteoarthritis has a
huge financial toll on the healthcare system [2]. The cartilage plates and meniscus have the
function of redefining the loads and helping dissipate the energy obtained as a result of the
dynamic effect on the joint. These structural elements of the knee joint are most susceptible
to degenerative arthritic changes. That is why the problems of regeneration of cartilaginous
plates and meniscus are given a lot of attention in modern medicine. Most acutely, this
problem affects the elderly, in whom, due to age, degradation processes begin to appear in
the soft tissues and bone tissues of the joints. Former athletes are also highly susceptible to
degenerative changes. They have a high level of abrasion of cartilage tissue and soft tissue
trauma (meniscus rupture). Surgery is performed in case of catastrophic degenerative
changes in the elements of the lower limbs of the skeleton. Pharmacological therapy (based
on taking medications, injection, etc.) [3] and non-pharmacological therapy (based on a
mechanobiological concept that assumes the division and differentiation of biological cells
under the influence of mechanical stimuli) are used to treat mild to moderate degenerative
changes in the human musculoskeletal system [4]. Non-pharmacological therapy consists
of a set of physical exercises [5] and external physical influence. Shockwave treatment is
one of the methods of external exposure therapy [6].

For the treatment of degenerative diseases of the lower extremities, combined therapy
is used based on medication (by hormonal and anti-inflammatory drugs) and mechanical
treatment (massages, physical exercises, external mechanical stimulation devices). The effect of
external mechanical stimulation is based on mechanobiological principles, the essence of which
is that a certain level of pressure (mechanical stress) and deformations leads to the growth and
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differentiation of a certain type of biological tissue. Thus, the regeneration of cartilaginous
tissue is facilitated by compressive stresses with an amplitude of 0.15 to 2 MPa (proliferation
of chondrocytes) [7]. It was also noted that at stresses lower than 0.003 MPa, chondrogenesis
and osteogenesis do not occur, and stresses of the order of compression of 0.7–0.8 MPa are most
favorable for the formation of cartilaginous tissue. The optimum for the migration of living cells
is the fluid pressure in the pores in the range from 20 kPa to 2 MPa (68 kPa is the most favorable
value) [8]. One of the parameters of cartilage tissue differentiation is a value of distortional
strain in the range from 0.05 to 1.1% [9,10].

The peculiarities of the physiological state (age, illness, injury) of the patient require an
individual selection of the parameters of the mechanical treatment. The energy flux density
(EFD) is the main characteristic of the shock wave process for biomedical purposes [11].
The loading is performed through metal or ceramic plates (applicators) of various shapes
with a certain level of energy flux density, which is calculated from the parameters of the
plates. Currently, active research is underway to determine the optimal loading parameters
that contribute to the regeneration of bone and cartilage tissue. Shockwave therapy has
been shown to be highly effective in the treatment of knee osteoarthritis [12–14]. In the
treatment of knee arthritis, applicators are placed in the meniscus and subchondral bone
tissue of the tibia [15]. For the treatment of osteoarthritis, shockwave loading with different
intensity loading may be effective [16].

Despite the available results, local mechanical changes in the tissues due to acoustic
(mechanical) loading of various intensities remain insufficiently understood because of
the limitations of experimental studies. The use of computational (in-silico) methods can
significantly help in elucidating the mechanical foundations of bone and cartilage tissue
regeneration under conditions of low-energy exposure.

The meniscus is the damping area between the femur and the tibia. Due to its special
mechanical characteristics, forces are redistributed, and the load on the proximal tibia is
reduced [17]. In osteoarthritis, the meniscus is one of the first to change its mechanical
characteristics and is also subject to destruction [18]. Therefore, much attention is paid to
the study of the conditions for the regeneration of the tissues of the meniscus. To describe
the mechanical behavior of meniscus tissues in the nineties of the last century, single-phase
viscoelastic models were used [19]. However, such models do not take into account the
emerging resistance force from the fluid flow through the pores of the tissues, which, in turn,
affects the incorrectness in the description of the mechanical behavior of the tissues under
dynamic loading [20–22]. In addition, the assumption about the two-parameter condition
for the regeneration of biological tissues implies taking into account the liquid. Currently,
for studying the mechanical behavior of the knee joint under dynamic action, two-phase
poroelastic models are used to describe the material of the meniscus [23]. A cartilage plate
performs the antifriction function and promotes energy dissipation in the knee joint [24,25].
It is known that the cartilage tissue of the knee joint has low permeability; this property of
the tissue prevents the rapid outflow of the fluid under dynamic loading [26,27]. Therefore,
for the numerical study of the conditions of regeneration under dynamic action, two-phase
poroelastic models are preferred [28]. Bone tissues may be described by one-phase and
two-phase poroelastic models. Poroelastic models are mainly used for the numerical study
of the conditions of bone tissue regeneration [29].

Regarding the numerical models devoted to the simulation of the mechanical behavior
of the knee joint in the conditions of shockwave therapy, it should be noted that there is no
published study that considers the knee as a joint of two bones with articular cartilages
and meniscus: there are only the abovementioned publications, which consider different
tissues of the joint.

The aim of this work is to develop a numerical model for shock wave exposure on the
knee joint as a whole. As a modeling method, the method of movable cellular automata
was adopted, which is a representative of computational particle mechanics, and makes it
possible to explicitly describe the generation and development of damage in heterogeneous
materials. To achieve this goal, a 3D numerical model of the knee joint was verified and
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validated. Numerical studies were carried out on external shock wave exposure on the
knee joint with different energy flux densities.

2. Materials and Methods
2.1. Method of Movable Cellular Automata

To describe the mechanical behavior of biological tissues, herein we used the model of
a poroelastic body, implemented in the method of movable cellular automata (MCA) [30,31],
which is an efficient method of computational particle (discrete) mechanics. It has been
established that discrete methods have proven themselves to be very promising for model-
ing contact loading of different materials at both the macroscale and the mesoscale [32,33].
In the MCA method, a solid is considered as an ensemble of discrete elements of finite
size (cellular automata) that interact with each other according to certain rules, which,
within the particle approach, and due to many body interaction forces, describe the de-
formation behavior of the material as an isotropic elastoplastic body. The motion of the
ensemble of elements is governed by the Newton–Euler equations for their translation and
rotation. Within the framework of the method of movable cellular automata, the value
of averaged stress tensor in the volume of an automaton is calculated as a superposition
of forces that act to the areas of interaction of the automaton with its neighbors [33]. It is
assumed that stresses are homogeneously distributed in the automaton volume. Knowing
the components of the averaged stress tensor allows adapting different models of plasticity
and fractures of classical mechanics of solids to MCA.

The description of the fluid-saturated material in the MCA method is based on the
use of effective (implicit) characteristics, such as the volume fraction of interstitial fluid,
porosity, permeability, and the ratio of the macroscopic bulk modulus of elasticity to the
bulk modulus of the solid skeleton of the material [34]. The fluid filtration in the material
is governed by Darcy’s law. The mechanical effect of pore fluid on stress and strain of
the solid skeleton of the automaton is described using Biot’s linear poroelasticity model;
therefore, pore fluid pressure affects only the diagonal components of the stress tensor [35].

Details of the method itself and the scheme for numerical solution of the governed
equations are given in Appendix A. A three-dimensional version of the method has been
implemented in the in-house code MCA3D, which is written in C++ programming language
and utilizes Qt library for the pre- and post-processing stages. This code was used in many
papers of the authors and their colleagues, in particular, the verification and validation
of poroelastic models of tissues of the femur and tibia, based on the MCA method, were
carried out in [36–38]. A free code for the MCA method solver is also available as a part
of the LIGGGHTS package [39]; however, it now provides a reduced functionality for
elastic–plastic materials only.

2.2. Model of the Knee Joint

The geometric model of the knee joint constructed in this work included the following
elements: the epiphyseal part of the femur, the proximal part of the tibia, the cartilage
plates, and the meniscus. Each bone consists of a cortical shell and inner cancellous part
(Figure 1).

The knee joint was placed in a box imitating an articular (synovial) capsule, consisting
of the interior fibrous tissue and an outer shell (Figure 2a). The applicator was modeled as
a thin copper plate of a square shape with a size of 20 × 20 × 1 mm3 and was located in the
meniscus region (black square in Figure 2c). In order to simplify the model and analysis
of the results obtained, as well as due to the absence of the need to observe the processes
taking place inside the patella, we neglected the presence of the patella.
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Figure 2. The model of the knee joint: (a) structure model of the knee joint; (b) loading conditions
used for verification and validation; (c) loading conditions for simulation of the shock wave exposure.

Standard CAD models available on the Internet (https://www.3dcadbrowser.com/
3d-model/human-knee-joint, accessed date 1 December 2021) were used as the component
parts of the knee joint.

The poroelastic properties of the biological tissues of the knee joint adopted in this
model are presented in Table 1 and correspond to the data in [38,39]. The fluid in bone
tissues is assumed to be equivalent to salt water, with the bulk modulus Kf = 2.4 GPa, and
the density ρf = 1000 kg/m3 [40,41].

In this model, the loading mimicking shockwave exposure was applied using the
copper plate as an applicator. To describe the material of the plate, a model of an elastic
body was used with the following parameters: density ρ = 8950 kg/m3, bulk modulus
K = 115 GPa, shear modulus G = 41.6 GPa [42].

For simulation, we used a computer with Intel i9-10980XE CPU and 64 Gb RAM,
running the CentOS 8 operating system. The code MCA3D, implementing the MCA
method, utilized parallel computing based on the OpenMP library, so typical computation
on 36 threads took about 30–50 h, depending on the number of elements.

https://www.3dcadbrowser.com/3d-model/human-knee-joint
https://www.3dcadbrowser.com/3d-model/human-knee-joint
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Table 1. Elastic and poroelastic parameters of the bone tissues.

Type of Tissue
Density of the

Matrix, ρ,
kg/m3

Shear Modulus of
the Matrix, G, GPa

Bulk Modulus
of the Matrix,

K, GPa

Bulk Modulus
of the Solid,

Ks, GPa
Porosity, θ Permeability,

k, m2

cortical 1850 5.55 14 17 0.04 3.6 × 10−15

cancellous 700 1.3 3.3 15 0.7 1.0 × 10−11

cartilage 800 0.0043 0.00416 3.4 0.8 4.8 × 10−18

fibrocartilage 900 0.130 0.283 2.3 0.8 9.5 × 10−19

fibrous 1000 0.00043 0.00416 2.3 0.9 7.5 × 10−19

capsule shell 1000 1.2 2.3 2.3 0.9 1.0 × 10−11

3. Results
3.1. Model Verification

The main purpose of verification is to assess the correctness and efficiency of the
numerical scheme for solving the governing equations of the method. The key component
of numerical model verification is the analysis of the convergence of the obtained results
with increasing the resolution of the discrete model (decreasing the discrete element size in
the case of computational particle mechanics). The discrete representation of the model
is considered optimal when a further increase in its resolution gives no more than a 5%
difference with the available resolution [43].

In this work, the analysis for the convergence of a three-dimensional model of the
knee joint was carried out by studying the stiffness of the system and the pattern of
equivalent strain distribution at different discretization of the considered geometric model
(Figure 2) under its uniaxial compression. Herein, the size (diameter) of discrete elements
(automata) in the model sample varied from 0.75 mm to 2.0 mm. The compression of the
model samples along the vertical direction was carried out by setting a constant velocity of
0.001 m/s to the upper layer of the particles (Figure 2b).

The results on the convergence of the stiffness of the model knee joint showed that the
convergence is nonlinear, and the total scatter between the values for the minimum and
maximum size of elements does not exceed 2% (Figure 3). A very small difference between
the values for the size of elements smaller than 1.3 mm indicates a good accuracy of the
numerical model for determining its integral parameters.
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Figure 3. Stiffness of the model knee joint versus the size of discrete elements in the models.

However, the pattern of distortional strain distribution (Figure 4) indicates sufficient
accuracy in determining the zones of strain concentration only for the models with the size
of elements of 0.75 and 1.0 mm. Since the calculation times for these models are 13 h and
6 h, respectively, we will take a sample with the diameter of automates equals to 1 mm as
the optimal for subsequent calculations.
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3.2. Model Validation

The validation of the used poroelastic models of materials for the bone tissues of the
knee joint was performed and published in the authors’ previous papers [36,37,44].

Validation of the total model of the entire knee joint was carried out by comparing the
simulation results with experimental data from [45], and with other numerical simulations
from [46]. For this purpose, a compressive load was applied to the upper layer of the femur by
its displacement by 0.3 mm for 1 s in accordance with the reference experiment (Figure 2b).

As mentioned above, the tissues of the cartilaginous plates are subject to the greatest
degenerative changes; therefore, the model was validated by comparing the distribution
of contact pressure (equivalent stresses in the contact zone) and fluid pressure in these
tissues. The distributions of fluid pressure in the pores obtained from our calculations
(Figure 5a) are in good qualitative and quantitative agreement with the data presented in
the literature [46].
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Figure 5. Results of the model validation: (a) distributions of fluid pressure (Pa) in the tibia cartilage pores (our simulation);
(b) plots for applied force versus displacement.

Comparison of the plots for force versus displacement (Figure 5b), which character-
izes the rigidity of the system, also showed good agreement with the experimental data
presented in [45].

3.3. Simulation of Shockwave Exposure on Knee Joint

The main characteristic of shockwave loading is the value of the energy flux density
(PII), which, according to [47], can be expressed through the product of the acoustic wave
intensity (I) and normalized time of positive pressure (Tp), as follows:

PII ≡ I·Tp (1)
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where Tp can be defined as the time to reach 90% of maximum positive pressure (Figure 6).
At the same time, the intensity (I) is a characteristic of the acoustic impedance of the
medium and, in accordance with Equation (1), we obtain an expression for calculating the
energy flux density, as follows:

PII =
v2ρcTp

2
(2)
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Figure 6. Plots of the pressure profile of shock wave with a different energy flux density.

The parameter of “normalized pulse length” was determined from the graphs of
pressure versus the time of calculation.

In accordance with the mechanobiological principles, the patterns of the distribution
of hydrostatic pressure, the distortional (von Mises) strain, and the fluid pressure in the
pores were analyzed.

When analyzing the pattern of hydrostatic pressure distribution, it was found that at
loading with energy flux density of 0.12 mJ/mm2 in the area of cartilaginous plates, the
conditions for the onset of the processes of osteogenesis and chondrogenesis (hydrostatic
pressure higher than 3 kPa) were achieved (Figure 7a). The pattern of distribution of fluid
pressure in the pores (Figure 8a) indicates the fulfillment of conditions (the values of this
parameter must lie in the range from 40 kPa to 2 MPa) for the transfer of biological cells.
However, the pattern of distortional strain (Figure 9a) indicates the minimum level of
values of promoting cartilaginous tissue regeneration in small local areas in the vicinity
of the loading plate. These results show the insufficient level of the power of shockwave
loading for regeneration on wide areas.

Under shockwave loading with an energy flux density of more than 0.3 mJ/mm2 in the
regions of cartilaginous plates, the conditions formed for the regeneration of cartilaginous
tissues [7–10]: the value of compressive stresses exceeds 0.15 MPa (Figure 7b,c), and the
values of distortional strain lie in the range from 0.05% to 1% (Figure 8b,c) at values of fluid
pressure higher than 20 kPa (Figure 9b,c).

With an increase in the intensity of ultrasonic exposure, the amplitude of the hydro-
static pressure and the area of exposure increase, but the patterns remain practically the
same (Figure 7b,c, Figure 8b,c and Figure 9b,c).



Materials 2021, 14, 7678 8 of 15
Materials 2021, 14, x FOR PEER REVIEW 8 of 16 
 

 

 

   

(a) (b) (c) 

Figure 7. Fields of hydrostatic pressure (Pa) at different energy flux density of shock wave: (a) 0.12 mJ/mm2; (b) 0.33 

mJ/mm2; (c) 0.8 mJ/mm2. 

 

   

(a) (b) (c) 

Figure 8. Fields of fluid pressure (Pa) in pores at different energy flux density of shock wave: (a) 0.12 mJ/mm2; (b) 0.33 

mJ/mm2; (c) 0.8 mJ/mm2. 

Figure 7. Fields of hydrostatic pressure (Pa) at different energy flux density of shock wave: (a) 0.12 mJ/mm2;
(b) 0.33 mJ/mm2; (c) 0.8 mJ/mm2.

Materials 2021, 14, x FOR PEER REVIEW 8 of 16 
 

 

 

   

(a) (b) (c) 

Figure 7. Fields of hydrostatic pressure (Pa) at different energy flux density of shock wave: (a) 0.12 mJ/mm2; (b) 0.33 

mJ/mm2; (c) 0.8 mJ/mm2. 

 

   

(a) (b) (c) 

Figure 8. Fields of fluid pressure (Pa) in pores at different energy flux density of shock wave: (a) 0.12 mJ/mm2; (b) 0.33 

mJ/mm2; (c) 0.8 mJ/mm2. 
Figure 8. Fields of fluid pressure (Pa) in pores at different energy flux density of shock wave: (a) 0.12 mJ/mm2;
(b) 0.33 mJ/mm2; (c) 0.8 mJ/mm2.

Compressive stresses with maximum amplitude (0.2–1.5 MPa) are concentrated in the
region of the cartilaginous plates and meniscus near the loaded surface. With an increase
in the amplitude of the energy flux density, the amplitude of the hydrostatic pressure
increases, but the pattern remains the same. In the region of maximum stresses, there is
also a maximum of values of shear strain up to 0.6% and fluid pressure up to 1 MPa. At the
same time, in the bone tissues adjacent to the cartilaginous plate, stresses up to 0.2 MPa are
predominantly observed, the shear strain is close to zero, and the fluid pressure in the pores
is about 25–30 kPa. This pattern of the distribution of pressure and deformation indicates
the creation of conditions for the regeneration of cartilaginous and meniscus tissues, as
well as bone tissues near the loaded surface.
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4. Discussion

Shockwave loading of various intensities is used for the regeneration of biological
tissues. The acoustic effect is aimed at the fusion of bone tissues (fractures) and the
regeneration of tissues subjected to degeneration (cartilage, meniscus). Different types of
treatment require a different area of application and power of exposure. It is also necessary
to take into account the general degenerative changes in the surrounding bone tissues.
There are conflicting data on the effective dosage of shockwave therapy. In addition, ethical
restrictions do not allow us to accurately establish the patterns of mechanical stimulation
of biological tissues.

In this work, by means of numerical modeling, shockwave loading of various inten-
sities on the knee joint with healthy tissues in the region of the cartilaginous plate of the
tibia and meniscus was reproduced. The simulation results indicate the localization of the
shock wave action in the area of the loading plate. With an increase in the amplitude of the
exposure, the volume in which conditions for tissue regeneration are fulfilled increases.
Conditions for chondrogenesis are formed in the cartilage plates, which in turn is consis-
tent with the experimental data on shockwave treatment of the knee joint [15,48–50]. In
addition, conditions for chondrogenesis are observed in the tissues of the meniscus, which
is also consistent with experimental data [51].

Different authors report conflicting data on the recommended intensity of shockwave
loading for the regeneration of knee tissue [12,13]. Earlier, numerical studies on acoustic
exposure effects have been performed mainly on samples of elementary geometry of
biological tissues and biomaterials [52,53]. However, such modeling does not take into
account geometric and other physiological features (including the presence of intraosseous
fluid) [54] which significantly influence the pressure distribution pattern.

The results of our numerical studies have shown that under shock-wave loading
above 0.3 mJ/mm2, conditions for the regeneration of the tissues of the knee joint could be
achieved. The amplitude of the exposure significantly depends on the volume in which the
conditions for tissue regeneration are fulfilled.

5. Conclusions

The presented numerical model was used for studying shockwave exposure of varying
intensity on the knee joint. Analysis of the distribution of hydrostatic pressure, distortional
strain, and fluid pressure showed that under shockwave exposure with an energy flux
density below 0.3 mJ/mm2, conditions for the regeneration of cartilaginous tissues are
not formed in the model sample. Under loading with energy flux density higher than
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0.3 mJ/mm2, the amplitudes of the compressive stress, fluid pressure, and distortional
strain corresponding to the conditions of regeneration of cartilaginous tissues are observed
in the model samples. Thus, the results obtained are in good agreement with experimental
data available from the literature.

In summary, we can conclude that the numerical model of the knee joint developed
in this study allows performing a correct simulation of the mechanical behavior of this
biological system under shockwave treatment.
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Appendix A. The Method of Movable Cellular Automata

The method of movable cellular automata (MCA) is a representative of so-called dis-
crete element methods (DEM), which are mainly used for modeling powder and granular
materials. The MCA method also possesses some distinguishing features that enable the
correct modeling consolidated materials. In this study, the model of poroelastic (two-phase)
body was used to describe the mechanical behavior of the biological tissues. Two-phase
models are widely used to describe the mechanical behavior of cartilage tissue, but in that
case, numerical simulations were only performed based on the computational methods
of continuum mechanics (finite elements) [55,56]. Discrete elements were also used to
simulate the mechanical response of bone and cartilage tissues but only within the model
of the elastic body [57].

In the particle-based method of movable cellular automata [30,31], a simulated body is
represented by an ensemble of bonded equiaxial discrete elements of the same size (called
movable cellular automata), of which, the position, orientation, and state can change due
to interaction with nearest neighbors. Automata interact among each other through their
contacts. The initial value of the contact area is determined by the size of the automata and
their packing [31,32].

When describing the kinematics and dynamics of an automaton motion, its shape is
approximated by an equivalent sphere. This approximation is the most widely used in
DEM and allows one to consider the forces of central and tangential interaction of elements
as formally independent. This also makes it possible to use the simplified Newton–Euler
equations of motion, as follows:

mi
d2Ri
dt2 =

Ni
∑

j=1
Fpair

ij + FΩ
i

Ĵi
dωi
dt2 =

Ni
∑

j=1
Mij

, (A1)
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where Ri,ωi, mi, and Ĵi are the position radius–vector, rotation velocity, mass, and inertia
moment of i-th automaton, respectively; Fpair

ij is the pair force of the mechanical interaction

of the automata i and j; FΩ
i is the volume-dependent force acting on the i-th automaton

and is determined by the interaction of its neighbors with other automata. In the second
equation of (A1) Mij = qij

(
nij × Fpair

ij

)
+ Kij, qij is the distance from the center of the i-th

automaton to the interaction (contact) point of the i-th automaton with the j-th automaton;
nij = (Rj−Ri)/rij is the unit vector for orientation of the pair i–j; rij is the distance between
the automata i and j.

For isotropic material, the volume-dependent part of the total force can be written as
follows [31,32]:

FΩ
i = −A

Ni

∑
j=1

PjSijnij, (A2)

where Pj is the pressure in the volume of the neighboring automaton j; Sij is the area of
interaction surface of automata i and j; A is defined by the ratio of elastic properties of
the material.

Let us rewrite the total force acting on automaton i as a sum of normal Fn
ij and

tangential Fτ
ij components, as follows:

Fi =
Ni

∑
j=1

(
Fpair

ij − APiSijnij

)
=

Ni

∑
j=1

[(
Fpair,n

ij
(
hij
)
− APjSij

)
nij + Fpair,τ

ij

(
lshear
ij

)
τij

]
=

Ni

∑
j=1

(
Fn

ij + Fτ
ij

)
, (A3)

where Fpair,n
ij and Fpair,τ

ij are the corresponding pair interaction forces depending on the

automata overlap hij and relative tangential displacement lshear
ij , respectively. Although

the end of Equation (A3) formally corresponds to the interaction force in conventional
discrete element models [31], it differs from them essentially due to the many-particle
central interaction of the automata.

To compute the components of the average stress tensor in the bulk of automaton i we
can use the homogenization procedure described in [31,32]:

σi
αβ =

1
Vi

Ni

∑
j=1

qijnij,αFij,β, (A4)

where α and β denote the global coordinate axes (X, Y, Z); Vi is the automaton volume; nij,α
is the α-component of the unit vector nij; Fij,β is β-component of the total force acting at the
point of contact between automata i and j.

The pressure Pi (or the mean stress σi
mean) in the bulk of automaton can be computed

from the thus defined stress tensor:

Pi = −σi
mean = −

σi
xx + σi

yy + σi
zz

3
. (A5)

We can also compute the other tensor invariants in the bulk of automaton, in particular,
the von Mises (equivalent) stress, as follows:

σi
eq =

1√
2

√(
σi

xx − σi
yy

)2
+
(

σi
yy − σi

zz

)2
+
(

σi
zz − σi

xx

)2
+ 6
((

σi
xy

)2
+
(

σi
yz

)2
+
(

σi
xz

)2
)

. (A6)

From Equations (A1), (A3), and (A4), it follows that the specific expressions for
computing Fpair,n

ij and Fpair,τ
ij actually determine the rheology of a model material.

Invariants of the averaged stress tensor σi
αβ are used to calculate pair interaction forces

(Fpair,n
ij and Fpair,τ

ij ) and criterion of an inter-element bond break (criterion of local fracture).

The components of the averaged strain tensor εi
αβ are calculated in increments using the

specified equation of state of the simulated material and the calculated increments of the
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averaged stresses. The relation for the force of central interaction of automata is formulated
based on the constitutive equation of the material for the diagonal components of the
stress tensor, while the force of tangential interaction is formulated on the basis of similar
equations for non-diagonal stresses. When implementing the linear elastic model, the
expressions for specific values of central and tangential forces of the mechanical response
of the automaton i to mechanical action from the neighboring automaton j are written
as follows:  ∆Fpair,n

ij = 2Gi∆εij + Di∆σmean
i

∆Fpair,τ
ij ij

= 2Gi∆γij
, (A7)

where the symbol ∆ denotes increment of the corresponding variable for time step ∆t of
the numerical scheme of integration of the motion Equation (A1); ∆εij and ∆γij are the
increments of normal and shear strains [31,32] of the automaton i in i–j pair; Gi is the shear
modulus of the material of the automaton i; Ki is the bulk modulus; Di = 1–2Gi/Ki.

Formulas (A1)–(A7) describe the mechanical behavior of a linearly elastic body in the
framework of the MCA method. The equations of motion (A1) are usually integrated with
the use of the velocity Verlet algorithm, modified by introducing a predictor for estimation
of σi

αβ at the given time step [31,32,34].
Due to the necessity of the third Newton’s law, the increments of the reaction forces

of the automata i and j are calculated based on the solution of the following system
of equations: 

∆Fpair,n
ij = ∆Fpair,n

ji
Ri∆εij + Rj∆ε ji = ∆rij

∆Fpair,τ
ij = ∆Fpair,τ

ji
Ri∆γij + Rj∆γji = ∆lsh

ij

, (A8)

where ∆rij is the change in the distance between the centers of the automata for a time
step ∆t; ∆lsh

ij is the value of the relative shear displacement of the interacting automata
i and j. The system of Equation (A8) is solved for the increments of strains. This allows
calculation of the increments of the specific interaction forces. When solving the system
(A8), the increments of mean stress and the values of specific forces in the right-hand sides
of relations are taken from the previous time step or are evaluated and further refined
within the predictor–corrector scheme.

Automata that model fluid-saturated material are considered as porous and permeable.
The pore space of such an automaton can be saturated with fluid. The characteristics of
the pore space are taken into account, implicitly, through the specified integral parameters,
namely, the porosity φ, the permeability k, and the ratio a = 1 − K/Ks of the macroscopic
value of bulk modulus K to the bulk modulus of the walls of porous skeleton Ks. The
mechanical influence of the pore fluid on the stresses and strains in the solid skeleton of
an automaton is taken into account on the basis of the linear Biot’s model of poroelastic-
ity [28,35]. Within this model, the mechanical response of a “dry” automaton is assumed
linearly elastic and is described based on the above-shown relations. The mechanical effect
of the pore fluid on the automaton behavior is described in terms of the local pore pressure
Ppore (fluid pore pressure in the volume of the automaton). In the Biot model, the pore
pressure affects only the diagonal components of the stress tensor. Therefore, it is necessary
to modify only the relations for the central interaction forces in (A7):

∆Fpair,n
ij = 2Gi

(
∆εij −

ai∆Ppore
i

Ki

)
+ Di∆σmean

i . (A9)

Interstitial fluid is assumed to be linearly compressible. The value of fluid pore
pressure in the volume of an automaton is calculated based on of relationships of Biot’s
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poroelasticity model with the use of the current value of pore volume [28,35]. Compressible
fluid in the current model is described by the equation of state, as follows:

ρ(Ppore) = ρ0(1 + (Ppore − P0)/Kfl), (A10)

where ρ and Ppore are the current fluid density and pressure; ρ0 and P0 are the equilib-
rium values of fluid density and pressure under atmospheric conditions; Kfl is the fluid
bulk modulus.

The pore space of automata is assumed to be interconnected and provides the pos-
sibility of redistribution (filtration) of interstitial fluid between the interacting elements.
A pore pressure gradient is considered as the “driving force” of filtration. Gravitational
effects being neglected, the equation of filtration (fluid mass transfer) in the ‘micropore’
space can be written as follows:

φ
∂ρ

∂t
= Kfl∇

[
k
η
∇ρ

]
, (A11)

where η is the fluid viscosity and k is the permeability coefficient of the solid skeleton,
which can be found as:

k = φd2
ch, (A12)

where dch is the diameter of the filtration channel.
Equations (A9)–(A12) are solved numerically using the Euler scheme (or a higher

order numerical scheme) for integration in time on a mesh formed by the centers of the
interacting automata (an analog of finite volume method on an ensemble of automata).
With regard to the used approximations, there is no mass transfer between the mesh nodes,
in which ρ ≤ ρ0.
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