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A B S T R A C T   

Zero-inflated Poisson (ZIP) model is widely used for counting data with excessive zeroes. The 
multicollinearity is the common factor in the explanatory variables of the count data. In this 
context, typically, maximum likelihood estimation (MLE) generates unsatisfactory results due to 
inflation of mean square error (MSE). In the solution of this problem usually, ridge parameters are 
used. In this study, we proposed a new modified zero-inflated Poisson ridge regression model to 
reduce the problem of multicollinearity. We experimented within the context of a specified 
simulation strategy and recorded the behavior of proposed estimators. We also apply our pro-
posed estimator to the real-life data set and explore how our proposed estimators perform well in 
the presence of multicollinearity with the help of ZIP model for count data.   

1. Introduction 

The count data is widely used in many fields, such as insurance, public health, epidemiology, psychology and many other kinds of 
research work. Poisson is commonly used in count data to evaluate that mean and variance are the same. Still, this assumption is 
restricted when data is overdispered (variance of response variable more than mean value). However, the probability density function 
(PDF) of the model can be expressed in the following sense: 

f (yi)=
eλi λi

yi

yi!
, yi = 0, 1,…, n.

Where yi is the response variable and belongs to Poisson regression with mean value λi.in the Poisson regression model, ln(λi) = X΄ β is 
the linear combination of the explanatory variables Xi = (Xi1…Xip)

΄. While ln (λi) is defined as a canonical link function between 
explanatory variables and response variables in linear form. 

By incorporating both a degenerated distribution at zero and Poisson regression, ZIP models offer better fitting capabilities, 
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capturing the excess zeroes more effectively. This leads to enhanced model accuracy, especially in situations where the excess zeroes 
significantly impact the data distribution. The significance of ZIP models lies in their ability to effectively handle situations where the 
prevalence of zero counts challenges traditional regression models, thereby improving the accuracy and reliability of statistical an-
alyses in various domains. 

Lambert [1] proposed this model to handle the presence of excess zeros in count data. The ZIPRM is a mixture of a zero-part 
component distribution and a non-zero-part component distribution. That, the first takes zero with a high probability. πi that fol-
lows the Poisson distribution, whereas the second takes values with a low probability (1 − πi). 

yi ∼

{
0 with probability πi

Poisson (μ) with probability (1 − πi)

The probability density function of ZIP can be written as below. 

Pr(y)=

⎧
⎪⎨

⎪⎩

π + (1 − π)exp (− μ) if k = 0

( 1 − π )
exp(− μ ) μk

k!
if k > 0

(1)  

Where μ ≥ 0, 0 ≤ π ≤ 1, It has two parameters π and μ. It indicates as ZIP (π, μ). The mean of the ZIPRM and the variance is given as 
E(Y) = (1 − π)μ, V(Y) = μ(1 − π)(1 − μπ). With 

When we add the link function into a probability distribution, then the ZIPRM is obtained as 

log(μi)= Źβ  

logit(πi)= {πi / (1+ πi)}= γ  

Where Z represents the vector of the independent variable whose value is zero processes and γ is the regression coefficient vector. 
In the realm of biostatistics, Lindsey [2] employed the Generalized Linear Model (GLM). In real-life scenarios, there often exist 

instances where response variables yield two outcomes, representing success or failure. For example, in the business industry, linear 
regression serves as a tool to assess the correlation between advertising expenditure and revenue generation. When relationships 
involve more than two variables, the application of the GLM becomes essential to observe the effects of these variables. Consider a 
scenario where an agricultural scientist investigates the correlation between water and fertilizer application on corn crops. The sci-
entist employs varying levels of water and fertilizer to assess their combined impact on crop yield. 

Among the primary types of zero-inflated count (ZIC) models, prominent ones include zero-inflated Poisson (ZIP), zero-inflated 
negative binomial (ZINB), and zero-inflated generalized Poisson (ZIGP). 

Poisson regression, estimates the probability of events occurring within a specified time or space. Zero-inflated Poisson (ZIP) stands 
out as a specialized form of Poisson regression designed to handle situations where excessive zeroes are observed. Lambert introduced 
ZIP in 1992 as an alternative technique precisely for dealing with an abundance of zeroes, noticeable when the observed zeroes far 
exceed those predicted by the fitted Poisson regression model. The ZIP model comprises two main components: a degenerated dis-
tribution at the zero point and Poisson regression. 

Zero-inflated Poisson (ZIP) models hold significant importance in statistical modeling and analysis due to several key reasons. ZIP 
models are known for their ease of fitting and their capacity to yield superior data analysis outcomes. Maximum Likelihood Estimates 
(MLE) are generally considered approximately normal for large samples, and constructing their confidence intervals often involves 
inverting likelihood ratio tests or relying on the approximate normality of the MLE. The method based on the likelihood ratio test is 
typically favored over MLE for constructing confidence intervals due to its superior performance. Recent studies and current research, 
such as the ones already mentioned, validate and expand the use of ZIP models in a variety of domains, demonstrating their continued 
significance and relevance in modern statistical analysis. 

Multicollinearity in generalized linear models (GLMs) poses similar challenges as in traditional linear regression models. GLMs 
extend regression analysis to handle non-normally distributed response variables and nonlinear relationships between predictors and 
the response. 

In GLMs, multicollinearity occurs when predictor variables are highly correlated. Thus, numerous issues occur, and for reliable and 
interpretable results, it is essential to manage multicollinearity. 

Ridge regression is a method for reducing the issues brought on by multicollinearity. A penalty term is added to the regression 
model as part of this regularisation technique in order to reduce the coefficients, especially those of highly correlated variables. The 
ridge penalty helps lower the variance of the coefficient estimates by shrinking the coefficients towards zero but without completely 
eliminating them. Multicollinearity can be effectively handled with ridge regression. Ridge regression reduces the influence of mul-
ticollinearity on the estimate procedure by penalizing the regression coefficients. By balancing the trade-off between variance and bias 
it enhances the prediction performance of the model and permits more stable and trustworthy coefficient estimations. 

By limiting the variance inflation of coefficients brought on by highly correlated variables, ridge regression essentially functions as 
a remedy for multicollinearity, improving the stability and precision of the regression model. When working with datasets where 
multicollinearity is a common problem, it is especially helpful. 

However, different techniques of the biased estimators are constructed to overcome the problem of multicollinearity, such as Al- 
Hassan Y.M. [3], Mansson and Shukur [4], Kibria et al. [5], Chang [6], Asar and Genc [7], Rashad et al. [8], Akram [9], Lukman [10], 
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Ertan et al. [11]. 
Hoerl and Kennard [12] proposed the concept of ridge estimator (RE) to analyze the statistical data in the presence of multi-

collinearity. In the ridge estimator, it has a small positive biased amount into the diagonal element of the X΄VX matrix. The ridge 
estimator is written as below, 

βRE =(ZVZ + KI)− 1
(ZVZ)βML (2)  

Where K considers the biased or ridge parameter, which is selected according to the required biasedness to the estimator, in the case of 
K = 0, the ridge estimator (RE) becomes the Ordinary Least Square (OLS) estimator. The amount of ridge parameter related to the 
(ZVZ) matrix. RE failed to identify the ill-conditioning in the presence of multicollinearity. 

There are several empirical studies presented in the literature to estimate and compare the performance of the ridge estimator, 
many of them are as follows: Algamal [13], Lukman et al. [14], Younus et al. [15], Arum et al. [16] and Abonazel et al. [17]. Therefore, 
we proposed the new modified biased estimator for zero-inflated Poisson regression model. 

1.1. Proposed biased estimators 

We followed the scheme of Alkhamisi et al. [18] and proposed three biased estimators on the basis of the defined literature. Our 
proposed estimators are given below: 

k̂1 =max
{

λ
(n − p) + λα̂2

}

(3)  

k̂2 =median
{

λ
(n − p) + λα̂2

}

(4)  

k̂3 =
1
p
∑n

i=0

λ
(n − p) + λα̂2 (5)  

1.2. Simulation design 

In this section, we analyze the Mean Squared Errors (MSEs) of estimators for the Zero-Inflated Poisson Regression Model (ZIPRM). 
We assess these estimators based on various approaches, including the traditional Maximum Likelihood (ML) method, pre-existing 
biased estimators, and newly proposed estimators. This evaluation is conducted through the implementation of a Monte Carlo 
simulation scheme. 

For evaluating the different biased estimators, we primarily focus on the MSE criterion. 

MSE=

∑R

i
(β̂i − β)T

( β̂i − β)

R
(6)  

Where R is the total number of repetitions (5000) in a scheme of simulation and the coefficients of the parameter that are selected by 
setting 

∑n
i=1β2

i = 1. 
Following McDonald (1975), we generated the simulated data using the equation. 

zi =
( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ρ2
√

∗ wij

)
+ ρ2 ∗ wip; j= 1, 2, ..., p i= 1, 2, ..., n (7)  

Where ρ2 indicates the correlation among explanatory variables and wij the pseudo-random number. There are four number of ρ2 in the 
simulation, 0.85, 0.90,0.95, and 0.99 respectively. These levels of correlations are used in the data set for simulation. It is also 
observed that dependent variables are also generated from above defined statistical equation, and binary variables are generated from 
pseudo-random numbers from the binomial distribution, where πi =

exp (zi΄γ)
1+exp (zi΄γ) Having binary variable 1 and intercept belongs to γ, and 

the binary variable with response one is generated by using μi = exp (β0 + β1x1 + β2x2 + … + βpxp. The explanatory variable, called 
regressor considered as 2 & 3, and the slop of the parameters are estimated by using 

∑p
j=1βj

2 = 1 so in this context Poisson regression 
intercept is generally equal to zero. However, in the ZIP regression model, the probability of both zeroes and once is possible; therefore, 
the intercept of the logit model is observed differently. In case, when the intercept is equal to 0, both events (zeroes & once) have an 
equal chance of occurrence. In this context, when the intercept is observed as positive, the probability of zeroes inflated is higher than 
once, while in this study number of intercept are set as 0, 1, 2 and 3. The sample size of the simulation is fitted in specific order 
represented as 25, 50, 100, 150 & 200. 

2. Results discussion 

Table 1 through 8 present simulation results that assess the performance of our recently suggested estimators in various settings. 
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The sample size ‘n,’ number of explanatory variables ‘p,’ and collinearity levels varied in these cases. When we evaluated the per-
formance of the estimators, we found a pattern: our suggested methods’ Mean Squared Errors (MSEs) were consistently smaller than 
those of the Maximum Likelihood Estimators (MLEs) and of the estimators that were already in use. With regard to Table 1, when ‘p =
2,’ it was clear that our suggested estimators performed much better than MLEs when high degrees of collinearity were present. 
Analyzing the effects of different correlation degrees on the computed MSEs was part of this examination. A pattern of declining MLE 
values across various correlation levels (ρ) is seen as sample size (n) grows, indicating greater estimation accuracy with bigger sample 
sizes (see Table 9). 

Similarly, the MSE values of proposed estimators fluctuate as the correlation level rises (ρ goes from 0.85 to 0.99), demonstrating 
the influence of correlation on estimator accuracy. 

Notably, bigger MSE values are typically produced by higher correlation levels for smaller sample sizes (n = 25, for example), 
indicating higher estimate errors as a result of increasing collinearity among variables. 

Table 1 offers insights into how different combinations of sample size and correlation levels affect the accuracy of estimators in a 
Zero-Inflated Poisson Regression Model when the number of explanatory variables is fixed at 2 and the logit value is set at 0. The 
performance of biasing parameters k1is good in most of the scenarios and k2 shows a near-equal trend like k3 across all simulation 
scheme criteria but k3 proved to be the best out of all proposed estimators. However, with the introduction of explanatory variable 3, 
the outcomes vary significantly concerning these criteria. 

Table 1 
Estimated MSE’s when p = 2 & logit = 0.  

n ρ MLE K1 K2 K3 

50 0.85 78.237 6.8469 4.3987 2.2819  
0.9 131.4851 6.9993 5.4137 2.2971  
0.95 362.9292 6.9726 5.2619 2.1294  
0.99 232.3076 6.8973 4.2675 2.1398 

25 0.85 755.555 6.2724 4.1446 2.1446  
0.9 322.021 4.0221 4.0118 2.0172  
0.95 149.023 4.0113 4.2196 2.0042  
0.99 44.409 4.3035 3.1848 1.1848 

100 0.85 63.3826 4.2547 2.1182 1.1182  
0.9 95.4922 3.2545 2.1174 1.1174  
0.95 99.3634 3.3444 2.2118 1.2118  
0.99 99.8491 3.3501 1.2498 0.2188 

150 0.85 265.4028 2.2547 0.1182 0.1852  
0.9 282.4036 1.2545 0.1174 0.1161  
0.95 313.9426 0.3444 0.2118 0.1873  
0.99 394.2804 0.3501 0.2188 0.1165 

200 0.85 98.2162 0.2522 0.1145 0.1145  
0.9 56.2416 0.3241 0.1692 0.1692  
0.95 51.7444 0.2987 0.1621 0.1621  
0.99 49.5699 0.2934 0.1541 0.1541  

Table 2 
Estimated MSE’s when p = 2 & logit = 1.  

n ρ MLE K1 K2 K3 

25 0.85 737.294 0.3203 0.2086 0.2086  
0.9 1002.41 0.3224 0.2087 0.2087  
0.95 698.254 0.3559 0.2554 0.2181  
0.99 350.108 0.3761 0.2761 0.2761 

50 0.85 442.051 0.2843 0.2262 0.2514  
0.9 482.126 0.2644 0.2644 0.5995  
0.95 852.011 0.2541 0.2448 0.6620  
0.99 553.287 0.2263 0.2167 0.6642 

100 0.85 326.450 0.3852 0.2545 0.2545  
0.9 221.5563 0.2576 0.1264 0.1264  
0.95 546.2347 0.4062 0.2892 0.2892  
0.99 987.565 0.3986 0.2696 0.2696 

150 0.85 47.5642 0.2539 0.1189 0.4689  
0.9 42.7418 0.2535 0.1186 0.4186  
0.95 32.997 0.3472 0.2211 0.3311  
0.99 17.2527 0.2549 0.2617 0.1217 

200 0.85 216.1638 0.2529 0.1493 0.1173  
0.9 180.662 0.2532 0.1252 0.1182  
0.95 131.1501 0.3169 0.1258 0.1918  
0.99 125.356 0.3273 0.1460 0.0146  
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2.1. Real data application 

We apply our proposed estimators to the real-life data set consisting of biochemist information. The data set has 915 observations. 
The dependent variable is the number of published articles, and there are five independent variables explained as follows.  

• Gender: Coded as 0 for male and 1 for female  
• MentorArts: The number of published articles within the last three years of Ph.D. Study  
• Prestige: prestige time of Ph.D. student  
• Marriage: Marriage status is 0 for single and 1 for married  
• Children: The number of children up to 5 years of age 

The performance evaluation of our proposed estimators is detailed in the given below table. 
These coefficients and associated statistics are crucial in determining the impact of each predictor variable on the response variable 

in the count model. The estimates, along with their standard errors and significance levels, help assess the significance and magnitude 
of each predictor’s effect on the count response. Afterward, the MSE of the ML estimator and the three proposed estimators that 

Table 3 
Estimated MSE’s when p = 2 & logit = 2.  

n ρ MLE K1 K2 K3 

25 0.85 465.028 0.4821 0.3811 0.4123  
0.9 229.007 0.3703 0.2622 0.3702  
0.95 328.054 0.3244 0.2416 0.3197  
0.99 163.342 0.3218 0.2232 0.2938 

50 0.85 25.017 0.4155 0.3657 0.3144  
0.9 69.442 0.4027 0.3211 0.3022  
0.95 67.549 0.4083 0.3205 0.3009  
0.99 210.488 0.4011 0.3168 0.2987 

100 0.85 42.0347 0.4057 0.2786 0.2786  
0.9 51.0088 0.4195 0.3025 0.3025  
0.95 68.2222 0.3963 0.2634 0.2634  
0.95 9963.75 0.4124 0.2874 0.2874 

150 0.85 540.577 0.2544 0.1207 0.1207  
0.9 701.7697 0.2538 0.119 0.119  
0.95 611.9216 0.2545 0.1209 0.1209  
0.99 820.637 0.3646 0.2394 0.2394 

200 0.85 713.2106 2.4596 0.3331 0.2077  
0.9 409.4623 2.2517 0.2531 0.1183  
0.95 541.2113 2.2727 0.3295 0.2036  
0.99 576.4957 2.4098 0.2546 0.1224  

Table 4 
Estimated MSE’s when p = 2 & logit = 3.  

n ρ MLE K1 K2 K3 

25 0.85 226.365 0.4521 0.3199 0.2419  
0.9 772.325 0.4366 0.2962 0.2562  
0.95 655.021 0.4180 0.2726 0.1856  
0.99 692.150 0.4017 0.2499 0.1649 

50 0.85 482.372 0.3854 0.2252 0.1343  
0.9 433.028 0.3211 0.2025 0.1137  
0.95 323.351 0.2899 0.1696 0.1696  
0.99 134.396 0.2141 0.2526 0.2085 

100 0.85 552.029 0.2562 0.3227 0.1827  
0.9 361.567 0.2575 0.3269 0.1289  
0.95 102.708 0.4288 0.3012 0.1018  
0.99 576.723 0.4247 0.2982 0.1182 

150 0.85 52.6247 0.2544 0.2202 0.1522  
0.9 48.7975 0.2539 0.2196 0.1166  
0.95 49.0234 0.3643 0.2843 0.2323  
0.99 32.3549 0.3574 0.1372 0.2278 

200 0.85 83.5286 0.3387 0.1178 0.1165  
0.9 76.6578 0.2534 0.2199 0.1199  
0.95 90.4620 0.3375 0.2129 0.1125  
0.99 124.9344 0.2536 0.1282 0.0202  
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occurred are given below, suggesting the superiority of our proposed criteria.  
MSE: MLE: 28.264 k1 : 8.005 k2 : 4.231 k3 : 2.219  

3. Conclusion 

In this section, we focus on our findings from exploring Zero-Inflated Poisson regression. We investigate both simulated scenarios 
and the application of this model in real-life datasets. Our exploration delves into the influence of various factors on result inflation and 
deeply analyzes ZIP ridge regression behavior when faced with different levels of multicollinearity among explanatory variables. 
Within our study, we introduce and assess a variety of ridged biasing estimators under varying degrees of multicollinearity, using Mean 
Squared Error (MSE) as our benchmark for performance evaluation. We systematically varied correlation levels at 0.85, 0.90, 0.95, and 
0.99. 

Throughout our investigation, we varied intercept counts from 0 to 3 for the logit value of ZIP and maintained a single count of 0 for 
Poisson. By utilizing simulation techniques, we formulated two sets of explanatory variables: one containing two variables and another 
comprising three. For estimating regression coefficients within the ZIP regression model, we opted for the GLM. We employed MLE as 
our primary statistical tool to manage unknown coefficients. Each simulation was conducted with 5000 replications to ensure 
robustness. 

Table 5 
Estimated MSE’s when p = 3 & logit = 0.  

n ρ MLE K1 K2 K3 

25 0.85 57.2927 0.3055 0.3123 0.146  
0.9 1600.92 0.2997 0.2282 0.1322  
0.95 626.698 0.3157 0.2423 0.1599  
99 585.984 0.3599 0.2899 0.1756 

50 0.85 32.659 0.2607 0.2506 0.0824  
0.9 68.412 0.2985 0.2441 0.1365  
0.95 56.234 0.2606 0.2255 0.0814  
0.99 48.0766 0.2624 0.1248 0.0845 

100 0.85 52.332 0.2544 0.2297 0.0719  
0.9 98.248 0.2122 0.1458 0.0125  
0.95 229.49 0.3796 0.4155 0.1982  
0.99 587.246 0.3747 0.3165 0.1848 

150 0.85 32.5404 0.3248 0.3144 0.1417  
0.9 43.7688 0.3286 0.3051 0.1353  
0.95 64.0837 0.3143 0.3247 0.1459  
0.99 311.572 0.3334 0.2716 0.1406 

200 0.85 92.3138 0.2896 0.3077 0.1054  
0.9 15.1034 0.2914 0.2776 0.1073  
0.95 10.9194 0.2517 0.2292 0.0649  
0.99 4.6654 0.2518 0.2223 0.0652  

Table 6 
Estimated MSE’s when p = 3 & logit = 1.  

n ρ MLE K1 K2 K3 

25 0.85 3205.59 0.3516 0.4121 0.2161  
0.9 495.422 0.3954 0.3947 0.2633  
0.95 254.296 0.2956 0.2669 0.2658  
0.99 681.236 0.2134 0.2245 0.2345 

50 0.85 438.279 0.2569 0.3334 0.2661  
0.9 617.479 0.2817 0.2572 0.1035  
0.95 683.294 0.2765 0.2146 0.1125  
0.99 924.321 0.2458 0.2265 0.1254 

100 0.85 970.887 0.4059 0.6689 0.2389  
0.9 629.706 0.4069 0.4485 0.2237  
0.95 2002.16 0.4079 0.4341 0.2325  
0.99 732.149 0.4142 0.4009 0.2155 

150 0.85 523.124 0.2527 0.2084 0.0684  
0.9 245.231 0.2528 0.2394 0.0686  
0.95 94.3439 0.3388 0.3058 0.1406  
0.99 401.48 0.3547 0.3057 0.1552 

200 0.85 631.081 0.3201 0.3247 0.1284  
0.9 214.738 0.2512 0.2114 0.0671  
0.95 158.333 0.2351 0.2429 0.0666  
0.99 33.3708 0.3155 0.2046 0.1174  
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Consistently across our diverse scenarios, our observations underscored the superior performance of proposed estimators k1, k2, 
and k3 across various aspects. Notably, when dealing with simulations involving two explanatory variables, both k3 and k2 displayed 
equally superior performance compared to k1. However, in scenarios with three explanatory variables, k6 exhibited notably 

Table 7 
Estimated MSE’s when p = 3 & logit = 2.  

n ρ MLE K1 K2 K3 

25 0.85 605.593 0.2111 0.4251 0.2115  
0.9 321.111 0.2089 0.2154 0.2321  
0.95 298.632 0.2045 0.2115 0.2265  
0.99 211.114 0.2001 0.2001 0.2111 

50 0.85 6.6335 0.2734 0.2586 0.1092  
0.9 14.2135 0.2014 0.2011 0.1452  
0.95 19.5844 0.2717 0.2153 0.1021  
0.99 49.2012 0.1485 0.2058 0.2011 

100 0.85 63.2021 0.1145 0.1589 0.1963  
0.9 58.7986 0.2545 0.2445 0.0725  
0.95 34.9705 0.2559 0.2305 0.0779  
0.99 95.857 0.4207 0.3462 0.2213 

150 0.85 58.7211 0.3633 0.4147 0.1742  
0.9 1892.92 0.3607 0.3797 0.1637  
0.95 144.317 0.3055 0.2228 0.1567  
0.99 100.997 0.3562 0.2635 0.1593 

200 0.85 231.557 0.2521 0.2017 0.0676  
0.9 256.222 0.2521 0.2168 0.0167  
0.95 244.385 0.2522 0.2432 0.0677  
0.99 150.89 0.3238 0.2198 0.1582  

Table 8 
Estimated MSE’s when p = 3 & logit = 3.  

n ρ MLE K1 K2 K3 

25 0.85 56.233 0.2355 0.2224 0.0158  
0.9 32.014 0.2215 0.2104 0.0114  
0.95 28.715 0.2114 0.2118 0.0025  
0.99 26.229 0.2018 0.2226 0.0189 

50 0.85 81.023 0.2009 0.2548 0.1156  
0.9 62.001 0.3256 0.208 0.1025  
0.95 19.0372 0.2648 0.2559 0.0879  
0.99 118.316 0.2839 0.1508 0.1187 

100 0.85 23.586 0.2558 0.2534 0.0785  
0.9 6872.37 0.4395 0.5235 0.2616  
0.95 233.001 0.2558 0.2181 0.2078  
0.99 291.361 0.4326 0.4631 0.2376 

150 0.85 48.2604 0.3641 0.4456 0.1718  
0.9 81.7675 0.3698 0.4028 0.1745  
0.95 53.002 0.2153 0.2473 0.0695  
0.99 650.634 0.3658 0.2658 0.1655 

200 0.85 22.025 0.2522 0.1974 0.0168  
0.9 49.7968 0.3359 0.3323 0.1411  
0.95 84.8502 0.3411 0.3095 0.1506  
0.99 437.615 0.3321 0.2413 0.1237  

Table 9 
Count model coefficients.  
• The estimate of β1 is 23.1303, with a standard error of 12.582. The Z-value is 2.460, corresponding to a p-value of 0.043, suggesting statistical significance.  
• The estimate of β2 is 2.1921, with a standard error of 4.2602. The Z-value is 0.996, corresponding to a highly significant p-value of 0.003.  
• Each coefficient estimates of β3, β4,β5, along with its associated standard error, Z-value, and p-value, is provided. Notably, they all have low p-values (0.00), 

indicating high statistical significance.  

Coefficients Estimates Std.Error Z Value Pr (>|z|) 

β0 23.1303 12.582 2.460 0.043 
β1 2.1921 4.2602 0.996 0.003 
β2 − 4.1798 3.6109 − 1.601 0.00 
β3 3.2409 6.0154 0.362 0.00 
β4 16.994 9.5301 0.284 0.00 
β5 3.1940 2.0089 0.315 0.00  
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commendable performance, followed by k1 and k2. Our comprehensive analysis ultimately led us to the decisive conclusion that k3 
surpasses all other estimators, emerging as the optimal choice for robust regression estimation. This conclusion stems from a thorough 
evaluation of their performance across diverse scenarios, firmly establishing k3 as the most reliable estimator for precise regression 
estimations. 

4. Future recommendation  

• Undertake comprehensive validation investigations utilizing heterogeneous datasets from distinct fields to assess the resilience and 
applicability of the adjusted estimator in a range of real-world contexts.  

• Examine other methods or improvements to minimise bias and improve estimating efficiency, perhaps by using different weighting 
schemes or modifying the model.  

• Examine ways to improve the updated estimator’s prediction ability and suitability for use with intricate datasets by adding more 
variables or predictors.  

• Evaluate the practical utility and impact of the updated estimator by applying it to certain businesses or professions (e.g., 
healthcare, ecology, finance, or social sciences) where zero-inflated data is common. 

Data availability 

Data will be made available on request. 

CRediT authorship contribution statement 

Muhammad Zeeshan: Writing – original draft. Aamna Khan: Conceptualization. Muhammad Amanullah: Supervision. M.E. 
Bakr: Software. Arwa M. Alshangiti: Resources. Oluwafemi Samson Balogun: Project administration. M. Yusuf: Writing – review & 
editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

This research project was supported by the Researchers Supporting Project Number (RSPD2024R1004), King Saud University, 
Riyadh, Saudi Arabia. 

References 

[1] Diane Lambert, Zero-inflated Poisson regression, with an application to defects in manufacturing, Technometrics 34 (1) (1992) 1–14. 
[2] James K. Lindsey, Applying Generalized Linear Models, Springer Science & Business Media, 2000. 
[3] Al-Hassan, M. Yazid, Performance of a new ridge regression estimator, J. Assoc. Arab Univ. Basic and Appl. Sci. 9 (1) (2010) 23–26. 
[4] Kristofer Månsson, Ghazi Shukur, A Poisson ridge regression estimator, Econ. Modell. 28 (4) (2011) 1475–1481. 
[5] BM Golam Kibria, Kristofer Månsson, Ghazi Shukur, Performance of some logistic ridge regression estimators, Comput. Econ. 40 (2012) 401–414. 
[6] Xinfeng Chang, On the almost unbiased ridge and Liu estimator in the logistic regression model, in: International Conference on Social Science, Education 

Management and Sports Education, vol. 2015, Atlantis Press, 2015, pp. 1658–1660. 
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[11] Esra Ertan, Kadri Ulaş Akay, A New Class of Poisson Ridge-type Estimator, 2023. 
[12] Hoerl, Robert W. Kannard, “Ridge Regression: Biased Estimation for Nonorthogonal Problems”, 2000. 
[13] Zakariya Yahya Algamal, A new method for choosing the biasing parameter in ridge estimator for generalized linear model, Chemometr. Intell. Lab. Syst. 183 

(2018) 96–101. 
[14] Adewale F. Lukman, BM Golam Kibria Issam Dawoud, Zakariya Y. Algamal, Benedicta Aladeitan, A new ridge-type estimator for the gamma regression model, 

Sci. Tech. Rep. 2021 (2021) 1–8. 
[15] Farah Abdul Ghani Younus, Rafal Adeeb Othman, Zakariya Yahya Algamal, Modified Ridge Estimator in Zero-Inflated Poisson Regression Model, 2022. 
[16] Kingsley C. Arum, Fidelis I. Ugwuowo, Henrietta E. Oranye, Robust modified jackknife ridge estimator for the Poisson regression model with multicollinearity 

and outliers, Sci. Afr. (2022) e01386. 
[17] Mohamed R. Abonazel, Fuad A. Awwad, Elsayed Tag Eldin, BM Golam Kibria, and Ibrahim G. Khattab. "Developing a Two-Parameter Liu Estimator for the 

COM–Poisson Regression Model: Application and Simulation, 2023. 
[18] Khalaf Alkhamisi, Ghazi Shukur, “Some Modifications for Chosing Ridge Parameter”, 2006. 

M. Zeeshan et al.                                                                                                                                                                                                       

http://refhub.elsevier.com/S2405-8440(24)00256-1/sref1
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref2
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref3
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref4
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref5
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref6
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref6
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref7
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref8
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref8
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref9
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref10
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref10
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref11
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref12
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref13
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref13
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref14
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref14
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref15
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref16
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref16
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref17
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref17
http://refhub.elsevier.com/S2405-8440(24)00256-1/sref18

	A new modified biased estimator for Zero inflated Poisson regression model
	1 Introduction
	1.1 Proposed biased estimators
	1.2 Simulation design

	2 Results discussion
	2.1 Real data application

	3 Conclusion
	4 Future recommendation
	Data availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


