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Abstract

Background: Giant cell arteritis (GCA) is the most common form of vasculitis affecting elderly people. It is one of
the few true ophthalmic emergencies but symptoms and signs are variable thereby making it a challenging disease
to diagnose. A temporal artery biopsy is the gold standard to confirm GCA, but there are currently no specific
biochemical markers to aid diagnosis. We aimed to identify a less invasive method to confirm the diagnosis of GCA,
as well as to ascertain clinically relevant predictive biomarkers by studying the transcriptome of purified peripheral
CD4+ and CD8+ T lymphocytes in patients with GCA.

Methods: We recruited 16 patients with histological evidence of GCA at the Royal Victorian Eye and Ear Hospital,
Melbourne, Australia, and aimed to collect blood samples at six time points: acute phase, 2–3 weeks, 6–8 weeks,
3 months, 6 months and 12 months after clinical diagnosis. CD4+ and CD8+ T-cells were positively selected at each
time point through magnetic-assisted cell sorting. RNA was extracted from all 195 collected samples for subsequent
RNA sequencing. The expression profiles of patients were compared to those of 16 age-matched controls.

Results: Over the 12-month study period, polynomial modelling analyses identified 179 and 4 statistically
significant transcripts with altered expression profiles (FDR < 0.05) between cases and controls in CD4+ and CD8+
populations, respectively. In CD8+ cells, two transcripts remained differentially expressed after 12 months; SGTB,
associated with neuronal apoptosis, and FCGR3A, associatied with Takayasu arteritis. We detected genes that
correlate with both symptoms and biochemical markers used for predicting long-term prognosis. 15 genes were
shared across 3 phenotypes in CD4 and 16 across CD8 cells. In CD8, IL32 was common to 5 phenotypes including
Polymyalgia Rheumatica, bilateral blindness and death within 12 months.

Conclusions: This is the first longitudinal gene expression study undertaken to identify robust transcriptomic
biomarkers of GCA. Our results show cell type-specific transcript expression profiles, novel gene-phenotype
associations, and uncover important biological pathways for this disease. In the acute phase, the gene-phenotype
relationships we have identified could provide insight to potential disease severity and as such guide in initiating
appropriate patient management.
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Background
Giant Cell Arteritis (GCA) is the most common form of vas-
culitis in people over 50 years of age, and has a predilection
for medium- and large-sized vessels of the head and neck.
GCA represents one of the few true ophthalmic emergen-
cies, and given the severe sequelae of untreated disease, a
timely diagnosis is crucial [1]. GCA is a devastating disease
associated with significant morbidity and mortality. If un-
treated, GCA can cause catastrophic complications including
blindness and stroke, as well as aortic dissection and rupture.
The patho-aetiology of GCA is poorly understood. It is

likely that both a genetic predisposition and possible envir-
onmental factors, the latter unconfirmed, contribute to the
onset of disease [2]. GCA is a heterogenous disease and a
definitive diagnosis can be difficult to establish in the acute
setting. The current gold standard for diagnosis is a tem-
poral artery biopsy, which is an invasive surgical procedure
[3, 4]. There are currently no specific biomarkers to diag-
nose GCA, or stratify patient management.
In the acute setting, treatment with high-dose cortico-

steroids should be started empirically when a patient’s
symptoms and/or inflammatory markers suggest a diagno-
sis of GCA is likely [1]. Treatment should not be delayed
whilst waiting for biopsy results to become available. Once
diagnosed, clinicians monitor disease activity based on pa-
tients’ symptoms and inflammatory markers, primarily the
erythrocyte sedimentation rate (ESR) and C-reactive pro-
tein (CRP). However, these biochemical markers are non-
specific and may be elevated in other inflammatory or
infective diagnoses. There is a pressing need for more sen-
sitive and specific biomarkers. This would aid in making a
diagnosis, as well managing this condition more appropri-
ately and mitigate the need for an invasive surgical pro-
cedure. Motivated by this need, we aimed to discover a
biomarker so that when patients present to the emergency
department with features of GCA, a blood test could be
performed, allowing prompt diagnosis and initiation of ap-
propriate treatment.
GCA is presumed to be an autoimmune disease with a

highly complex immunopathogenesis. It has a strong asso-
ciation with HLA class II suggesting an adaptive immune
response with antigen presentation to CD4+ T cells [5].
CD8+ T cells have also been described in GCA both at tis-
sue level and peripherally [6, 7]. Transcriptional profiling
in blood consists of measuring RNA abundance in circu-
lating nucleated cells. Changes in transcript abundance
can result from exposure to host- or pathogen-derived im-
munogenic factors. Given that T Lymphocytes are key
mediators of the adaptive cellular immune response and
in GCA [8], we studied the transcriptome of peripheral
CD4+ and CD8+ T cells of patients with GCA. We moni-
tored patients’ expression profiling along the course of
their disease to detect changes in transcripts as disease
state altered and became quiescent.

Methods
Patient recruitment
Between July 2014 and June 2016, 16 patients presenting to
the emergency department (ED) at the Royal Victorian Eye
& Ear Hospital (RVEEH) in Melbourne (Australia), with
symptoms and signs consistent with the diagnosis of GCA
were enrolled in our study (Fig. 1). Ethics was approved for
this study through the RVEEH (Ethics 11/998H), and all pa-
tients provided informed written consent to participate in
serial sample collections, and for publication of results. We
acquired blood samples from patients in the acute phase of
their disease T1 (Day 0–7) but ideally prior to steroid initi-
ation. Analysis took into account those patients who were
steroid-naive at T1 and those who had already started ster-
oid treatment, albeit in some cases less than 24 h earlier. In
addition to T1, we aimed to acquire five subsequent serial
samples from each patient - T2 (2–3 weeks), T3 (6–
8 weeks), T4 (~ 3 months), T5 (~ 6 months) and T6 (~
12 months) after presentation - to detect changes in their
transcripts as the disease state altered and became quies-
cent (Additional file 1: Table S1). For each patient with
GCA, we recruited an age- and gender-matched healthy
control from whom two serial blood samples were collected
2–3 weeks apart. Our study design is outlined in Fig. 1.

T-cell isolation
At each visit, 36 ml of peripheral blood were collected in
4 × 9 ml ethylenediaminetetraacetic acid (EDTA) tubes,
18 ml of which were used to isolate each of the two T-cell
populations. Once blood was collected from a patient, it
was processed within 30 min. Rapid processing was con-
ducted to avoid changes in cellular expression profiles [9].
First, the peripheral blood mononuclear cells (PBMCs)
were isolated using Ficoll-Paque density centrifugation.
This was followed by positive selection with magnetic
antibody-coupled microbeads (MACS) (CD4 Human
Microbeads (130–045-101) and CD8 Human Microbeads
(130–045-201) from Miltenyi Biotec), to isolate the CD4+
and CD8+ T-cell populations from PBMCs. CD4+ cells
were labelled with fluorescein isothiocyanate (CD4-Viob-
right FITC (130–104-515) Miltenyi Biotec) and CD8+
with allophycocyanin (CD8-APC (130–091-076) Miltenyi
Biotec) antibody for purity analysis. The CD4+ and CD8+
positive fractions were eluted from the magnetically
charged MS column in 1000ul of MACS BSA Stock Solu-
tion 1:20 with autoMACS Rinsing Solution (Miltenyi Bio-
tec). A 20 μl aliquot of both CD4+ and CD8+ final cell
populations was fixed in 2% paraformaldehyde (PFA) and
used for analysis of the population purity on a CyAn ADP
fluorescence-activated cell sorting (FACS) analyzer
(Additional file 2: Fig. S1). The remainder of the positive
fractions was stored at − 80 °C in lysis RLT buffer (Qiagen)
to which beta-mercaptoethanol had been added as per
manufacturer’s guidelines for between 1 and 23 months.
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RNA extraction, cDNA processing and RNA sequencing
Tcell samples underwent RNA extraction as per manufac-
turer’s protocol (Qiagen RNeasy kit) at the Centre for Eye
Research Australia (CERA) located in the Royal Victorian
Eye and Ear Hospital. All T-cell lysate samples, 135 GCA
patient samples and 60 control samples, were randomised
to RNA extraction batches of between 20 and 24 samples
to avoid batch effects. RNA samples were eluted 30 μl in
RNAse free water and stored at -80 oC until all extractions
were complete. Samples were tested on the NanoDrop
ND-1000 spectrophotometer to check RNA quantity and
quality (A260/A230 and A260/A280 between 1.8 and 2.1).
Once all batches were extracted, samples were dispatched
on dry ice to the Australian Translational Genomics
Centre (ATGC) at Queensland University of Technology
(QUT) for cDNA processing and RNA sequencing. At
ATGC, RNA integrity (RIN) and quantity was confirmed
with a Bioanalyzer 2100 (Agilent) before undergoing li-
brary preparation.
To avoid sequencing batch effects, all 195 samples

(GCA n = 135, and Control n = 60) were re-randomised
to be processed in one of three different cDNA library
preparation batches (Illumina TruSeq Stranded mRNA

Sample Preparation Kits). This kit purifies the polyadeny-
lated mRNA molecules. The Illumina Truseq protocol is
optimized for 0.1–4 μg of total RNA and a RIN value ≥8 is
recommended. The average total RNA yield varied be-
tween samples. The average RNA concentration was
137.9 ng/μl (range 12.1 to 1130.0 ng/µl). Total RNA yield
per sample averaged to 2757.7 ng (range 242.0 to
22,600.0 ng) and average RIN was 8.9 (range 7.2 to 10.0).
600 ng total RNA was used to generate cDNA libraries
(30 μl) for all samples with ≥600 ng total RNA available.
Samples with less than 600 ng total RNA available were
used entirely. Samples were barcoded to allow large
throughput at sequencing. The number of PCR cycles for
cDNA amplification was adjusted as required to equalise
the cDNA yield as per the protocol. Quality control of li-
brary concentrations was assessed through LabChip GX
High Sensitivity DNA assay.
RNA-Seq libraries were multiplexed and sequenced

(75 bp PE) in batches on an Illumina NextSeq500
high-throughput instrument. Each batch of cDNA librar-
ies was pooled in equimolar volumes, and sequenced
over three flow cells, with nine flow cells used in total.
To achieve uniform sequencing across a large number of

Fig. 1 Overview of the study design. A total of 16 patients with GCA had serial blood tests to investigate the gene expression profiles of T
lymphocytes over the course of their disease. CD4+ and CD8+ cells were positively selected through magnetic assisted cell sorting (MACS). RNA
was extracted for subsequent RNA sequencing. The expression profiles of patients were compared to that of 16 age-matched controls. In
addition to differential gene expression analysis and longitudinal transcript analysis, clinical phenotype regression analysis was performed to
investigate genes predictive of acute disease and prognosis
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samples, the data were reviewed following each run by
determining the number of mapped reads per sample.
The read count per sample volume pooled was used as a
metric to re-pool the cDNA libraries for additional se-
quencing. As such the pool of cDNA libraries for each
batch was adjusted so that all samples would reach
16 million raw reads. This strategy also minimised be-
tween sample sequence run batch effects. cDNA libraries
were sequenced and we obtained a median 11,017,433
mapped reads per sample and the read counts were ag-
gregated into a single gene expression matrix. 40,744
transcripts had counts-per-million (cpm) > 1 in 50% of
samples and underwent further analysis.

Computational analysis
Quality control of the sequencing data was performed
on the FASTQ files. High quality reads were retained
and Trimmomatic v0.36 was used to remove adapters
and low quality bases. Reads were mapped to the
GRCh38 human reference transcriptome using Kallisto
v0.42.4 [10]. Only those with cpm > 1 in 50% of the sam-
ples were retained for further analysis. Transcript ex-
pression between libraries was normalised using the
trimmed mean of M method (TMM) and corrected for
batch effects using the removeBatchEffect function im-
plemented in edgeR (Flowcell ID, Gender and Ethnicity)
[11]. Hierarchical clustering and principal component
analysis (PCA) confirmed the absence of batch effects
and outlier samples (Additional file 3: Figure S2).

Differential gene expression analysis
A total of 135 GCA samples (n = 16 patients) spanning
six timepoints and 60 control samples (n = 16 patients)
spanning two timepoints were grouped for analysis
based on their CD4 (GCA = 68, control = 30) or CD8
MACS (GCA = 67, control = 30) separation. This group-
ing strategy formed the basis of the differential expres-
sion design matrix, allowing pairwise comparisons
between individual timepoints on a case/control or
CD4/CD8 basis. Differentially expressed transcripts were
considered statistically significant if their false discovery
rate (FDR) was less than 0.05. Differential expression
(DGE) analysis between case and control subjects was
performed comparing the initial T1 case specimens ver-
sus both the T1 and T2 of control specimens. Tran-
scripts below FDR < 0.05 and a two-fold change between
cases and controls were considered significant.

Polynomial modelling of transcript expression
The longitudinal expression profile of retained transcripts
across six time points was tested for significant changes
using polynomial regression. Polynomial regression model-
ling was performed with the patient weight-normalised ster-
oid dosage fitted as a fixed effect. Steroid dose was

normalised by dividing the Daily Steroid Dose by the Patient
Weight. The global model p-value was corrected for multiple
testing using the Benjamini-Hochberg method (FDR) and
transcripts with an adjusted p-value below the FDR thresh-
old (< 0.05) were considered statistically significant.

Functional enrichment and pathway analysis
Functional enrichment analysis was performed using the
Reactome biological pathway database via the Reacto-
mePA software package (version 1.18) and the CPdB
web server (http://cpdb.molgen.mpg.de/) [12]. Pathway
analysis results with adjusted p-values below the FDR
threshold (< 0.1) were considered significant.

Clinical phenotype regression analysis
Models were constructed to regress clinically relevant
traits that were measured at the time of disease onset, or
sample collection, against normalised gene expression
levels. For quantitative clinical variables we used a linear
model, and for categorical variables we used a logistic re-
gression model. Clinical phenotypes were fitted against
the expression of each of transcripts in GCA-only samples
separated into CD4+ and CD8+ populations and
weight-normalised daily steroid dose was included as a
fixed effect. For each transcript, the adjusted p-value was
calculated using the Benjamini-Hochberg method (FDR)
method [13]. Transcripts with adjusted p-values below the
FDR threshold (< 0.01) were retained for further analysis.
The complete summary tables of tested phenotypes are
available in Tables 2, 3 and 4.

Results
Patient recruitment and MACS events
Sixteen incident patients with active GCA and 16
age-matched controls were recruited. The mean age was
78.2 years in the GCA cohort and 76.6 years in the control
group. Both groups had the same 14:2 female to male ratio.
Table 2 provides the number of patients presenting with
the common symptoms and signs associated with GCA.
Additional file 4: Table S2 and Additional file 5: Table S3
describe the specific ophthalmic manifestations and
long-term prognoses observed in our patient cohort. Not
all patients were able to complete 12 months of participa-
tion; therefore, not all patients had six samples collected
(Additional file 1: Table S1). 6 patients were steroid-naive at
T1; these patients had their first sample collected in the ED
prior to commencing steroid treatment. Of the other 10 pa-
tients, 3 patients had been on steroids less than 24 h, and
the other 7 patients had been on steroids for between three
to seven days at the time of T1.
In total, 195 MACS events, comprising 135 GCA (67

CD4 and 66 CD8 samples) and 60 control events, were per-
formed (Additional file 1: Table S1). One patient’s CD8
sample had insufficient material after isolating the PBMC
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layer and was therefore excluded from further analysis
(Additional file 1: Table S1). Two controls were only able to
provide the first time point samples. Each MACS proced-
ure isolated between 2 and 10 million CD4+ and CD8+
cells per patient per time event. CD4+ MACS isolation re-
sulted in greater cell counts than CD8+. The analysis on
the CyAn ADP analyser revealed good population purity
after MACS-positive cell selection: an average of 97% for
CD4+ cells and > 94% for CD8+ cells (Additional file 2: Fig-
ure S1).

Differential expression analysis:
To determine which transcripts showed the most variation
in expression over the 12-month collection period, and to
identify cell type specific signatures, we analysed the ex-
pression levels of samples from GCA patients (n = 135)
(Additional file 6: Figure S3). Figure 2 represents the ex-
pression levels of the top 40 most variable transcripts in
CD4+ and CD8+ samples in GCA patients. The expression
levels of control genes such as CD4 and CD8A/B confirms
the partitioning of CD4+ and CD8+ cells.

We investigated changes in gene expression in both CD4
+ and CD8+ between cases and controls at T1. At a signifi-
cance threshold of FDR < 0.05, we identified 67
down-regulated (DR) and 129 up-regulated (UR) transcripts
in CD4+ samples, and 93 DR and 188 UR transcripts in
CD8+ samples (Table 1). The numbers of significantly dif-
ferentially expressed transcripts increased dramatically at
T3 in cases compared to the controls at T1 for CD8+ sam-
ples, and resolving to a near-control profile at T6. At T3
(6–8 weeks), we detected 1927 DR and 1783 UR transcripts
in CD8+ cells. Interestingly, DE transcripts in CD4+ cells
reached a plateau from T2 to T4 (T2: 254 DR/228 UR; T3:
196 DR/190 UR; T4: 179 DR/200 UR).
We hypothesised that gene expression in GCA patients

would return to baseline levels at approximately
12 months, corresponding to T6, marking disease quies-
cence. Transcripts remaining DE at T6 may be of clinical
interest or mark evidence of previous disease despite
current inactivity. In CD8+ cells, we identified two signifi-
cant DE transcripts at T6 versus controls, SGTB (Small
glutamine-rich tetratricopeptide repeat (TPR)-containing
beta) and FCGR3A (Fc Fragment Of IgG Receptor IIIa),

Fig. 2 Expression levels of the top 40 genes with highest expression variation in CD4 and CD8 samples for all GCA patients. The color scale
indicates normalised, log2-transformed gene expression (cpm), from low (blue) to high (red). Multiple gene IDs represent alternative
transcript isoforms
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which showed log2 fold changes in expression of − 0.54
(p = 4.83 × 10− 7) and 1.99 (p = 1.75 × 10− 6), respectively.
There were no significant DE transcripts in the CD4+ cells
between GCAT6 and the controls.
Differentially expressed genes between T1 and T6 in

GCA patients could represent a biomarker of disease ac-
tivity, marking either gene UR or DR during the acute
phase of disease and then normalising as disease
quiesces. From the CD8+ cell analysis, we detected two
differentially expressed isoforms of CD163 with signifi-
cantly reduced expression levels. At T6 compared to T1,
CD163 isoform 1 (ENST00000359156) expression
showed a log2 fold change (FC) of − 6.01 (p = 1.07 × 10−
6), whereas the log2 FC of CD163 isoform 2
(ENST00000432237) was − 9.69 (p = 5.84 × 10− 8). Not-
ably, CD163 expression is suppressed in response to
pro-inflammatory stimuli in monocytes [14], and is in-
versely correlated with CD16 expression [14, 15], which
is consistent with the increased CD16 expression we ob-
served in cases compared to controls at T6 (12 months).
However, CD16 was not consistently differentially
expressed across all time points in CD8+ cells. There
were no significant DE transcripts in the CD4+ cells be-
tween GCA T1 and T6. Reassuringly, no significant tran-
scripts were observed in either CD4+ or CD8+ cells in
the controls between T1 & T2. Tables of significant

differentially expressed transcripts are presented in Add-
itional file 7: Table S4 (CD4) and Additional file 8: Table
S5 (CD8).

Polynomial modelling of longitudinal transcript
expression:
To identify important transcripts whose expression levels
vary across a 12-month period of the study, we used poly-
nomial regression to model changes in the expression
levels of 40,744 transcripts separately in CD4+ and CD8+
cells across the six time points. Using this approach, we
detected 179 and 4 statistically significant expression pro-
files (FDR < 0.05) in CD4+ and CD8+ populations, re-
spectively. Tables of significant transcript expression
models are available in Additional file 9: Table S6.
The top 12 CD4+ profiles and all 4 significant CD8+ pro-

files are shown in Fig. 3. In CD4+, the majority of genes
demonstrated a pattern of decreased expression over the
study course. Only two genes demonstrated a positive fold
change and increase in expression levels over the
12 months, namely FOXO1 involved in blood vessel devel-
opment and TRBC2 involved in complement cascade acti-
vation and phagocytosis. The four identified genes in CD8+
were CCLN2, FANCA, PTCD2 and THRAP3. The first
three genes demonstrate a negative log2 fold change, whilst
THRAP3 demonstrates an increased expression trend.
No substantial contribution of steroid dose to the model

was observed across the 12-month time course (CD4: me-
dian beta = − 0.001, median p = 0.439; CD8: median beta
= − 0.002, median p = 0.463). However, expression levels
of certain genes at T1 may have been affected depending
on whether patients were steroid-naive or had already
been started on treatment at time of their first blood sam-
ple collection. Figures 3a and b highlight those patients
who were steroid-naive in red and those who had already
been started on steroid treatment in black. Expression of
certain genes, for example TIMD4, VIPR1, and FOXO1,
show obvious clustering depending on a patient’s treat-
ment status and appear to be affected by corticosteroid
initiation. Steroid treatment, even though only initiated
in some instances less than 24 h prior to blood col-
lection at T1, has a clear effect on the expression of
certain genes.
In CD4+, three genes, LMBR1L, UAP1L1 and

KCNMB4, showed least clustering at T1 and appeared
least affected by steroid treatment, albeit having been
through oral dose or intravenously administered prior to
T1 collection. In CD8+ cells, PTCD2 and THRAP3 ap-
pear little affected by steroids at T1. PTCD2 is highly
expressed in both steroid-naive and patients on steroids
at T1 and less so at T6, suggesting no major influence of
steroids at T1. THRAP3 shows increased expression over
time suggesting that in the acute phase THRAP3 expres-
sion might be suppressed.

Table 1 Number of DE genes in each comparison

CD4 CD8

Contrast DR UR DR UR

Control 2 vs Control 1 0 0 0 0

GCA T2 vs T1 0 0 0 0

GCA T3 vs T1 1 8 35 80

GCA T4 vs T1 2 7 1 3

GCA T5 vs T1 0 0 0 0

GCA T6 vs T1 0 0 2 0

GCA T6 vs T3 0 0 45 10

GCA T1 vs Control 1 67 129 93 188

GCA T2 vs Control 1 254 228 325 453

GCA T3 vs Control 1 196 190 1927 1783

GCA T4 vs Control 1 179 200 576 827

GCA T5 vs Control 1 1 1 101 296

GCA T6 vs Control 1 0 0 1 1

GCA T1 vs Control 2 22 58 58 156

GCA T2 vs Control 2 276 233 187 335

GCA T3 vs Control 2 194 171 1066 1227

GCA T4 vs Control 2 197 179 351 615

GCA T5 vs Control 2 2 0 55 222

GCA T6 vs Control 2 0 0 0 0
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From our DGE analysis, we observed significant reduc-
tion in CD163 transcript expression between T1 and T6
in the CD8 cell population analysis. Our results for the
polynomial expression modelling also reflected that
CD163 was significantly reduced at T6. However, model

profiles of this transcript showed that the trend over the
12-month time course was not statistically significant
(FDR > 0.05). Interestingly, we noted that several CD163
isoforms in the analyses of both CD4+ and CD8+ cell
populations had compelling model profiles. For all but

Fig. 3 CD4+ cell (a) and CD8+ cell (b) polynomial regression. A polynomial model, with weight-normalised steroid dosage included as a fixed
effect, was used to examine transcript expression over the duration of the study. Top transcripts with statistically significant expression profiles
over the duration of the study are shown. The x-axis shows the duration of the study in months and the y-axis shows normalised expression
levels (cpm). The red points represent the samples taken from steroid-naive individuals, and the gold points represent the samples taken from
individuals who had suffered a relapse at the corresponding time point. The blue line shows the modelled expression values
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one CD163 isoform, expression levels returned to zero
for all individuals at 12 months; however, these were not
FDR-significant. The log2 foldchange in the expression
of these transcripts over 12 months is shown in Fig. 4.

Functional enrichment and pathway analysis:
For individuals with GCA, we would expect an enrich-
ment of immune and inflammation related pathways
compared to healthy individuals. Biological pathway ana-
lysis of differentially expressed transcripts and statisti-
cally significant transcripts identified in the polynomial
expression modelling analysis was performed using the
curated Reactome database.
Significant DE transcripts in CD4+ samples comparing

GCA to controls in the early time points showed a sig-
nificant enrichment of T-cell receptor signaling (adj.
p-value = 4.25 × 10− 3; 11 genes). In CD8+ samples, we
observed an enrichment of genes in pathways related to

platelet degranulation (adj. p-value = 0.0124; 12 genes)
and activation (adj. p-value = 0.0156; 20 genes), as well
as Fc-gamma receptor (FCGR) dependent phagocytosis
(adj. p-value = 0.0156; 13 genes). Furthermore, CD8+
samples from first two collected samples of GCA cases
showed significant enrichment of pathways related to
haemostasis (adj. p-value = 2.63 × 10− 6; 118 genes), in-
nate immune system (adj. p-value = 5.51 × 10− 6; 169
genes) and the adaptive immune system (adj. p-value =
3.24 × 10− 4; 129 genes).
Transcripts with a significant association across the

12-month collection time were interrogated for enrich-
ment of specific biological pathways. We tested all 179
CD4 and 4 CD8 significant transcripts. In the CD4 tran-
scripts, we observed an over-representation of tran-
scripts in the integrin cell surface interactions (adj.
p-value = 0.015) and Caspase-mediated cleavage of cyto-
skeletal proteins (adj. p-value = 0.0325) as well as

Fig. 4 Fold-change distribution of differentially expressed transcripts in CD4 and CD8 samples for each differential expression comparison.
Coloured points indicate the log2 foldchange of CD163 expression and shown for each transcript in CD4 and CD8 samples. Lines connect the
foldchange values (log2-transformed) of differential expression comparisons along the time course only
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cytokine signaling (adj. p-value = 0.08) and negative reg-
ulators of RIG-I/MDA5 signaling (adj. p-value = 0.08). In
the CD8 results, there were insufficient significant tran-
scripts to perform enrichment analyses. However, a lit-
erature search revealed THRAP3 is involved in
intracellular steroid hormone receptor signaling path-
ways, and FANCA in inflammatory responses and T-cell
differentiation pathways.

Clinical phenotype regression analysis:
Linear and logistic regression models were used to estimate
the effect of specific clinically important phenotypes on
expressed transcripts. The analyses were three-fold. The
first was to determine whether there were any genes that
correlated with symptoms and signs used in the acute set-
ting (T1) (Table 2). Second, we determined whether any
genes directly correlated with the biochemical markers cur-
rently used in the acute phase (T1) (Table 3). Genes result-
ing from these first two analyses are potential biomarkers
for disease activity in the acute setting and predict relapses.
Thirdly, we determined gene correlations with markers of
disease severity or prognosis (Table 4). These were cate-
gorised in terms of visual outcome: whether blinded in one
eye, “monocular”, or both eyes, “bilateral”; relapse events;
and whether the patient died during the study period. This
enables us to identify genes that could provide prognostic
information, ideally at the time of diagnosis (T1) but also
during the course of disease (T1–6).

Correlation with clinical features in the acute setting
At the time of admission (T1), we would expect to ob-
serve some changes in gene expression to be strongly as-
sociated with clinical phenotypes related to the acute
onset of disease. To identify a transcriptional signature
that may be specific to active GCA, we examined the ef-
fect of clinically relevant phenotypes on gene expression

in CD4 and CD8 samples taken at T1. Table 2 lists the
eleven phenotypes and the number of statistically signifi-
cant transcripts (FDR < 0.01) observed for each in CD4 or
CD8 samples at T1. Genes or transcripts that are common
to multiple symptoms/signs are likely to be clinically rele-
vant, particularly at the acute onset of disease. In CD4 and
CD8 samples, we identified 17 (CD4) and 27 (CD8) tran-
scripts that were significantly associated with two or more
clinical phenotypes.
In CD4 cells, LAMTOR4 is a gene shared between jaw

claudication and temporal headache, two important clin-
ical features in acute GCA. Another gene associated with
jaw claudication is GZMB, which is also associated with
visual disturbance. PPP1CB and EIF4A3 were shared by
both jaw claudication and a background history of Poly-
myalgia Rheumatica (PMR). EXTL3, was expressed in
both patients with jaw claudication and fatigue. We identi-
fied numerous genes associated with headache, both tem-
poral and other types: POFUT2 in CD4 cells, and
SLC35F6, HTD2, ZNF708, KLRC4-KLRK1 and JMJD7 in
CD8 cells. EIF5A in CD8 cells was common to both mal-
aise and temporal headache. SLA and ETS1 are genes
shared by patients with a history of PMR diagnosis and
those experiencing visual disturbances at T1.

Table 2 “Acute phase” symptoms, signs and relevant past medical history

Phenotype Number of patients with
each feature at time of presentation

Number of transcripts per cell type correlating to each phenotype

CD4 CD8

1 Visual Disturbance 14 23 247

2 Temporal Headache 14 67 34

3 Other Headache 13 30 76

4 Scalp Tenderness 12 10 7

5 Malaise 12 8 27

6 Jaw Claudication 11 70 10

7 Fatigue 11 6 29

8 Loss of Appetite 9 59 32

9 Weight Loss 8 27 55

10 Fever 4 177 41

11 Polymyalgia Rheumatica 4 51 53

Number of patients (total n = 16) and genes significantly affected (FDR < 0.01) by clinical phenotype in regression models at T1

Table 3 “Acute phase” biochemical markers

Phenotype CD4 CD8

1 ESR 23 15

2 CRP 12 15

3 Platelets 41 7

4 WCC 75 38

5 Lymphocytes 23 63

6 Neutrophils 22 133

Number of genes significantly affected (FDR < 0.01) by biochemical markers in
regression models at T1
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Genes shared by three clinically important phenotypes
at T1 are even more promising than those shared by two
phenotypes and included 15 genes in CD4 and 16 in
CD8 cells (Table 5). SRRT in CD4 was common to four
phenotypes: death, fever, and both headache types. In
CD8, IL32 was common to five phenotypes: visual dis-
turbance and raised neutrophils at T1, a history of PMR,
and bilateral blindness and death within 12 months
(Additional file 10: Table S7 & Additional file 11: Table
S8 show shared genes per phenotype).

Correlation with currently used biochemical markers
We asked whether the results of several routine blood
tests, including white cell count, platelet count, ESR and
CRP correlated with changes in gene expression (Table 3).
We observed significant clinical associations for each bio-
chemical marker in both CD4 and CD8 samples.
Thrombocytosis - raised platelet count - is a good pre-

dictor of acute GCA [16]. Our analysis revealed associations
of multiple genes common to both raised platelet count and
fever in CD4 cells, namely ATP9B, SEC23A, PDZD4,
ABCA2, ELK1, CCDC88C and DGKZ. In addition, ESR and
CRP are biomarkers commonly used to predict the likeli-
hood of GCA, and we found that SAP18 in CD4 was associ-
ated with raised ESR and jaw claudication, whereas in CD8
cells AMPD2 was associated with raised CRP and visual
disturbances.
White-blood cell count (WCC), neutrophil and lympho-

cyte count may also be affected in GCA, although this may
be due to the corticosteroid treatment rather than the in-
flammatory process [17]. In the CD4 cells of our patients,
we found that SPPL2B expression was common to both
those with raised WCC and jaw claudication whilst MATR3
was associated with raised WCC and long-term monocular
blindness. NDUFS7 expression in CD4 cells was associated
with an increased lymphocyte count and temporal head-
ache in CD4, whereas in CD8 cells AP1G2 was common to
raised lymphocytes and visual disturbance. Additionally, ex-
pression of ZNF343 and INTS14 in CD4 cells were associ-
ated with both raised neutrophil and with scalp tenderness
and event relapses respectively.

Correlation with prognostic outcome 12 months after diagnosis
We identified genes that overlap between phenotypes
marking acute disease as well as those marking prognosis.
For example, temporal headache at T1 as well as bilateral
blindness showed significant association with CD8 expres-
sion of TCF7 (TH: beta = − 0.151, adj. p-value = 6.0 × 10− 4,
BB: beta = − 1.801, adj. p-value = 2.2 × 10− 3) and NUCB2
(beta = 1.571, adj. p-value = 1.31 × 10− 6). The expression
of such genes could provide insight into visual prognosis
in those patients presenting with headache in GCA.
RPL17 in CD8 was associated between jaw claudication
and relapse events, and FTSJ1 in CD4 between jaw claudi-
cation and long-term cerebrovascular events. Many genes
were shared between multiple acute phase phenotypes
and mortality within 12 months (Table 5). Fig. 5 shows
the network analysis of clinically correlated phenotypes
with shared genes, and highlights the link between pheno-
types through significant shared genes.

Discussion
Through transcriptional profiling of T-lymphocytes, we
identified 4031 genes in CD4+ and CD8+ cells (CD4: 884;
CD8: 3147) that are differentially expressed between pa-
tients with active GCA compared to age- and sex-matched
controls. Longitudinal profiling of cases was undertaken
with the aim of distinguishing genes that are up- or
down-regulated during the acute phase of disease, which
later normalise as the disease quiesces. We hypothesised
that gene expression in GCA patients would return to nor-
mal at approximately 12 months. With polynomial model-
ing analysis of the significant differentially expressed genes,
we identified 4 transcripts in CD8+ cells and 179 in CD4+
cells that show a change in expression profile over the
course of twelve months (Fig. 2). As there were no statisti-
cally significant differentially expressed genes between both
samples taken from controls subjects at separate times, the
genes we report as differentially expressed likely represent
true changes occurring in GCA disease activity.
Next, we determined whether the fold change in ex-

pression was secondary to the true effect of disease sta-
tus rather than due to steroid treatment. It is important
to take into consideration steroid influence on gene ex-
pression, especially early in the treatment course, as this
would allow for the identification of a biomarker that
could help diagnose GCA in the acute setting prior to
treatment. As patients received high-dose corticosteroids
between T2-T6, we compared gene expression of those
patients who were steroid naive versus those who had
already been initiated on treatment at their first sample
collection. LMBR1L, UAP1L1 and KCNMB4 in CD4,
and PTCD2 and THRAP3 in CD8, showed least cluster-
ing at the initial collection and seemed least affected by
steroids at T1 (Fig. 3), suggesting that the expression
profiles of these genes seen in patients, compared to

Table 4 “Prognostic genes”

T1 T1-T6

Phenotype CD4 CD8 CD4 CD8

1 Monocular Blindness 22 41 26 56

2 Bilateral Blindness 22 50 21 18

3 Stroke/TIA 40 4 153 70

4 Relapse Events 6 3 47 166

5 Deceased within 12 months 878 904 43 50

Number of genes significantly affected (FDR < 0.01) by outcome and
prognostic phenotype markers in regression models both in the acute phase
alone (T1) as well as across all time points (T1-T6)
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controls, is likely representative of “acute disease” at T1
rather than a steroid-induced change.
Gene expression patterns seen from our polynomial

modeling analysis over the 12 months might have been
influenced by systemic corticosteroid treatment (Fig. 3).
In CD8+ samples, differential expression of certain genes
increased dramatically at around 6–8 weeks (T3) in
cases compared to the controls, and in CD4+ cells, dif-
ferential expression plateaued from T2-T4. Duration of
steroid treatment did not have a significant effect on ex-
pression and was removed from analysis. We also ad-
justed for steroid dose and patient weight in our

analysis; however, the peak in expression in both cell
types at these time points could be caused by a delayed
or accumulation of steroid-induced effect. Nevertheless,
from a diagnostic perspective, acute phase evaluation at
T1 is most crucial for patient assessment and this poten-
tial delayed steroid-induced effect is not that problem-
atic in our analysis. It does, however, make evaluation of
expression levels in relation to relapse events between
0.5–12 months (T2-T6) slightly challenging.
Our results show that transcripts that remain DE at

12 months (T6) could potentially be used in clinical prac-
tice to detect evidence of previous GCA disease despite

Table 5 Genes associated with multiple phenotypes, both acute and prognostic, in CD4 and CD8 T cells

Gene Phenotype 1 Phenotype 2 Phenotype 3

CD4

ATP1A1 Temporal headache Bilateral blindness Death within 12 months

LAMTOR4 Temporal headache Jaw claudication Death within 12 months

MATR3 White cell count Monocular blindness Death within 12 months

MLH1 Temporal headache Bilateral blindness Death within 12 months

NDEL1 Loss of appetite Other headache Death within 12 months

NDUFS7 Temporal headache Elevated lymphocytes Death within 12 months

PDZD4 Fever Loss of appetite Reduced platelets

POFUT2 Temporal headache Other headache Death within 12 months

RRP1 Temporal headache Bilateral blindness Death within 12 months

SDCCAG3 Bilateral blindness Relapse events Death within 12 months

SEC23A Fever Reduced platelets Death within 12 months

SLC10A3 Fever Reduced white cell count Death within 12 months

USF2 Temporal headache Bilateral blindness Death within 12 months

WDR91 Loss of appetite Elevated white cell count Death within 12 months

ZNF343 Scalp tenderness Reduced neutrophils Death within 12 months

CD8

ACADVL Elevated neutrophils Other headache Death within 12 months

CD6 Elevated neutrophils Visual disturbance Death within 12 months

EIF5A Malaise Temporal headache Death within 12 months

FDXR Loss of appetite Weight loss Death within 12 months

INPPL1 Malaise Fatigue Elevated neutrophils

JMJD7 Temporal headache Other headache Death within 12 months

KIAA0513 Visual disturbance Bilateral blindness Death within 12 months

KLRC4-KLR1I Temporal headache Other headache Death within 12 months

MTA1 Elevated neutrophils Visual disturbance Death within 12 months

NUCB2 Temporal headache Bilateral blindness Death within 12 months

PI4KA Elevated neutrophils Visual disturbance Death within 12 months

PRAG1 Elevated neutrophils Bilateral blindness Death within 12 months

RNPS1 Malaise Fatigue Death within 12 months

SLC35F6 Temporal headache Other headache Death within 12 months

UQCRC1 Malaise Other headache Death within 12 months

ZNF708 Temporal headache Other headache Death within 12 months
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current inactivity. In CD8+ cells, we identified two signifi-
cant differentially expressed transcripts at T6 versus con-
trols, SGTB and FCGR3A. Little is known about SGTB
but it has been associated with neuronal apoptosis after
neuroinflammation [18]. Interestingly, FCGR3A encodes
CD16a, which forms part of the Fc receptor of the im-
munoglobulin complex and interacts with a number of
immune-related proteins including CD4 and PTPRC, a
protein required for T-cell activation. Recently, Lassau-
nière et al. showed that Black individuals have significantly
reduced proportions of FCGR3A natural killer cells (95.2%
vs. 96.9%) and CD8+ T lymphocytes (9.6% vs. 11.7%) com-
pared to Caucasians [19], and this may serve as a predict-
ive marker for a high-expressing FCGR3A phenotype in
Caucasians, the population most affected by GCA. A re-
cent genome-wide association study revealed that the
FCGR2A/FCGR3A genes confer susceptibility to Takayasu
arteritis, another chronic large-vessel vasculitis [20]. Fur-
thermore, two recent studies investigating rejection in
heart and kidney transplants, observed selective changes
in endothelial/angiogenesis and natural killer cell tran-
scripts, including CD16A and FCGR3A which showed in-
creased expression with rejection phenotypes [21, 22].
Both studies illustrate the clinical potential of gene tran-
scripts to illustrate transplant rejection diagnosis. A future
study would need to be conducted to investigate the ex-
pression of FCGR3A and CD16a at the arterial level

(TAB) of GCA patients to determine whether increased
expression at local level is representative to that found in
peripheral T-cells. If so, FCGR3A could potentially be used
as a biomarker of GCA severity in peripheral blood.
From our CD8+ cell analysis, we detected two differen-

tially expressed isoforms of CD163 with significantly re-
duced expression levels at first and last collection points.
CD163, however, is a member of the scavenger receptor
cysteine-rich (SRCR) superfamily, and is mostly expressed
in monocytes and macrophages [23]. Despite an excellent
T-cell population purity of > 97% isolated through MACS
(Additional file 2: Figure S1), monocytes and macrophages
may carry CD4+ and CD8+ cell surface markers as T lym-
phocytes, and may have carried over into our final
positively-selected T-cell population. Irrespective of its de-
rivative cell population, CD163 expression may play a cru-
cial role in the context of GCA and, as a result, provide
crucial information. CD163 is involved in dendritic cell de-
velopment, a cell crucial in the pathogenesis of GCA [24].
It has been suggested that the soluble form of CD163
(sCD163) may have an anti-inflammatory role, and be a
valuable diagnostic parameter for monitoring macrophage
activation in inflammatory conditions where macrophage
function is affected [25]. A number of clinical studies have
evaluated the role sCD163 as a disease marker in inflamma-
tory conditions including autoimmune disease, transplant-
ation and cancer [26–28]. Expression levels of CD163 were

Fig. 5 Network analysis of clinically correlated phenotypes with shared genes. Network plots show the clinical phenotypes observed for GCA patients
at the time of presentation with shared, statistically significant genes (FDR < 0.01) in (a) CD4 and (b) CD8 samples. Each network node represents a
phenotype that shares significant genes with > 1 other phenotype. Network edges represent connections (shared genes) between phenotypes
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reduced in our patients at T6, possibly reflecting disease
quiescence. It is likely that 12 months after disease onset,
the need for CD163-monocytes and macrophages to clear
damaged tissue has become redundant. CD163 featured in
both our differential expression and polynomial regression
analyses and therefore warrants further investigation in the
context of GCA, potentially through study of peripheral or
tissue monocytes and macrophages.
Another strength of this study is that, through linear

and logistic regression analyses, we identified associations
between specific clinically important phenotypes and
expressed transcripts. We detected genes which correlated
with both symptoms and signs as well as biochemical
markers used in the acute setting (Table 2). Symptoms
causing the most suspicion of a potential GCA diagnosis
consist of jaw claudication, temporal headache (or other
type), scalp tenderness and visual disturbance [1]. Genes
shared by multiple phenotypes are likely to be particularly
relevant to making a diagnosis and could be used as bio-
markers for disease activity in the acute setting and poten-
tially predict relapses.
Jaw claudication is often considered the most predict-

ive symptom of GCA; for example, a patient has a nine
time greater risk of a positive TAB when they experience
jaw claudication [29]. In CD4 cells of our patient cohort,
LAMTOR4, was shared between jaw claudication and
temporal headache. This protein is part of the ragulator
complex, which is involved in pathways regulating cell
size and cell cycle arrest [30]. A gene common to both
jaw claudication and visual disturbance is GZMB, other-
wise known as Granzyme B enzyme. GZMB is necessary
for targeting cell lysis in cell-mediated immune re-
sponses and is involved in the activation of cytokine re-
lease and cascade of caspases responsible for apoptosis
execution. Its involvement has been reported in other
autoimmune diseases such as type 1 diabetes and sys-
temic lupus erythematosus [31, 32]. PPP1CB, linked to
vascular smooth muscle contraction pathway [33], was
common to patients with jaw claudication and a back-
ground history of PMR, which has been shown to in-
crease the risk of GCA [34]. EXTL3, involved in the
heparan sulfate biosynthesis pathway and previously as-
sociated with syphilis, was expressed in both patients
with jaw claudication and fatigue [35].
Multiple genes were associated with temporal and

other types of headache in our patients. These included
POFUT2 in CD4 cells and SLC35F6, HTD2, ZNF708,
KLRC4-KLRK1 and JMJD7 in CD8 cells. These genes
have been implicated in cellular defense mechanisms, in-
nate immunity, cell proliferation and apoptosis signaling
pathways [36]. One example of great clinical interest is a
gene shared by patients with a history of PMR and those
experiencing visual disturbances at T1. ETS1, controls
lymphocyte differentiation and modulates cytokine and

chemokine expression. Low expression levels of ETS1,
leading to aberrant lymphocyte differentiation, have been
found in systemic lupus erythematosus [37]. ETS1 also
has a potential role in the regulation of angiogenesis
[38]. ETS1 warrants further functional investigation in
relation to its vascular role and as a biomarker for GCA
for those patients presenting with PMR.
Three patients died during the study period. The exact

cause of death for the three patients is unknown. One pa-
tient was being managed by her rural GP as lived rurally.
She lived in a nursing home after losing vision in both
eyes from GCA. The second patient who died was also bi-
laterally blind from GCA. She suffered multiple falls and
died soon after. The third patient, admitted to hospital for
general decline in health, was investigated for possible
stroke. She had very poor appetite and died within a few
weeks of admission. The bilateral visual loss likely predis-
poses to poor outcome, whether directly as a sign of dis-
ease severity or possibly due to increased likelihood of
falls and other morbidity indirectly increasing mortality.
We determined gene correlations with markers of dis-

ease prognosis and severity (Table 3). Genes in associ-
ation with poor prognostic outcome markers of GCA,
such as blindness, relapses and death could provide use-
ful predictions in the acute setting and could help deter-
mine the treatment intensity and length required for
those particular patients. We identified genes that over-
lap between acute phase markers as well as the prognos-
tic markers. For example, temporal headache at T1 as
well as bilateral blindness showed significant association
with CD8 expression of TCF7, which is important for
adaptive T lymphocyte and innate lymphoid cell regula-
tion [39]. Both these phenotypes were also associated
with NUCB2, which encodes Nesfatin-1. NUCB2 is
linked to inflammation and coagulopathies, and is corre-
lated with mortality following brain injury [40]. As TCF7
and NUCB2 expression are associated with temporal
headache in patients with GCA, these genes could also
raise suspicion of poor visual outcome in patients pre-
senting with temporal headache with GCA diagnosis.
We identified 15 genes shared across three phenotypes

in CD4 and 16 across CD8 cells (Table 5). In CD4 cells,
SRRT, a gene associated with cell proliferation [41], was
common to four phenotypes: death, fever, and both types
of headaches. In CD8, IL32, a member of the cytokine
family [42], was common to five phenotypes: a history of
PMR, visual disturbance and raised neutrophils at T1,
bilateral blindness and death within 12 months. IL32 in-
volvement has been described in vasculitides such as
granulomatosis with polyangiitis and anti-neutrophil
cytoplasm antibodies (ANCA) associated vasculitis [43,
44]. A previous quantitative gene expression analysis
study investigating IL32 in GCA demonstrated a strong
and significant up-regulation of IL32 in TAB specimens
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of patients with GCA; in particular it was highly
expressed by vascular smooth muscle cells of inflamed
arteries and neovessels within inflammatory infiltrates
[45]. This study also evaluated circulating CD4+ Th1
lymphocytes by flow cytometry which showed that
there was a greater abundance of them in GCA pa-
tients than controls and that they produced greater
amounts of IL32 [45]. From our study, expression of
IL32 in patients presenting with visual disturbance, a
history of PMR in the presence of an abnormal neu-
trophil count, should raise suspicion of GCA diagno-
sis with poor prognostic outcome. Altered expression
of these genes should raise suspicion of GCA diagno-
sis with poor outcome. Such genes warrant more in-
vestigation in the context of GCA as these correlated
with not only clinical and biochemical phenotypes but
also with prognoses.
The current mainstay treatment of high-dose cortico-

steroids is effective but is commonly associated with po-
tentially serious complications affecting up to 89% of
those with GCA [3]. Even after successful initial treat-
ment with corticosteroids, GCA relapses in up to
two-thirds of patients [46]. As shown by our study, 5 out
of 16 patients experienced relapses requiring an increase
in steroid dose (Additional file 1: Table S1). Unlike in
other autoimmune diseases, most steroid-sparing agents
and the use of adjunct agents in GCA [MB1] are not as-
sociated with a significant improvement in outcome [46,
47]. Tocilizumab, a humanized monoclonal antibody di-
rected against the IL-6 receptor, has been found to im-
prove both induction and maintenance of remission in
patients with GCA for up to 12 months [48]. However,
there is a large side effect profile from Tocilizumab.
Interestingly, we did not see DGE for IL6.

Conclusion
GCA is a devastating disease associated with significant
morbidity and mortality. We present the first longitu-
dinal gene expression study undertaken to identify ro-
bust transcriptomic biomarkers of GCA.
Our results show cell type-specific transcript expres-

sion profiles. We have identified genes potentially impli-
cated in the patho-aetiology of GCA which may uncover
important biological pathways for this disease. In
addition we have identified novel gene-phenotype associ-
ations which, in the acute phase, could act as clinical
prognostic markers by providing insight into potential
disease severity and therefore guide in initiating appro-
priate patient management.
Further functional investigation is needed to under-

stand the pathways in which the identified genes play a
role in the pathogenesis of GCA and to determine
whether the DGE in this study can be translated into the

clinical setting as new potential biomarkers to monitor
disease activity, predict outcome and assist in finding
more effective and safer treatments for GCA.
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