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Abstract The ventral visual pathway is crucially involved in integrating low-level visual features

into complex representations for objects and scenes. At an intermediate stage of the ventral visual

pathway, V4 plays a crucial role in supporting this transformation. Many V4 neurons are selective

for shape segments like curves and corners; however, it remains unclear whether these neurons are

organized into clustered functional domains, a structural motif common across other visual cortices.

Using two-photon calcium imaging in awake macaques, we confirmed and localized cortical

domains selective for curves or corners in V4. Single-cell resolution imaging confirmed that curve-

or corner-selective neurons were spatially clustered into such domains. When tested with

hexagonal-segment stimuli, we find that stimulus smoothness is the cardinal difference between

curve and corner selectivity in V4. Combining cortical population responses with single-neuron

analysis, our results reveal that curves and corners are encoded by neurons clustered into

functional domains in V4. This functionally specific population architecture bridges the gap between

the early and late cortices of the ventral pathway and may serve to facilitate complex object

recognition.

Introduction
The visual system faces the daunting task of combining highly ambiguous local patterns of contrast

into robust, coherent, and spatially extensive complex object representations (Connor et al., 2007;

Haxby et al., 1991; Mishkin et al., 1983). Such information is predominantly processed along the

ventral visual pathway (areas V1, V2, V4, and inferotemporal cortex [IT]). At early stages of this corti-

cal pathway, neurons are tuned to a local single orientation (Hubel and Livingstone, 1987;

Hubel and Wiesel, 1968) or a combination of orientations (Anzai et al., 2007; Ito and Komatsu,

2004). Orientation responses are functionally organized into iso-orientation domains that form pin-

wheel structures in V1 (Ts’o et al., 1990). At later stages like IT, neurons are selective for complex

objects, predominantly organized categorically (Desimone et al., 1984; Freiwald and Tsao, 2010;

Fujita et al., 1992; Kobatake and Tanaka, 1994; Tsao et al., 2003; Tsao et al., 2006). Such com-

plex object organization is embodied using combinations of structurally separated feature columns

(Fujita et al., 1992; Rajalingham and DiCarlo, 2019; Tanaka, 2003; Tsunoda et al., 2001;

Wang et al., 1996). Positioned in-between the local orientation architecture of V1 and the global

object architecture of IT lies cortical area V4, exhibiting visual selectivity that demonstrates integra-

tion of simple-towards-complex information (Pasupathy et al., 2019; Roe et al., 2012; Yue et al.,
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2014), and extensive anatomical connectivity across the visual hierarchy (Gattass et al., 1990;

Ungerleider et al., 2008).

Functional organization within V4 has previously been visualized by intrinsic signal optical

imaging (ISOI), and cortical representations of low-level features for orientation, color, and spatial

frequency have been systematically demonstrated (Conway et al., 2007; Li et al., 2014; Li et al.,

2013; Lu et al., 2018; Tanigawa et al., 2010). Such functional clustering suggests that the intracort-

ical organizational motifs in V4 bear some similarity to V1. It remains unknown how more complex

feature-selective neurons in V4 are spatially organized, and whether feature-like columns found in IT

also exist in V4. Because intrinsic imaging is both spatially and temporally limited, it is unable to

measure selective responses of single neurons. Using electrophysiology, early studies in V4 using bar

and grating stimuli found that V4 neurons are tuned for orientation, size, and spatial frequency

(Desimone and Schein, 1987). Subsequent studies revealed V4 selectivity for complex gratings and

shapes in natural scenes (David et al., 2006; Gallant et al., 1993; Kobatake and Tanaka, 1994). In

particular, Gallant and colleagues discovered V4 neurons with significant preferences for concentric,

radial, and hyperbolic gratings (Gallant et al., 1993; Gallant et al., 1996). Neurons with similar pref-

erences were spatially clustered when reconstructing the electrophysiological electrode penetrations

(Gallant et al., 1996). These results were extended by later studies confirming the systematic tuning

of V4 neurons for shape segments such as curves and corners as well as combination of these seg-

ments using parametric stimulus sets consisting of complex shape features (Cadieu et al., 2007;

Carlson et al., 2011; Oleskiw et al., 2014; Pasupathy and Connor, 1999; Pasupathy and Connor,

2001; Pasupathy and Connor, 2002). Temporally varying heterogeneous fine-scale tuning within

the spatial-temporal receptive field has also been observed (Nandy et al., 2016; Nandy et al.,

2013; Yau et al., 2013). More recently, artificial neural networks were used to generate complex

stimuli that characterize the selectivity of V4 neurons (Bashivan et al., 2019). However, whether

such complex feature-selective neurons are spatially organized in V4 remains poorly understood.

In this study, we aimed to confirm the presence of functional domains in V4 encoding complex

features such as curves and corners. We utilized two-photon (2P) calcium imaging in awake macaque

V4, which provides visualization of the spatial distribution and clustering within the cortical popula-

tion alongside substantially enhanced spatial resolution for functional characterization at the single-

cell level (Garg et al., 2019; Li et al., 2017; Nauhaus et al., 2012; Ohki et al., 2005;

Seidemann et al., 2016; Tang et al., 2018). We scanned a large cortical area in dorsal V4 using a

low-power objective lens to search for patches selectively activated by curves or corners. We subse-

quently imaged these patches using a high-power objective lens to record single neurons’ responses

in order to examine whether spatially clustered curve or corner-selective neurons could be found. If

such neural clusters were found, we further aimed to understand how different curves and corners

are encoded and differentiated in greater detail.

Results
We injected AAV1-hSyn-GCaMP into dorsal V4 (V4d) of two rhesus macaques — GCaMP6f for mon-

key A and GCaMP5G for monkey B. An imaging window and head posts were implanted 1–2

months after viral injection (see Materials and methods). Subjects were trained to initiate and main-

tain fixation within a 1˚ circular window for 2 s: the first second contained the fixation spot alone,

and then stimuli appeared for 1 s on a LCD monitor positioned 45 cm away (17 inch, 1280 � 960

pixel, 30 pixel/˚). Neuronal responses were recorded using 2P calcium imaging, with differential

images generated using DF = F – F0, where F0 is the average fluorescence 0.5–0 s before stimulus

onset, and F is the average response 0.5–1.25 s after stimulus onset.

Cortical mapping of curve-biased and corner-biased patches in V4
We first identified the retinal eccentricity using drifting gratings for our sites and found they were

positioned with an eccentricity of ~0.7˚ from the fovea in monkey A and ~0.9˚ in monkey B. We next

used a low-power (4�) objective lens to identify and localize any cortical subregions selectively acti-

vated by curves or corners. Using a large range of contour feature stimuli including bars, curves, and

corners (Figure 1A), we scanned a large area (3.4 � 3.4 mm) in V4d (Figure 1B, C, Figure 1—figure

supplement 1) between the lunate sulcus (LS) and the terminal portion of the inferior occipital sulcus

(IOS). We obtained global activation maps by Gaussian smoothing (standard deviation s = 10 pixels,
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Figure 1. Cortical mapping of curve-biased and corner-biased patches in V4 using a 4� objective lens. (A) The stimulus set used for initial cortical

mapping consisting of bars, corners, and smooth curves. (B) Vascular map. LS: lunate sulcus; IOS: inferior occipital sulcus. The black box indicates the

imaging site in each subject. (C) Two-photon fluorescence images of the two monkeys. Scale bar = 400 mm. (D) Left: subtraction map showing curve-

selective activation in monkey A, derived by the average response (DF/F0) to all curves minus the average response to all other stimuli (corners and

bars). Right: subtraction map showing corner-selective activation in monkey A. (E) The equivalent of (D) for monkey B. (F) Left: significant curve patches

in monkey A. For each pixel, independent t-tests were performed to compare the responses to all curves against all corners and against all bars.

Benjamini-Hochberg procedure was used to compute the pixel FDR (false discovery rate, see Materials and methods). Threshold q = 0.01. The white

box indicates the imaging site selected for 16� objective single-cell mapping. Right: significant corner patches in monkey A. (G) The equivalent of (F)

for monkey B.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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67 mm) the DF/F0 maps. We observed that orientation is organized in linear iso-orientation domains

or pinwheel-like patterns, as previously reported (Roe et al., 2012), using ISOI in V4 (Figure 1—fig-

ure supplement 2).

We then examined the response to curve and corner stimuli. Using map subtraction, we com-

puted the curve-selective activation as the average response (DF/F0) to all curves minus all corners

and bars, and corner-selective activation as the average response to all corners minus all curves and

bars (Figure 1D, E). The subtraction maps we obtained clearly revealed several possible candidates

for curve- or corner-selective patches. To statistically detect and locate the curve and corner

patches, we performed pixel-level FDR tests to examine the curve or corner preference. For each

pixel, we performed independent t-tests to compare the responses to all curves, all corners, and all

bars, obtaining the p-value maps for curve and corner selectivity (see Materials and methods and

Figure 1—figure supplement 3). We then computed the FDR (false dicovery rate) using Benjamini-

Hochberg procedure (Benjamini and Hochberg, 1995), with the threshold level q = 0.01 to locate

the significant patches. Cluster permutation tests were also performed to exclude patches with not

enough significant pixels (Nichols and Holmes, 2002). We found several patches significantly selec-

tive to curves or corners in dorsal V4 (Figure 1F, G). These curve- or corner-selective patches were

considered candidates for functional domains encoding shape segments in V4.

Single-cell mapping of curve- and corner-selective neurons reveals they
are spatially clustered
To confirm that neurons within these patches were indeed curve or corner selective, we next per-

formed single-cell resolution imaging with a high-power objective lens (16�) to record neuronal

responses (DF/F0) as well as their spatial organization (Figure 2—figure supplement 1). The imaging

sites (850 � 850 mm) in both subjects were chosen to include both curve- and corner-selective

domains found by our 4� imaging (Figure 1F, G). 535 visually responsive neurons (292 from monkey

A and 243 from monkey B) were recorded in total. Each stimulus was repeated 10 times and aver-

aged to derive neuronal responses (Figure 2—figure supplement 2). To characterize neurons’ curve

and corner selectivity, we calculated a curve selectivity index (CVSI) and corner selectivity index

(CNSI). A positive CVSI value indicates a neuron’s maximal response to curves is stronger than its

maximal response to other stimuli: a CVSI = 0.33 signifies a response twice as strong, and a

CVSI = 0.2 is 1.5 times as strong. The same definition applies to CNSI. 70.5% (74 out of 105) neurons

with CVSI > 0.2 significantly (one-way ANOVA, p<0.05) preferred curves over corners and bars, and

76.9% (120 out of 156) for CNSI (Figure 2—figure supplement 3A, B). We found neurons with high

CVSI or CNSI were spatially clustered (Figure 2A–D), and these neurons were also selective to the

orientation of the integral curves or corners (Figure 2E–H; 91.6% of the neurons are significantly

tuned to the orientation of curves or corners; one-way ANOVA, p<0.05). Their overall spatial distri-

bution was consistent with the spatial distribution of curve and corner domains revealed by 4� imag-

ing (Figure 2A–D vs. Figure 1E, F), especially considering the possible loss of detailed spatial

information during Gaussian smoothing of 4� images. This parsimoniously suggests that the

observed cortical activation was evoked by responsive neuronal clusters.

We next assessed this clustering quantitatively by examining how neuronal responses correlate

with spatial distance. For each neuronal pair recorded from the same subject, we computed the pair-

wise tuning correlation and absolute value differences for CVSI and CNSI plotted against the neuro-

nal pairwise distances. We found that neurons close to each other (<300 mm approximately) often

had more correlated tuning (Figure 2I) and generally exhibited more similar CVSI and CNSI values

(Figure 2J, K). These results indicate curve-selective and corner-selective neurons are spatially clus-

tered, which could potentially form curve domains and corner domains in V4, which could therefore

be detected when imaged at a larger scale.

Figure 1 continued

Figure supplement 1. Two-photon fluorescence images.

Figure supplement 2. Pseudo-color orientation map obtained by 4� imaging.

Figure supplement 3. Maps of uncorrected p-values (p<0.01), FDR q-values (q < 0.01), and Bonferroni-corrected p-values (p<0.01), before cluster
permutation tests.
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Figure 2. Single-cell mapping of curve- and corner-selective neurons using a 16� objective lens. (A) Cell map of curve selectivity index (CVSI).

Responsive neurons are labeled at their spatial location and colored according to their CVSI. Neurons with high positive CVSI (high curve preference)

were clustered in the upper part of the imaging area. The white line indicates the curve-biased patches derived by 4� imaging (Figure 1E). Scale

bar = 100 mm. (B) Cell map of corner selectivity index (CNSI). Neurons with high positive CNSI (high corner preference) were clustered in the lower part

Figure 2 continued on next page
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Out of all 535 neurons recorded from two animals, the majority (346 neurons, 64.7%) significantly

preferred curve and corner stimuli over single bars, and only 1.5% (eight neurons) significantly pre-

ferred bars over curves and corners (Figure 3—figure supplement 1A), indicating that neurons in

these areas were indeed much more likely to encode more complex shape features compared to

simple orientation. Therefore, we made a combined cell map to depict curve and corner selectivity

(Figure 3A), neglecting bar responses, by calculating curve/corner index (CVCNI). Similar to CVSI

and CNSI, positive CVCNI values indicate a neuron’s maximum response to curves is stronger than

its maximum response to corners, and vice versa. As expected, neurons with similar CVCNI values

were spatially clustered. Neurons that fell into the 4�-defined curve domains generally had positive

CVCNI values (Figure 3B) and those in the 4� corner domains generally had negative CVCNI values

(Figure 3C). We also performed a one-way ANOVA comparing neurons’ maximum curve and corner

responses. We found that neurons with CVCNI > 0.2 or <�0.2 (which means 1.5 times as strong)

predominantly showed significant preferences (p<0.05) to curves or corners over the other kind

(Figure 3D). The curve- or corner-selective neurons (red and blue neurons in Figure 3D) have very

diverse curve or corner tuning, and could be either selective or invariant to the radius and radian of

curves or bar length and separation angle of corners (Figure 3—figure supplement 1B–D), which

potentially enables the encoding of multiple shape segments. More interestingly, these neurons that

were heavily biased to curves or corners over the other tended to respond very weakly to single bars

(Figure 3E), implying that they might be detecting more complex and integral shape features

instead of local orientation. These results suggest that curves and corners are encoded by different

neuronal clusters organized in curve and corner domains, and these domains are distinct from those

representing single orientations.

Curve-preferring neurons are selective for smoothness
Curves and corners are both different from single bars in that they potentially contain multiple differ-

ent local orientations, yet we found them to be encoded by different neuronal clusters in V4. This

suggests that V4 neurons are not recognizing shapes with more than one local orientation, but com-

puting a more fundamental feature difference. To investigate what distinguishes curves from corners

in V4, we tested hexagonal segments (P-shape stimuli; Figure 4A) that highly resemble curves

except for a lack of smoothness (Nandy et al., 2013). We found that neurons that were very selec-

tive to smooth curves did not respond strongly to P-shape stimuli (Figure 4A), suggesting that they

were selective to smoothness, rather than multiple orientations. In the same way as CVCNI, we calcu-

lated curve/P-shape index (CVPII), which characterizes a neuron’s preference to smooth curves over

the P-shape stimuli. We found that neurons’ CVPII were highly consistent with CVCNI (R = 0.72,

p<0.001, Figure 4B), which means neurons preferring smooth curves over corners would also prefer

smooth curves over P-shape stimuli. As a result, the maps of CVPII were also consistent to CVCNI

maps (Figure 4C vs. Figure 3A). K-means clustering analysis of population responses also showed

that smooth curves are encoded differently from rectilinear shapes including P-shapes and corners

(Figure 4—figure supplement 1). Therefore, smoothness is important to the distinct encoding of

curves and corners in the specific curve domains and corner domains in V4.

Figure 2 continued

of the imaging area. (C, D) Equivalent maps for monkey B. (E–H) Responses of four example neurons preferring curves or corners, their locations

labeled in (A–D), respectively. (I) Neuronal pairwise tuning correlation (mean ± SE, averaging all neurons every 100 mm) plotted against spatial

distances. The average correlation between different repeats of same neuron is 0.71 (Figure 2—figure supplement 2). The dash curve indicates the

average of neurons when shuffled. Significance levels were determined by permutation test. (J) Absolute CVSI value differences (mean ± SE) plotted

against distances. (K) Absolute CNSI value differences (mean ± SE) plotted against distances.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Single-cell resolution fluorecence imge.

Figure supplement 2. Single-neuron responses.

Figure supplement 3. Curve selectivity index (CVSI) and corner selectivity index (CNSI).
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Figure 3. Combined maps of curve/corner preference. (A) Cell map of curve/corner index (CVCNI). Positive CVCNI indicates preference for curves over

corners and vice versa. Curve-selective neurons and corner-selective neurons are spatially clustered. Scale bar = 100 mm. (B) Histogram of CVCNI for

neurons located within the curve-biased domains. Mean = 0.15 ± 0.03 S.E. (C) Histogram of CVCNI for neurons located within the corner-biased

domains. Mean = �0.20 ± 0.02 S.E. (D) Scatterplot of maximum responses to bars (normalized to 0–1 by the maximum responses to all contour

features) against CVCNI. Red dots indicate neurons showing significant preference for curves (ANOVA p<0.05, n = 10) and blue for corners. The

majority of neurons (74.5%) with CVCNI < �0.2 or >0.2 were significantly selective. Neurons that highly preferred curves over corners or corners over

curves did not respond strongly to single-orientated bars. (E) Neurons’ maximum bar responses were negatively correlated with the absolute values of

CVCNI. The red line represents the linear regression line.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Neurons’ tuning to curves and corners.
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Curve and corner selectivity is related to concentric and radial grating
preference
Early studies in V4 demonstrated that many V4 neurons are selective for non-Cartesian gratings

(David et al., 2006; Gallant et al., 1993; Gallant et al., 1996). While concentric gratings highly

resemble curves and radial gratings resemble corners, this result highly implied the curve/corner

preference. Therefore, we wondered whether these two types of gratings are also separately

encoded by neurons in curve and corner domains. So in addition to contour feature stimuli, we also

tested concentric, radial, and Cartesian gratings (Figure 5—figure supplement 1A). The resultant

selectivity maps were consistent with the contour feature maps as predicted. 48.4% of the neurons

recorded in the imaging areas significantly preferred concentric or radial gratings over Cartesian gra-

tings, while only 2.2% significantly preferred Cartesian gratings (Figure 5—figure supplement 1B).

In addition, many of them were heavily biased to one over the other. Similar to CVCNI, we com-

puted concentric/radial index (CRI) to characterize this bias. CRI and CVCNI values were found to be

correlated (R = 0.38, p<0.001; Figure 5B, Figure 5—figure supplement 2), and naturally their cell

maps were also consistent (Figure 5C vs. Figure 3A), suggesting that classical polar grating selectiv-

ity is closely related to curve and corner selectivity. Meanwhile, to assess whether the observed

selectivity is related to different spatial frequencies, we examined the CRI map at 1, 2, and 4 cycle/˚.

Figure 4. Curve-preferring neurons are selective for smoothness. (A) Left: responses of an example curve preferring neurons to bars, corners, smooth

curves, and P-shape stimuli, indicated by the white circle in (C). The neurons responded strongly to smooth curves but not to P-shape, which highly

resemble curves despite lack of smoothness. Right: an example neuron responding to rectilinear corners and P-shapes, indicated by the white square

in (C). (B) Scatterplot of curve/corner index (CVCNI) against curve/P-shape index (CVPII), which characterizes neuronal preference for smooth curves

over P-shape stimuli. The red dash line represents the linear regression line. The two values were highly correlated, indicating that neurons preferring

curves over corners also preferred curves over P-shape stimuli. (C) Cell map of CVPII. Scale bar = 100 mm. Neurons are clustered similarly to CVCNI

(Figure 3A).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. K-means clustering analysis.
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Figure 5. Concentric and radial gratings preference. (A) Cell map of concentric/radial index (CRI). Positive CRI indicates preference for concentric over

radial gratings and vice versa. Concentric grating-selective neurons and radial grating-selective neurons are spatially clustered, and the overall

distribution was consistent with curve/corner selectivity (Figure 3A). Scale bar = 100 mm. (B) Scatterplot of curve/corner index (CVCNI) against CRI,

which were positively correlated. The red dash line represents the linear regression line. (C) CRI cell maps at spatial frequencies of 1, 2, and 4 cycles/˚

(cpd). The map structure remained consistent.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Responses to Cartesian, concentric, and radial gratings.

Figure supplement 2. Concentric/radial index (CRI).
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The CRI values of all neurons at three spatial frequencies are highly correlated (Pearson correlation,

all R > 0.5, p<0.001), and the map structures were found to remain consistent across three spatial

frequencies (Figure 5C), implying such selectivity is not directly related to spatial frequency.

Discussion
Using 2P calcium imaging, we identified cortical patches in macaque V4d selective for curves or cor-

ners (Figure 1E, F), with individual curve- and corner-selective neurons consistently clustered spa-

tially (Figure 3A). These neurons exhibited diverse curve or corner selectivity (Figure 3—figure

supplement 1B–D) and could potentially be involved in the encoding and processing of a large vari-

ety of curves and corners. These results demonstrate the existence of functionally specific curve and

corner domains in V4d.

Functional organization for low-order orientation and spatial frequency representations in

macaque V4 had previously been visualized using ISOI (Lu et al., 2018; Roe et al., 2012). For more

complex shape features, very few studies have been carried out in V4 to characterize its functional

organization, let alone at single-cell resolution. We report here the existence of cortical micro-

domains consisting almost entirely of neurons selective for curves. This finding at the single-cell level

is consistent with an fMRI study that reported curvature-biased patches in macaque V4 (Yue et al.,

2014). The patches we found were smaller in size (about 300 mm) than those observed using fMRI;

we suspect due to the improved spatial resolution afforded by 2P imaging. Additionally, we also

found cortical domains in V4d selective for corners. Apart from this fMRI study, one of the reasons

why exactly the curve/corner contrast was used to study functional domains in V4 was that in our

recent study using natural images we found smooth curves and rectilinear corners to be one of the

dominant features encoded by many V4 neurons (Jiang et al., 2019). Here, we directly demon-

strated and visualized the combined functional organization of smooth curves and rectilinear corners

in V4 at both cortical and single-cell level.

Two recent papers have also reported curvature domains in anesthetized macaque V4. Hu et al.,

2020 used ISOI, finding functional domains that prefer curved over straight gratings. Tang et al.,

2020 used both ISOI and 2P imaging, finding functional domains that prefer circles over rectilinear

triangles. In general, these two imaging studies alongside our own provide clear replication of the

core importance of curvature as an organizing principle in the functional architecture of V4. Com-

pared to ISOI, 2P imaging holds the advantage of higher spatial resolution, and therefore makes it

possible to characterize the transition between domains more precisely than Gaussian smoothed

ISOI. We found the transition taking place within around 300 mm, remaining relatively elevated

thereafter (Figure 2—figure supplement 3, Figure 5—figure supplement 2). Comparing the differ-

ent stimulus set (curves vs. corners, concentric vs. radial), the transition of CRI maps of monkey A in

Figure 5A looked sharper probably because too many neurons had negative CRI values. CRI and

CVCNI were correlated but not identical. Since concentric gratings only have 360˚ full circles but

some neurons might prefer short arches (small radian, Figure 3—figure supplement 1), it is possible

that they do not respond strongly to concentric gratings and tend to have negative CRI.

A number of electrophysiology studies have reported that some neurons in V4d are selective for

more complex features (Gallant et al., 1993; Hegdé and Van Essen, 2007; Kobatake and Tanaka,

1994; Pasupathy and Connor, 1999). Our results, consistent with these works, identified many

curve- or corner-selective neurons. In addition, given the ability of 2P imaging to quantify the spatial

relationships between neurons, we confirm that they are spatially clustered. We also observed some

deviations of our results from earlier studies. First, the percentage of complex feature-selective neu-

rons we found in our study is higher than previously observed (Gallant et al., 1993; Pasupathy and

Connor, 1999); in our hands, the vast majority of neurons preferred curves and corners over bars

and concentric and radial gratings over Cartesian gratings. Second, although P-shape stimuli were

sometimes regarded also as curved contours (Nandy et al., 2013), we found V4 neurons responding

to them differently. We think these two deviations are primarily due to sampling neurons within or

close to curve and corner domains (which is difficult to detect with classical electrophysiology). We

do not wish to infer that curve and corner stimuli are only encoded by neurons in the curve and cor-

ner domains while other neurons are not involved. But we have demonstrated that neurons in the

curve and corner domains are tuned to more complex and integral features rather than local orienta-

tion, spatial frequency, or multiple orientations, alone, supporting the encoding of shape segments
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with intermediate complexity in V4 (Bushnell and Pasupathy, 2012; El-Shamayleh and Pasupathy,

2016; Oleskiw et al., 2014; Rust and DiCarlo, 2010).

Complexity increases as visual shape information is processed along the ventral visual pathway.

Neurons in V1 are tuned to low-order orientation and spatial frequency and organized in iso-orienta-

tion domains and orientation pinwheels (Nauhaus et al., 2012; Ts’o et al., 1990). Neurons in IT are

selective for complex features and objects and organized in feature columns and face patches

(Tanaka, 2003; Tsao et al., 2006; Tsunoda et al., 2001). The simple-to-complex transformation and

integration take place in the intermediate stages between V1 and IT. Researchers have reported

that some V2 neurons are selective to combination of multiple local orientations, from which corner

selectivity might emerge (Anzai et al., 2007; Ito and Komatsu, 2004). Our results in V4d showed

that intermediate shape segments like curves and corners are separately encoded by neurons in spe-

cific functional domains, and the curve- and corner-selective neurons are tuned to the integral fea-

tures instead of local orientation or combination of orientations. It is possible that these complex

feature-selective neurons receive inputs or modulation from nearby neurons or downstream areas to

form a recurrent network, which might underlie previous findings that the response profiles of V4

neurons were temporally heterogeneous (Nandy et al., 2016; Yau et al., 2013). Such evidence is

also recently accumulating for IT cortex (Kar and DiCarlo, 2021). Unfortunately, this question is diffi-

cult to address given the temporal resolution of the existing calcium imaging technique. One possi-

ble solution is to use genetically encoded voltage indicators (Xu et al., 2017; Yang and St-Pierre,

2016), which once successfully applied in macaques could help to reveal the simple-to-complex inte-

gration of neurons.

Given that we recorded neurons whose stimulation was not isolated to the ‘optimal’ spatial loca-

tion in the receptive fields (i.e., the RF locations of some neurons might deviate for the population

RF), the nature of the domains may also be modulated by stimulus translation variance, and future

studies addressing positional variance and stimulus encoding are warranted. Our sample of V4d was

also near-foveal in terms of eccentricity. It is well established that the ventral pathway connectivity to

IT favors central rather than peripheral visual space (Ungerleider et al., 2008), but the relationship

of visual eccentricity to these functional domains remains unknown. The existence of curve and cor-

ner domains for neuronal encoding in V4d provides significant support for integration of shape infor-

mation in the intermediate stages of the visual hierarchy. These findings provide a more

comprehensive understanding of the functional architecture of V4 feature selectivity.

Finally, our results may also help to explore the later stage of the visual hierarchy. The data sug-

gests that higher-order pattern domains may emerge gradually along the ventral pathway. The spec-

ificity of clustered patches/domains in the cortex has been proposed as an important organizing

principle for some, though not all, domains of cortical processing (Kanwisher, 2010). A recent study

has suggested that, at least for faces and color processing, such functional domains are

causally specific for human visual recognition (Schalk et al., 2017). The curve and corner domain

responses in V4 could possibly form the basis for more complex feature columns, object domains,

and face patches in IT. This is consistent with a growing body of evidence from the ventral stream

(Bao et al., 2020; Rajalingham and DiCarlo, 2019; Yue et al., 2014). Recent explorations of neuro-

nal response fields in artificial neural networks have likewise found a prevalence of curve detectors

with increasing complexity along the processing hierarchy (Cammarata et al., 2020). Studying such

functional cross-areal connectivity (both bottom-up and top-down) remains a critical goal for future

studies of the visual system. It is also interesting to try to identify why smooth curves and rectilinear

corners are separated as early as V4. One possible explanation is that smooth curves are more prev-

alent in living animals or foods that are of particular interest to primates, while corners are often

found in the background environment of stones or branches. Such differences may underlie the sta-

tistical regularities in natural images of objects (Long et al., 2018; Levin et al., 2001; Yetter et al.,

2020; Zachariou et al., 2018). Such comparisons will provide a basis for future investigations com-

paring the statistical feature relationships for natural images between V4 and IT functional domains.

Materials and methods

Key resources table

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Macaca mulatta)

Macaca mulatta Beijing Prima
Biotech Inc

http://www.
primasbio.com/
en/Home

Recombinant
DNA reagent

AAV9.Syn.
GCaMP6f.WPRE.
SV40

Penn Vector Core CS1001

Recombinant
DNA reagent

AAV1.Syn.
GCaMP5G.
WPRE.SV40

Penn Vector Core V4102MI-R

Software,
algorithm

MATLAB R2018b MathWorks https://www.
mathworks.com

Software,
algorithm

Code for data analysis This paper https://github.com/
RJiang1994/
macaque-v4-2P
(Jiang, 2021 copy
archived at
swh:1:rev:57dfeac5e
81b91c93ef0687f8c
f04010d3f47f8c)

All procedures involving animals were in accordance with the Guide of Institutional Animal Care

and Use Committee (IACUC) of Peking University Laboratory Animal Center and approved by the

Peking University Animal Care and Use Committee (LSC-TangSM-5).

Animal preparation
The subjects used in this study were two adult male rhesus monkeys (Macaca mulatta, 4 and 5 years

of age, respectively), purchased from Beijing Prima Biotech Inc and housed at Peking University Lab-

oratory Animal Center. Two sequential surgeries were performed on each animal under general

anesthesia. In the first surgery, we performed a craniotomy over V4 and opened the dura. We

injected 200 nl of AAV9.Syn.GCaMP6f.WPRE.SV40 (CS1001, titer 7.748e13 [GC/ml], Penn Vector

Core) or AAV1.Syn.GCaMP5G.WPRE.SV40 (V4102MI-R, titer 2.37e13 [GC/ml], Penn Vector Core) at

a depth of about 350 mm and speed of 5–10 nl/s. Injection and surgical protocols followed our previ-

ous study (Li et al., 2017). After injections, we sutured the dura, replaced the skull cap with titanium

screws, and closed the scalp. The animal was then returned for recovery and received Ceftriaxone

sodium antibiotic (Youcare Pharmaceutical Group Co. Ltd., China) for 1 week. 45 days later, we per-

formed the second surgery to implant the imaging window and head posts. The dura was removed

and a glass coverslip was put directly above the cortex without any artificial dura and glued to a tita-

nium ring. We then glued the titanium ring to the skull using dental acrylic. The detailed design of

the chamber and head posts can be found in our previous study (Li et al., 2017). Monkeys can be

ready for recording about 1 week after the second surgery.

Behavioral task
Monkeys were trained to maintain fixation on a small white spot (0.1˚) while seated in a primate chair

with head restraint to obtain a juice reward. Eye positions were monitored by an ISCAN ETL-200

infrared eye-tracking system (ISCAN Inc, Woburn, MA) at a 120 Hz sampling rate. Trials in which the

eye position deviated 1˚ or more from the fixation point were terminated and the same condition

was repeated immediately. Only data from the successful trials was used.

Visual stimuli
The visual stimuli were displayed on an LCD monitor 45 cm from the animal’s eyes (Acer v173Db, 17

inch, 1280 � 960 pixel, 30 pixel/˚, 80 Hz refresh rate). After acquiring fixation, only the gray

Jiang et al. eLife 2021;10:e63798. DOI: https://doi.org/10.7554/eLife.63798 12 of 19

Research article Neuroscience

http://www.primasbio.com/en/Home
http://www.primasbio.com/en/Home
http://www.primasbio.com/en/Home
https://www.mathworks.com
https://www.mathworks.com
https://github.com/RJiang1994/macaque-v4-2P
https://github.com/RJiang1994/macaque-v4-2P
https://github.com/RJiang1994/macaque-v4-2P
https://archive.softwareheritage.org/swh:1:dir:0918938d55c574704ae3761018223debc0149c27;origin=https://github.com/RJiang1994/macaque-v4-2P;visit=swh:1:snp:c344907d3ef7f22770d47ff483729de6fdc0a1e4;anchor=swh:1:rev:57dfeac5e81b91c93ef0687f8cf04010d3f47f8c
https://archive.softwareheritage.org/swh:1:dir:0918938d55c574704ae3761018223debc0149c27;origin=https://github.com/RJiang1994/macaque-v4-2P;visit=swh:1:snp:c344907d3ef7f22770d47ff483729de6fdc0a1e4;anchor=swh:1:rev:57dfeac5e81b91c93ef0687f8cf04010d3f47f8c
https://archive.softwareheritage.org/swh:1:dir:0918938d55c574704ae3761018223debc0149c27;origin=https://github.com/RJiang1994/macaque-v4-2P;visit=swh:1:snp:c344907d3ef7f22770d47ff483729de6fdc0a1e4;anchor=swh:1:rev:57dfeac5e81b91c93ef0687f8cf04010d3f47f8c
https://doi.org/10.7554/eLife.63798


background (32 cd/m2) was presented for the first 1 s to obtain the fluorescence baseline, and then

the visual stimuli were displayed for further 1 s. No inter-trial interval was used. Stimuli were pre-

sented in pseudo-random order. We used square-wave drifting gratings (0.4˚ diameter circular

patch, full contrast, 4 cycle/˚, 3 cycle/s) generated and presented by the ViSaGe system (Cambridge

Research Systems, Rochester, UK) to measure the retinal eccentricity, which was about 1˚ bottom

left to the fovea for both monkeys.

Contour feature stimuli were generated using MATLAB (The MathWorks, Natick, MA) and pre-

sented using the ViSaGe system (Cambridge Research Systems). The contour feature stimuli were

two pixels wide. The lengths of the bars and corner edges were 10 and 20 pixels (30 pixel/˚, 0.33˚

and 0.67˚), and the radius of curve stimuli were also 10 and 20 pixels. For each of the two sizes, the

curve stimuli varied in radians (120˚, 180˚ for 4� imaging and 60˚, 90˚, 120˚, 180˚ for 16� imaging).

The corner stimuli also varied in three separation angles (45˚ and 90˚ and 135˚). All contour feature

stimuli were rotated to eight orientations (0˚, 45˚, 90˚, 135˚, 180˚, 225˚, 270˚, 315˚ for curves and cor-

ners, and 0˚, 22.5˚, 45˚, 67.5˚, 90˚, 112.5˚, 135˚, 157.5˚ for bars).

The Cartesian (eight orientations, 0˚, 45˚, 90˚, 135˚, 180˚, 225˚, 270˚, 315˚), concentric, and radial

grating stimuli were full contrast sinusoidal gratings (edge blurred), which were 90 pixels (3˚) in diam-

eter, with spatial frequencies (SF) of 1, 2, and 4 cycle/˚. The concentric gratings were generated as

CG¼ sin 2pSF�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� �

The radial gratings were generated as

RG¼ sin 2pSF�arctan
y

x

� �� �

The data for contour feature stimuli was recorded on one day, and the data for gratings on

another day.

2P imaging
2P imaging was performed using a Prairie Ultima IV 2P laser scanning microscope (Bruker Corpora-

tion, Billerica, MA) during experiments. 1000 nm mode-lock laser (Spectra-Physics, Santa Clara, CA)

was used for excitation of GCaMPs, and resonant galvo scanning (512 � 512 pixel, 32 frame/s) was

used to record the fluorescence images (8 fps, averaging every four frames). A 4� objective (Nikon

Corporation, Tokyo, Japan) was used for sub-cortical-level recording (3.4 � 3.4 mm, 6.7 mm/pixel),

and a 16� objective (Nikon Corporation) for neural population recording at single-cellular resolution

(850 � 850 mm, 1.7 mm/pixel). We used a Neural Signal Processor (Cerebus system, Blackrock Micro-

system, Salt Lake City, UT) to record the time stamp of each frame of the 2P images as well as the

time stamps of visual stimuli onset for synchronization.

Image data processing
Image data was processed by MATLAB. The 2P images were first aligned to a template image by a

2D cross-correlation algorithm (Li et al., 2017) to eliminate motion artifacts during recording sec-

tions. For all the successful trials, we found the corresponding 2P images by synchronizing the time

stamps of stimulus onset recorded by the Neural Signal Processor (Cerebus system, Blackrock Micro-

system). The differential fluorescence image was calculated as DF = F – F0, where the basal fluores-

cence image F0 was defined as the average image of 0–0.5 s before stimulus onset, and F as the

average of 0.5–1.25 s after stimulus onset, both averaged across all repeats for each stimulus.

For 4� imaging, the DF/F0 maps were Gaussian smoothed using a low-pass Gaussian filter

(s = 10 pixels) to obtain the activation maps. For 16� imaging, to identify responding cell bodies

(ROIs), the differential image (DF) for each stimuli went through a band-pass Gaussian filter (s = 2

pixels and 5 pixels, respectively, only used for identifying ROIs) and were then binarized using a pixel

value threshold of 3 SD. The connected components (>25 pixels) were identified as candidates for

active ROIs. An ROI was discarded if its maximum response (DF/F0) was below 0.3. The roundness of

these ROIs was calculated as

C¼
P2

4pS

Jiang et al. eLife 2021;10:e63798. DOI: https://doi.org/10.7554/eLife.63798 13 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.63798


where P is the perimeter of the ROI and S is the area. Only ROIs with C < 1.1 were identified as

cell bodies. We also tested this criterion by ANOVA, comparing the fluorescence 0–0.5 s before and

0.5–1.25 s after stimulus onset (same definition as DF), all trials together. 533 out of the 535 neurons

identified had p<0.05.

Curve and corner domains
All trials (stim number � repeat number) in 4� imaging were categorized first as curves (32 stim),

corners (48 stim), or bars (16 stim). Curve patches: for each pixel, independent t-tests were per-

formed to compare the responses to all curves against all corners and against all bars, respectively,

and the larger one of the two p-values was chosen if the mean response to curves is stronger than

corners and bars. FDR was computed following a Benjamini–Hochberg procedure, using the MAT-

LAB command mafdr, in which qi = pi � 512�512/rank(pi). Corner patches followed the same

procedure.

Cluster permutation tests were then performed to exclude patches with too few significant pixels.

For each permutation, all trials (stim number � repeat number) were randomly relabeled as curves,

corners, or bars, keeping the total trial number within each of the three groups unchanged. Indepen-

dent t-tests as in Figure 1F were performed, with an uncorrected p=0.01 as threshold. The cluster

(connected component) with the maximum pixel number was recorded. 60,000 random permuta-

tions were performed, resulting in 60,000 maximum cluster sizes as null distribution. The top 5%

(3000) of the null distribution was used as the threshold, and the patches with pixels below this level

were regarded as insignificant and excluded.

Quantification and statistical analysis
Two tests were performed to determine whether a neuron was selective to the orientation of curves

or corners. First, we performed ANOVA to compare the fluorescence 0–0.5 s before and 0.5–1.25 s

after stimulus onset (same definition as DF) using all the trials for curve and corner stimuli. Then we

find the optimal curve or corner stimuli of this neuron and used ANOVA to compare among the

eight orientations of this optimal form. The p-value was then Bonferroni-corrected (14 comparisons,

6 corners, and 8 curves). Only neurons passing both ANOVA tests (p<0.05) were deemed as tuned

to the orientation of curves or corners.

CVSI is used to characterize a neuron’s preference to curves over other stimuli (bars and corners),

defined as

CVSI¼
MaxRespcurve�MaxRespother

MaxRespcurveþMaxRespother
:

where MaxRespcurve is the neuron’s maximum response to curve stimuli and MaxRespother is the

neuron’s maximum response to other stimuli (bars and corners). CVSI ranges from �1 to 1, and

a positive CVSI value indicates a neuron’s response to its optimal curve stimuli is greater than its

response to optimal bar or corner stimuli.

CNSI is defined as

CNSI¼
MaxRespcorner�MaxRespother

MaxRespcornerþMaxRespother
:

where MaxResp corner is the neuron’s maximum response to corner stimuli and MaxRespother is

the neuron’s maximum response to other stimuli (bars and curves).

CVCNI is defined as

CVCNI¼
MaxRespcurve �MaxRespcorner

MaxRespcurve þMaxRespcorner
:

We also performed one-way ANOVA test comparing neuron’s maximum response to curve stimuli

and maximum response to corner stimuli in Figure 3D, with threshold value p=0.05, repeats n = 10.

The same tests were also applied to CVSI and CNSI in Figure 2—figure supplement 3.

CVPII is defined as
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CVPII¼
MaxRespcurve �MaxRespP�shape

MaxRespcurve þMaxRespP�shape

:

where MaxRespP-shape is the neuron’s maximum response to P-shape stimuli. The Pearson corre-

lation of CVCNI and CVPII was calculated in Figure 4B, and the regression line was derived by

minimizing
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dxð Þ̂2þ Dyð Þ̂2
p

.

CRI is defined as

CRI¼
MaxRespconcentric �MaxRespradial

MaxRespconcentric þMaxRespradial
:

where MaxRespconcentric is the neuron’s maximum response to concentric gratings and MaxRe-

spradial is the neuron’s maximum response to radial gratings. The Pearson correlation of CVCNI and

CRI was also calculated in Figure 5B, and the regression line was derived by

minimizing
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dxð Þ̂2þ Dyð Þ̂2
p

.

Clustering analysis
We analyzed 2922 neuron pairs from monkey A and 2432 neuron pairs from monkey B in Figure 2I–

K. Pairwise tuning correlation was calculated as the Pearson correlation of the two neurons’

responses to all bar, curve, and corner stimuli, and were plotted against pairwise spatial distances

(averaging all neurons every 100 mm).

Similarly, the differences in CVSI and CNSI were also plotted against pairwise spatial distances:

DCVSIij
�

�

�

�¼ CVSIi �CVSIj
�

�

�

�

;

where CVSIi is the CVSI of neuron i and CVSIj is the CVSI of neuron j.

DCNSIij
�

�

�

�¼ CNSIi �CNSIj
�

�

�

�

;

where CNSIi is the CVSI of neuron i and CNSIj is the CNSI of neuron j.

Permutation test was performed to evaluate the significance of each average |DCVSI| and |DCNSI|.

|DCVSI| or |DCNSI| were randomly paired with distances for 100,000 times to build the null distribu-

tion and averaged. A point was considered significant if it is higher than the top 100 of the null dis-

tribution or lower than the bottom 100 (p<0.001).

K-means analysis
We performed K-means analysis to cluster the stimulus forms and the neurons. Responses of 535

neurons to 20 forms (two bars, eight curves, six corners, and four P-shapes, each at eight orienta-

tions) are used to construct the responses matrix R as

R¼

r1;1 � � � r1;535

..

. . .
. ..

.

r20;1 � � � r20;535

2

6

4

3

7

5

where ri,j is the response of neuron j to stimulus form i. Only the maximum responses among

eight orientations were used.

We used population response vectors (RP, rows of matrix R) to cluster the forms. For form i,

RPi ¼ ri;1ri;2 � � � ri;535
� �

:

We used neuron response vectors (RN, columns of matrix R) to cluster the neurons. For neuron j,

RNj ¼ r1;jr2;j � � � r20;j

� �

:

The number of clusters was determined using Calinski–Harabasz criterion and squared Euclidean

distance. Maximum literation time = 10,000. Clustering was repeated for 10,000 times with new ini-

tial cluster centroid, and the one with the lowest within-cluster sum was used.
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Multi-dimensional scaling
Classical multi-dimensional scaling (MDS) was performed to visualize the clustering of stimulus forms

derived by K-means. The distance (dissimilarity matrix) was computed as

Di;j ¼ 1� corrcoef RPi;RPj

� �

where Di,j is the distance between form i and j, corrcoef is the Pearson correlation, and RPi is the

population response vectors of form i. Classical MDS was performed using singular value decompo-

sition (SVD) algorithm.

The normalized stress was computed as

Stress¼

P

Di;j�D
0

i;j

� �2

P

D2
i;j

where Di,j is the distance in the original space and D’
i,j is the distance in the new MDS space.
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Hegdé J, Van Essen DC. 2007. A Comparative Study of Shape Representation in Macaque Visual Areas V2 and
V4. Cerebral Cortex 17:1100–1116. DOI: https://doi.org/10.1093/cercor/bhl020

Hu JM, Song XM, Wang Q, Roe AW. 2020. Curvature domains in V4 of macaque monkey. eLife 9:e57261.
DOI: https://doi.org/10.7554/eLife.57261

Hubel DH, Livingstone MS. 1987. Segregation of form, color, and stereopsis in primate area 18. The Journal of
Neuroscience 7:3378–3415. DOI: https://doi.org/10.1523/JNEUROSCI.07-11-03378.1987

Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. The Journal of
Physiology 195:215–243. DOI: https://doi.org/10.1113/jphysiol.1968.sp008455

Ito M, Komatsu H. 2004. Representation of angles embedded within contour stimuli in area v2 of macaque
monkeys. Journal of Neuroscience 24:3313–3324. DOI: https://doi.org/10.1523/JNEUROSCI.4364-03.2004

Jiang R, Li M, Tang S. 2019. Discrete neural clusters encode orientation, curvature and corners in macaque V4.
bioRxiv. DOI: https://doi.org/10.1101/808907

Jiang R. 2021. macaque-v4-2P. Software Heritage. swh:1:rev:57dfeac5e81b91c93ef0687f8cf04010d3f47f8c. https://
archive.softwareheritage.org/swh:1:dir:0918938d55c574704ae3761018223debc0149c27;origin=https://github.
com/RJiang1994/macaque-v4-2P;visit=swh:1:snp:c344907d3ef7f22770d47ff483729de6fdc0a1e4;anchor=swh:1:rev:
57dfeac5e81b91c93ef0687f8cf04010d3f47f8c

Kanwisher N. 2010. Functional specificity in the human brain: A window into the functional architecture of the
mind. PNAS 107:11163–11170. DOI: https://doi.org/10.1073/pnas.1005062107

Kar K, DiCarlo JJ. 2021. Fast recurrent processing via ventrolateral prefrontal cortex is needed by the primate
ventral stream for robust core visual object recognition. Neuron 109:164–176. DOI: https://doi.org/10.1016/j.
neuron.2020.09.035, PMID: 33080226

Kobatake E, Tanaka K. 1994. Neuronal selectivities to complex object features in the ventral visual pathway of
the macaque cerebral cortex. Journal of Neurophysiology 71:856–867. DOI: https://doi.org/10.1152/jn.1994.
71.3.856

Levin DT, Takarae Y, Miner AG, Keil F. 2001. Efficient visual search by category: Specifying the features that
mark the difference between artifacts and animals in preattentive vision. Perception & Psychophysics 63:676–
697. DOI: https://doi.org/10.3758/BF03194429

Li P, Zhu S, Chen M, Han C, Xu H, Hu J, Fang Y, Lu HD. 2013. A motion direction preference map in monkey V4.
Neuron 78:376–388. DOI: https://doi.org/10.1016/j.neuron.2013.02.024

Li M, Liu F, Juusola M, Tang S. 2014. Perceptual Color Map in Macaque Visual Area V4. Journal of Neuroscience
34:202–217. DOI: https://doi.org/10.1523/JNEUROSCI.4549-12.2014

Li M, Liu F, Jiang H, Lee TS, Tang S. 2017. Long-Term Two-Photon imaging in awake macaque monkey. Neuron
93:1049–1057. DOI: https://doi.org/10.1016/j.neuron.2017.01.027, PMID: 28215557

Long B, Yu CP, Konkle T. 2018. Mid-level visual features underlie the high-level categorical organization of the
ventral stream. PNAS 115:E9015–E9024. DOI: https://doi.org/10.1073/pnas.1719616115, PMID: 30171168

Lu Y, Yin J, Chen Z, Gong H, Liu Y, Qian L, Li X, Liu R, Andolina IM, Wang W. 2018. Revealing detail along the
visual hierarchy: neural clustering preserves acuity from V1 to V4. Neuron 98:417–428. DOI: https://doi.org/10.
1016/j.neuron.2018.03.009

Mishkin M, Ungerleider LG, Macko KA1983. Object vision and spatial vision: two cortical pathways. Trends in
Neurosciences 6:414–417. DOI: https://doi.org/10.1016/0166-2236(83)90190-X

Nandy AS, Sharpee TO, Reynolds JH, Mitchell JF. 2013. The fine structure of shape tuning in area V4. Neuron
78:1102–1115. DOI: https://doi.org/10.1016/j.neuron.2013.04.016

Nandy AS, Mitchell JF, Jadi MP, Reynolds JH. 2016. Neurons in Macaque Area V4 Are Tuned for Complex
Spatio-Temporal Patterns. Neuron 91:920–930. DOI: https://doi.org/10.1016/j.neuron.2016.07.026

Nauhaus I, Nielsen KJ, Disney AA, Callaway EM. 2012. Orthogonal micro-organization of orientation and spatial
frequency in primate primary visual cortex. Nature Neuroscience 15:1683–1690. DOI: https://doi.org/10.1038/
nn.3255

Nichols TE, Holmes AP. 2002. Nonparametric permutation tests for functional neuroimaging: A primer with
examples. Human Brain Mapping 15:1–25. DOI: https://doi.org/10.1002/hbm.1058

Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC. 2005. Functional imaging with cellular resolution reveals precise
micro-architecture in visual cortex. Nature 433:597–603. DOI: https://doi.org/10.1038/nature03274

Jiang et al. eLife 2021;10:e63798. DOI: https://doi.org/10.7554/eLife.63798 18 of 19

Research article Neuroscience

https://doi.org/10.1038/360343a0
https://doi.org/10.1126/science.8418487
https://doi.org/10.1152/jn.1996.76.4.2718
https://doi.org/10.1126/science.aaw5868
http://www.ncbi.nlm.nih.gov/pubmed/1965642
https://doi.org/10.1073/pnas.88.5.1621
https://doi.org/10.1093/cercor/bhl020
https://doi.org/10.7554/eLife.57261
https://doi.org/10.1523/JNEUROSCI.07-11-03378.1987
https://doi.org/10.1113/jphysiol.1968.sp008455
https://doi.org/10.1523/JNEUROSCI.4364-03.2004
https://doi.org/10.1101/808907
https://archive.softwareheritage.org/swh:1:dir:0918938d55c574704ae3761018223debc0149c27;origin=https://github.com/RJiang1994/macaque-v4-2P;visit=swh:1:snp:c344907d3ef7f22770d47ff483729de6fdc0a1e4;anchor=swh:1:rev:57dfeac5e81b91c93ef0687f8cf04010d3f47f8c
https://archive.softwareheritage.org/swh:1:dir:0918938d55c574704ae3761018223debc0149c27;origin=https://github.com/RJiang1994/macaque-v4-2P;visit=swh:1:snp:c344907d3ef7f22770d47ff483729de6fdc0a1e4;anchor=swh:1:rev:57dfeac5e81b91c93ef0687f8cf04010d3f47f8c
https://archive.softwareheritage.org/swh:1:dir:0918938d55c574704ae3761018223debc0149c27;origin=https://github.com/RJiang1994/macaque-v4-2P;visit=swh:1:snp:c344907d3ef7f22770d47ff483729de6fdc0a1e4;anchor=swh:1:rev:57dfeac5e81b91c93ef0687f8cf04010d3f47f8c
https://archive.softwareheritage.org/swh:1:dir:0918938d55c574704ae3761018223debc0149c27;origin=https://github.com/RJiang1994/macaque-v4-2P;visit=swh:1:snp:c344907d3ef7f22770d47ff483729de6fdc0a1e4;anchor=swh:1:rev:57dfeac5e81b91c93ef0687f8cf04010d3f47f8c
https://doi.org/10.1073/pnas.1005062107
https://doi.org/10.1016/j.neuron.2020.09.035
https://doi.org/10.1016/j.neuron.2020.09.035
http://www.ncbi.nlm.nih.gov/pubmed/33080226
https://doi.org/10.1152/jn.1994.71.3.856
https://doi.org/10.1152/jn.1994.71.3.856
https://doi.org/10.3758/BF03194429
https://doi.org/10.1016/j.neuron.2013.02.024
https://doi.org/10.1523/JNEUROSCI.4549-12.2014
https://doi.org/10.1016/j.neuron.2017.01.027
http://www.ncbi.nlm.nih.gov/pubmed/28215557
https://doi.org/10.1073/pnas.1719616115
http://www.ncbi.nlm.nih.gov/pubmed/30171168
https://doi.org/10.1016/j.neuron.2018.03.009
https://doi.org/10.1016/j.neuron.2018.03.009
https://doi.org/10.1016/0166-2236(83)90190-X
https://doi.org/10.1016/j.neuron.2013.04.016
https://doi.org/10.1016/j.neuron.2016.07.026
https://doi.org/10.1038/nn.3255
https://doi.org/10.1038/nn.3255
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1038/nature03274
https://doi.org/10.7554/eLife.63798


Oleskiw TD, Pasupathy A, Bair W. 2014. Spectral receptive fields do not explain tuning for boundary curvature in
V4. Journal of Neurophysiology 112:2114–2122. DOI: https://doi.org/10.1152/jn.00250.2014

Pasupathy A, Kim T, Popovkina DV. 2019. Object shape and surface properties are jointly encoded in mid-level
ventral visual cortex. Current Opinion in Neurobiology 58:199–208. DOI: https://doi.org/10.1016/j.conb.2019.
09.009

Pasupathy A, Connor CE. 1999. Responses to Contour Features in Macaque Area V4. Journal of
Neurophysiology 82:2490–2502. DOI: https://doi.org/10.1152/jn.1999.82.5.2490

Pasupathy A, Connor CE. 2001. Shape Representation in Area V4: Position-Specific Tuning for Boundary
Conformation. Journal of Neurophysiology 86:2505–2519. DOI: https://doi.org/10.1152/jn.2001.86.5.2505

Pasupathy A, Connor CE. 2002. Population coding of shape in area V4. Nature Neuroscience 5:1332–1338.
DOI: https://doi.org/10.1038/972

Rajalingham R, DiCarlo JJ. 2019. Reversible Inactivation of Different Millimeter-Scale Regions of Primate IT
Results in Different Patterns of Core Object Recognition Deficits. Neuron 102:493–505. DOI: https://doi.org/
10.1016/j.neuron.2019.02.001

Roe AW, Chelazzi L, Connor CE, Conway BR, Fujita I, Gallant JL, Lu H, Vanduffel W. 2012. Toward a Unified
Theory of Visual Area V4. Neuron 74:12–29. DOI: https://doi.org/10.1016/j.neuron.2012.03.011

Rust NC, DiCarlo JJ. 2010. Selectivity and tolerance ("invariance") both increase as visual information propagates
from Cortical Area V4 to IT. Journal of Neuroscience 30:12978–12995. DOI: https://doi.org/10.1523/
JNEUROSCI.0179-10.2010

Schalk G, Kapeller C, Guger C, Ogawa H, Hiroshima S, Lafer-Sousa R, Saygin ZM, Kamada K, Kanwisher N. 2017.
Facephenes and rainbows: Causal evidence for functional and anatomical specificity of face and color
processing in the human brain. PNAS 114:12285–12290. DOI: https://doi.org/10.1073/pnas.1713447114

Seidemann E, Chen Y, Bai Y, Chen SC, Mehta P, Kajs BL, Geisler WS, Zemelman BV. 2016. Calcium imaging with
genetically encoded indicators in behaving primates. eLife 5:e16178. DOI: https://doi.org/10.7554/eLife.16178

Tanaka K. 2003. Columns for complex visual object features in the inferotemporal cortex: clustering of cells with
similar but slightly different stimulus selectivities. Cerebral Cortex 13:90–99. DOI: https://doi.org/10.1093/
cercor/13.1.90

Tang S, Lee TS, Li M, Zhang Y, Xu Y, Liu F, Teo B, Jiang H. 2018. Complex Pattern Selectivity in Macaque Primary
Visual Cortex Revealed by Large-Scale Two-Photon Imaging. Current Biology 28:38–48. DOI: https://doi.org/
10.1016/j.cub.2017.11.039

Tang R, Song Q, Li Y, Zhang R, Cai X, Lu HD. 2020. Curvature-processing domains in primate V4. eLife 9:e57502.
DOI: https://doi.org/10.7554/eLife.57502

Tanigawa H, Lu HD, Roe AW. 2010. Functional organization for color and orientation in macaque V4. Nature
Neuroscience 13:1542–1548. DOI: https://doi.org/10.1038/nn.2676

Ts’o D, Frostig R, Lieke E, Grinvald A. 1990. Functional organization of primate visual cortex revealed by high
resolution optical imaging. Science 249:417–420. DOI: https://doi.org/10.1126/science.2165630

Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RBH. 2003. Faces and objects in macaque cerebral
cortex. Nature Neuroscience 6:989–995. DOI: https://doi.org/10.1038/nn1111

Tsao DY, Freiwald WA, Tootell RB, Livingstone MS. 2006. A cortical region consisting entirely of face-selective
cells. Science 311:670–674. DOI: https://doi.org/10.1126/science.1119983

Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M. 2001. Complex objects are represented in macaque
inferotemporal cortex by the combination of feature columns. Nature Neuroscience 4:832–838. DOI: https://
doi.org/10.1038/90547

Ungerleider LG, Galkin TW, Desimone R, Gattass R. 2008. Cortical connections of area V4 in the macaque.
Cerebral Cortex 18:477–499. DOI: https://doi.org/10.1093/cercor/bhm061, PMID: 17548798

Wang G, Tanaka K, Tanifuji M. 1996. Optical Imaging of Functional Organization in the Monkey Inferotemporal
Cortex. Science 272:1665–1668. DOI: https://doi.org/10.1126/science.272.5268.1665

Xu Y, Zou P, Cohen AE. 2017. Voltage imaging with genetically encoded indicators. Current Opinion in Chemical
Biology 39:1–10. DOI: https://doi.org/10.1016/j.cbpa.2017.04.005

Yang HH, St-Pierre F. 2016. Genetically Encoded Voltage Indicators: Opportunities and Challenges. Journal of
Neuroscience 36:9977–9989. DOI: https://doi.org/10.1523/JNEUROSCI.1095-16.2016

Yau JM, Pasupathy A, Brincat SL, Connor CE. 2013. Curvature Processing Dynamics in Macaque Area V4.
Cerebral Cortex 23:198–209. DOI: https://doi.org/10.1093/cercor/bhs004

Yetter M, Robert S, Mammarella G, Richmond B, Eldridge MAG, Ungerleider LG, Yue X. 2020. Curvilinear
features are important for animate/inanimate categorization in macaques. bioRxiv. DOI: https://doi.org/10.
1101/2020.08.25.267393

Yue X, Pourladian IS, Tootell RBH, Ungerleider LG. 2014. Curvature-processing network in macaque visual
cortex. PNAS 111:E3467–E3475. DOI: https://doi.org/10.1073/pnas.1412616111

Zachariou V, Del Giacco AC, Ungerleider LG, Yue X. 2018. Bottom-up processing of curvilinear visual features is
sufficient for animate/inanimate object categorization. Journal of Vision 18:388. DOI: https://doi.org/10.1167/
18.12.3

Jiang et al. eLife 2021;10:e63798. DOI: https://doi.org/10.7554/eLife.63798 19 of 19

Research article Neuroscience

https://doi.org/10.1152/jn.00250.2014
https://doi.org/10.1016/j.conb.2019.09.009
https://doi.org/10.1016/j.conb.2019.09.009
https://doi.org/10.1152/jn.1999.82.5.2490
https://doi.org/10.1152/jn.2001.86.5.2505
https://doi.org/10.1038/972
https://doi.org/10.1016/j.neuron.2019.02.001
https://doi.org/10.1016/j.neuron.2019.02.001
https://doi.org/10.1016/j.neuron.2012.03.011
https://doi.org/10.1523/JNEUROSCI.0179-10.2010
https://doi.org/10.1523/JNEUROSCI.0179-10.2010
https://doi.org/10.1073/pnas.1713447114
https://doi.org/10.7554/eLife.16178
https://doi.org/10.1093/cercor/13.1.90
https://doi.org/10.1093/cercor/13.1.90
https://doi.org/10.1016/j.cub.2017.11.039
https://doi.org/10.1016/j.cub.2017.11.039
https://doi.org/10.7554/eLife.57502
https://doi.org/10.1038/nn.2676
https://doi.org/10.1126/science.2165630
https://doi.org/10.1038/nn1111
https://doi.org/10.1126/science.1119983
https://doi.org/10.1038/90547
https://doi.org/10.1038/90547
https://doi.org/10.1093/cercor/bhm061
http://www.ncbi.nlm.nih.gov/pubmed/17548798
https://doi.org/10.1126/science.272.5268.1665
https://doi.org/10.1016/j.cbpa.2017.04.005
https://doi.org/10.1523/JNEUROSCI.1095-16.2016
https://doi.org/10.1093/cercor/bhs004
https://doi.org/10.1101/2020.08.25.267393
https://doi.org/10.1101/2020.08.25.267393
https://doi.org/10.1073/pnas.1412616111
https://doi.org/10.1167/18.12.3
https://doi.org/10.1167/18.12.3
https://doi.org/10.7554/eLife.63798

